Persistent Storage

- Datastructures and Algorithms
L 07: Case Study: Unix FS
Questions: Encoding

- What is an encoding?
 - Name some examples of codes
 - Which are used in computers?
Questions: Encoding

- Differences between Morse and Baudot?
- What is ASCII?
 - Is there more than printable characters?
- What is EBCDIC?
 - Difference to ASCII?
- What is more in ISO-8859?
- The goal of Unicode?
 - What is different to previous codes?
 - UTF-8 / UTF-16
Questions: Consistency

• What is ACID?
• Name 3 consistency methods / classes!
 – What is necessary to make it work?
 – Storing a new set of informations, how?
 – How does the recovery work after reboot?
Questions: FAT

- The 4 parts of a FAT filesystem?
- Which variants of FAT do you know?
 - What does the number indicate?
- What is in a directory entry?
- Where is the free space?
- What is to do to...
 - read from a file
 - create a file and write into it
Filesystem - what is that?
Filesystem - what is that?

- Management of smaller objects on a disk?
 - Since some time also multiple disks
- Listing of the objects
 - Names, size, attributes
- Management of the disks space (or other media)
- POSIX (Unix Standard)
 - Requires multiple names for a file
A Unix Filesystem

- Management of Objects
 - Directory
 - Path to the file, f.e.: /home/ulrich/funny.mp3
 - In Unix: hierarchical, with subdirectories
 - Rights
 - user(s), group(s)
 - read, write, execute, delete, ...
 - Attributes
 - length, extended attributes
 - Space allocation
UFS predecessor: Unix Filesystem

- Unix System 6 Filesystem
 - Bootblock
 - Inodes
 - Directories
 - Data blocks

- Used in
 - Unix System 6 and System 7
 - Available in BSD, Linux, Solaris until S9
Unix Filesystem

- Bootblock (superblock):
 - Magic number
 - Position and size of the other parts
 - This is an F Format (using the full sector)
 - Superblock in some copies for recovery
Unix Filesystem

• Directory
 – Table of files
 – Contains records with 2 elements
 • Filename (14 Byte)
 • inode-# (2 Byte = only 65536 possible...)
 • ... this is FB16 record format ...
 • Nothing else (! different to FAT filesystem)
 – All attributes are stored in the inode
 – One inode entry can have 2 directory entries
 • => One file can have 2 names
Unix Filesystem

- Directory
 - The root directory has a defined inode-
 - Other special entries:
 - "lost+found" special purpose directory
 - For file system check (command: fsck)
 - Stores anything surplus into "lost+found"
 - blocks belonging to two files
 - blocks not in file or free list
 - files not in directories
 - ...
Unix Filesystem

• Inodes
 - Indexed by a number (inode-#)
 • see ls -li
 - Represents a file
 - Rights, Attributes, Allocation
 - Symlinks
 • Some implementations: use allocation space
 - NOT: The name of the file!
 - ... also FB256 or FB512 format ...
Unix Filesystem

- Root block (super block)
- Freespace (bitmap)
- Inodes (fixed amount)
 - Has to be defined at creation
- Data blocks
 - (Sub-) directories
 - Files
 - Perhaps: symlinks
Unix Filesystem: Read from a file

- Read the super block
- Find the root directory (fixed inode)
 - Read content of root directory (like file below)
 - Get inode-# of path element
 - Recursive descent until directory of file is found
 - Get inode-# of file
- Read file through its inode entry
 - Read allocation information
 - Compute block-# and read it
Unix Filesystem: Write to a file

- Find inode-# of file (like in reading)
- Compute the block-# from the allocation info
- Write to the correct block

- Extending a file (or sequentially creating a file)
 - Take block from free space (bitmap)
 - Add it to allocation (perhaps multiple changes)
 - Then write to the block
Unix Filesystem: Create Objects

- Create a file
 - Allocate an inode (perhaps: bitmap)
 - Write to the corresponding directory as it would be a file

- Create a directory
 - Like file creation, but use other attributes
 - Initial directory entries: "." and ".."
Unix Filesystem: Delete

- Delete objects
 - Delete the directory entry
 - Delete the inode, if not referenced
 - Active references count!
 (a file stays as long it is used)
- Delete the inode then frees the blocks below
Unix Filesystem: Problems

- Problems (see also: FAT)
 - New files are probably placed at the end
 - Metadata placed at a fixed location
 - At the beginning of the device
 - Fixed number of inodes
 - Creation and writing of a file need a lot of large seeks
 (destroys elevator algorithm)
 - Changes in the filesystem create some seeks
Unix File System (UFS)

- Developed 198x under the name (Berkeley) fast file system (FFS)
 - Marshall K. McKusick, Bill Joy, …
- Basic idea: System V FS + cylinder groups
 - Locality of Metadata
 - More Performance
- Later additions:
 - Size up to 16 TiB
 - Log
 - 64 Bit allocation (BSD)
UFS Usage

• Used in
 - BSD*
 - SunOS (since 1983), Solaris (since 1992)
 - A/UX (Apple Unix previous to MacOS X)
 - HP/UX
 - True 64 (Digital, now HP)
 - Windows NT filesystem is similar
 - Linux (as a kernel module)
UFS Resources

- Overview: en.wikipedia.org: UFS
- Details: Solaris Internals, Chapter 15
 - Can be found ...