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Abstract

Event-based systems (EBS) are increasingly used as underlying technology in many mission
critical areas and large-scale environments, such as environmental monitoring and location-
based services. Moreover, novel event-based applications are typically highly distributed and
data intensive with stringent requirements for performance and scalability. Common approaches
to address these requirements are benchmarking and performance modeling. However, there
was a lack of general performance modeling methodologies for EBS as well as test harnesses and
benchmarks using representative workloads for EBS. Therefore, this thesis focused on approaches
to benchmark EBS as well as the development of a performance modeling methodology. In this
context, novel extensions for queueing Petri nets (QPNs) were proposed. The motivation was to
support the development and maintenance of EBS that meet certain Quality-of-Service (QoS)
requirements.

To address the lack of representative workloads we developed the first industry standard
benchmark for EBS jointly with the Standard Performance Evaluation Corporation (SPEC) in
whose development and specification the author was involved as a chief benchmark architect
and lead developer. Our efforts resulted in the SPECjms2007 standard benchmark. Its main
contributions were twofold: based on the feedback of industrial partners, we specified a compre-
hensive standardized workload with different scaling options and implemented the benchmark
using a newly developed complex and flexible framework. Using the SPECjms2007 benchmark
we introduced a methodology for performance evaluation of message-oriented middleware plat-
forms and showed how the workload can be tailored to evaluate selected performance aspects.
The standardized workload can be applied to other EBS. E.g., we developed an innovative re-
search benchmark for publish/subscribe-based communication named jms2009-PS based on the
SPECjms2007 workload. The proposed benchmarks are now the de facto standard benchmarks
for evaluating messaging platforms and have already been used successfully by several industrial
and research organizations as a basis for further research on performance analysis of EBS.

To describe workload properties and routing behavior we introduced a novel formal defini-
tion of EBS and their performance aspects. Furthermore, we proposed an innovative approach
to characterize the workload and to model the performance aspects of EBS. We used opera-
tional analysis techniques to describe the system traffic and derived an approximation for the
mean event delivery latency. We showed how more detailed performance models based on QPNs
could be built and used to provide more accurate performance prediction. It is the first general
performance modeling methodology for EBS and can be used for an in-depth performance anal-
ysis as well as to identify potential bottlenecks. A further contribution is a novel terminology
for performance modeling patterns targeting common aspects of event-based applications using
QPNs.

To improve the modeling power of QPNs, we defined several extensions of the standard QPNs.
They allow us to build models in a more flexible and general way and address several limitations
of QPNs. By introducing an additional level of abstraction, it is possible to distinguish between
logical and physical layers in models. This enables to flexibly map logical to physical resources
and thus makes it easy to customize the model to a specific deployment. Furthermore, we
addressed two limiting aspects of standard QPNs: constant cardinalities and lack of transition
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priorities.
Finally, we validated our modeling methodology to model EBS in two case studies and pre-

dicted system behavior and performance under load successfully. As part of the first case study
we extended SIENA, a well-known distributed EBS, with a runtime measurement framework
and predicted the runtime behavior including delivery latency for a basic workload. In the sec-
ond case study, we developed a comprehensive model of the complete SPECjms2007 workload.
To model the workload we applied our performance modeling patterns as well as our QPN ex-
tensions. We considered a number of different scenarios with varying workload intensity (up to
4,500 transaction / 30,000 messages per second) and compared the model predictions against
measurements. The results demonstrated the effectiveness and practicality of the proposed
modeling and prediction methodology in the context of a real-world scenario.

This thesis opens up new avenues of frontier research in the area of event-based systems.
Our performance modeling methodology can be used to build self-adaptive EBS using automatic
model extraction techniques. Such systems could dynamically adjust their configuration to
ensure that QoS requirements are continuously met.
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Chapter 1

Introduction

1.1 Motivation

Event-based systems (EBS) have been gaining attention in many domains of industry. With
the advent of ambient intelligence and ubiquitous computing, many new applications of EBS
have been proposed [101], for example, in the areas of transport information monitoring [15,
206], event-driven supply chain management [33, 1, 196], ubiquitous (wireless) sensor envi-
ronments [2, 30, 179], environmental monitoring, ambient assisted living, and location-based
services [59, 35, 102, 100]. Many of these novel event-based applications are highly distributed
and data intensive and hence pose some serious performance and scalability challenges. With
the increasing popularity of EBS and their gradual adoption in mission critical areas, perfor-
mance issues are becoming a major concern. The performance and scalability of event-based
middleware (used to process real-time event data) are of crucial importance for the successful
adoption of such applications in the industry, and methodologies are needed to guarantee an
adequate quality-of-service (QoS) level.

As a consequence, EBS have to be subjected to a rigorous performance analysis at all stages
of an application’s life cycle. To meet QoS requirements, techniques for predicting system
performance as a function of configuration and workload are needed. Common performance
metrics of interest are, for example, expected event notification latency as well as utilization and
message throughput of the various system components (e.g., event brokers, network links). Since
the components of EBS are loosely coupled and communicate asynchronously, the understanding
of these metrics may differ from traditional performance engineering. However, obtaining such
information is essential in order to determine the optimal system topology, configuration, and
capacity for providing adequate QoS to applications at a reasonable cost. Moreover, given
the dynamics of most EBS applications, it is important that the performance of the system
is continuously monitored and analyzed during operation to help anticipate changes in the
workload and take corrective actions to ensure that QoS requirements are satisfied.

The goal of this thesis is to develop novel approaches to analyze and predict the behavior of
EBS and their performance and scalability under load. To achieve this, we focus on workload
characterization, benchmarking and performance modeling.

1.2 Problem Statement

EBS are often used in business critical environments and thus their reliability is crucial for
the whole IT infrastructure. A certain QoS level has to be ensured. Since EBS are loosely
coupled, highly distributed, data intensive and often heterogeneous systems, this is a very chal-
lenging task. The dynamics of most EBS applications and their underlying middleware makes

1
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it difficult to monitor and analyze system performance during operation. Closely related to
EBS is the publish-subscribe paradigm that is nowadays used as a building block in major new
software architectures and technology domains such as enterprise service bus (ESB), enterprise
application integration (EAI), service-oriented architecture (SOA) and event-driven architec-
ture (EDA) [50, 51, 101]. Modern EBS are implemented using several technology platforms
such as centralized systems based on message-oriented middleware (MOM), e.g., IBM Web-
Sphere and TIBCO Rendezvous, or large-scale distributed event-based systems (DEBS), e.g.,
SIENA [40], Hermes[179] or REBECA [154]. Several standards such as Java Message Service
(JMS) [221], Advanced Message Queuing Protocol (AMQP), and Data Distribution Service
(DDS) have been established and are supported by middleware vendors.

A major task of system architects, developers and deployment managers is to choose ade-
quate technologies and deploy the EBS in such a way that the QoS requirements are fulfilled.
While developing, deploying, and maintaining event-based applications (and their underlying
middleware), the following questions are often raised:

• What performance would the system exhibit for a given deployment topology, configura-
tion, and workload scenario?

• What is a typical workload scenario?

• What would be the expected notification and subscription delays as well as the utilization
of the various system components (e.g., brokers, network links)?

• What maximum load (number of publishers and subscribers, event publication rates) would
the system be able to handle without breaking the service level agreements?

• What would be the optimal number of brokers and the optimal system topology?

• Which components would be most utilized as the load increases and when are they poten-
tial bottlenecks?

• Will the event-based middleware scale for future loads?

• Which product offers the best performance for a certain workload scenario?

Benchmarks and performance modeling techniques help answering these questions. How-
ever, there is a lack of test harnesses and benchmarks using representative workloads for EBS.
The same applies to performance models. Only a few approaches for modeling EBS have been
published and they have limitations such as unrealistic assumptions or scalability issues. Fur-
thermore, most traditional performance modeling techniques have not yet been evaluated using
EBS. As far as the author of this thesis knows, neither an EBS benchmark implementing a
real-world workload nor a performance modeling methodology focusing on EBS was available
when this thesis effort was started.

1.3 Approach and Contributions of This Thesis

In this section, we summarize the results of this thesis. First, we provide a brief overview of
these results in the area of performance engineering. Second, we discuss those that lie within
the area of benchmarking of EBS. We summarize our contributions and conclude this section
with an overview of related activities and publications.
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Figure 1.1: A (Distributed) Event-based System

1.3.1 Contributions in Performance Engineering

Modeling EBS is challenging because of the decoupling of the communicating parties, on the
one hand, and the dynamic changes in the system structure and behavior, on the other hand. If
a request is sent in a traditional request/reply-based distributed system, it is sent directly to a
given destination. This makes it easy to identify the system components and resources involved
in its processing. In contrast, when an event is published in an EBS, as illustrated in Figure 1.1,
it is not addressed to a particular destination, but rather routed along all those paths that lead
to event consumers. The event might have to be processed by multiple system nodes on its way
to consumers and it is difficult to predict in advance which nodes will be involved in delivering
the event. Moreover, individual events published by a given producer might be routed along
completely different paths, visiting various sets of system nodes. Another difficulty stems from
the fact that every time a new subscription is created or an existing one is modified, this might
lead to significant changes in the system behavior. Thus, the dynamics of EBS require that
workload characterization be done on a regular basis in order to reflect changes in the system
configuration and workload.

We proposed a novel approach to workload characterization and performance modeling of
EBS, aiming to address the above challenges. We developed a workload model based on moni-
toring data that captures the system routing behavior and resource consumption at a level that
allows us to use this information as an input to performance models. The workload model we
proposed does not make any assumptions about the algorithms used at the event routing and
overlay network layers of the system. Using the workload model and applying operational anal-
ysis techniques, we were able to characterize the message traffic and determine the utilization
of system components. This in turn enabled us to derive an approximation of the mean event
delivery latency. For more accurate performance prediction, we proposed detailed performance
models based on queueing Petri nets (QPNs). Furthermore, we discussed how different features
of EBS can be reflected in performance models and introduced eleven performance modeling
patterns for the most common settings and features of EBS. We used QPNs as a modeling
technique to illustrate the patterns. However, several of our patterns are not (or only with high
effort) convertible with standard QPNs.
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To solve these shortcomings and limitations, and to increase modeling flexibility without
increasing its complexity, we developed several new features for QPNs:

1. The ability to have multiple queueing places share the same physical queue
We used this feature to implement the concept of mapping logical to physical resources.

2. Support of Non-Constant Cardinalities in Transitions

3. Priority Support for Transitions

Our extensions allow building QPNs in a more flexible and general way. The concept of mapping
logical to physical resources is implemented in the QPME / SimQPN software tools.

Our modeling approach is the first to provide a comprehensive methodology for workload
characterization and performance modeling of EBS that is applicable to a wide range of systems.
It allows the modeling of individual message flows and interactions in an EBS. This methodology
helps identify and eliminate bottlenecks and ensure that systems are designed and sized to meet
their QoS requirements. We demonstrated our approach in two case studies:

Case Study I: A case study using the SIENA publish/subscribe system with a basic workload
comprising a single message type was carried out. The SIENA publish/subscribe system
was enhanced with self-monitoring functionality. We instrumented the system to monitor
and collect the event publication rates and routing probabilities needed for characterizing
the workload. The workload model thus generated was used as input for a QPN model
of the system, which was analyzed by means of simulation. The model predictions were
compared against measurements on the real system and the modeling error was below 5%
for all metrics considered. This case study served as a proof-of-concept, confirming the
effectiveness of the proposed methodology.

Case Study II: While the results of the first case study are promising, they do not reveal
whether the proposed modeling methodology scales to realistic systems providing perfor-
mance predictions with reasonable accuracy. Therefore, we presented a second case study
of a representative state-of-the-art event-driven application. We applied our modeling ap-
proach and extended it to address the issues that arise when considering a complex and
realistic application. The application we chose is the SPECjms2007 standard benchmark,
which is designed to be representative of real-world event-driven applications. We de-
veloped a comprehensive model of the complete workload including the persistent layer,
point-to-point, and publish/subscribe communication, and evaluated its accuracy in a
commercial middleware environment —the Oracle WebLogic Server Enterprise Edition.
By means of the proposed models, we were able to predict the performance of the mod-
eled application accurately for scenarios under realistic load conditions with up to 30 000
messages exchanged per second (up to 4500 transaction per second). To the best of our
knowledge, no models of representative systems of this size and complexity exist in the
literature.

The modeling technique presented can be exploited as a powerful tool for performance predic-
tion and capacity planning during the software engineering lifecycle of event-driven applications.
We published our performance modeling methodology in [132] including case study I. In [131]
we published a survey of currently available modeling techniques for EBS.

1.3.2 Contributions in the Area of Benchmarking

Over the last decade several proprietary and open-source benchmarks for evaluating EBS plat-
forms have been developed and used in the industry (e.g., [213, 106, 8, 118]). Benchmarks not
only help to compare alternative platforms and validate them, but can also be exploited to study
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the effect of different platform configuration parameters on overall system performance. How-
ever, for a benchmark to be useful and reliable, it must fulfill several fundamental requirements.
First of all, the benchmark workload must be designed to stress platforms in a manner represen-
tative of real-world messaging applications. It has to exercise all critical services offered by the
platforms and must provide a basis for performance comparisons. Finally, the benchmark must
generate reproducible results without having any inherent scalability limitations. While previ-
ous benchmarks for EBS have been employed extensively for performance testing and product
comparisons, they do not meet the above requirements. This lack can be attributed to the fact
that these benchmarks use artificial workloads not reflecting any real-world application scenario.
Furthermore, they typically concentrate on stressing individual MOM features in isolation and
do not provide a comprehensive and representative workload for evaluating the overall MOM
server performance.

To address these concerns, in September 2005, we launched a project at the Standard Perfor-
mance Evaluation Corporation with the goal of developing a standard benchmark for evaluating
the performance and scalability of MOM products. The effort continued over a period of two
years and the new benchmark was released at the end of 2007. The benchmark was called
SPECjms2007 and is the first industry standard benchmark for message-oriented middleware.
It was developed under the lead of TU Darmstadt with the participation of IBM, Sun, BEA,
Sybase, Apache, Oracle, and JBoss. SPECjms2007 exercises messaging products through the
JMS standard interface that is supported by all major MOM vendors. The contributions to the
SPECjms2007 benchmark that are also part of this thesis are in the area of the specification,
implementation, and detailed analysis of the SPECjms2007 benchmark.

Based on the feedback of our industrial partners, we specified a standard workload for
message-driven EBS and implemented it using a newly developed flexible framework. The
aim of the SPECjms2007 benchmark is to provide a standard workload and metrics for mea-
suring and evaluating the performance and scalability of MOM platforms. From the beginning
the workload was designed in a parameterized manner with default settings for the industry
standard benchmark and other settings to support research. Based on our analysis of the de-
mands of benchmarks we presented a list of requirements a benchmark and its workload has
to fulfill: First of all, it must be based on a representative workload scenario that reflects the
way platform services are exercised in real-life systems. The communication style and the types
of messages sent or received by the different parties in the benchmark scenario should repre-
sent a typical transaction mix. The goal is to allow users to relate the observed behavior to
their own applications and environments. Second, the workload should be comprehensive in
that it should exercise all platform features typically used in MOM applications including both
point-to-point (P2P) and publish/subscribe (pub/sub) messaging. The features and services
stressed should be weighted according to their usage in real-life systems. The third requirement
is that the workload should be focused on measuring the performance and scalability of the
MOM infrastructure. It should minimize the impact of other components and services that are
typically used in the chosen application scenario. For example, if a database was used to store
business data and manage the application state, it could easily become the limiting factor of the
benchmark—as experience with other benchmarks has shown [126]. Finally, the SPECjms2007
workload must not have any inherent scalability limitations. The user should be able to scale
the workload both by increasing the number of destinations (queues and topics) as well as the
message traffic pushed through a destination.

SPECjms2007 provides numerous configuration options to build customized workload sce-
narios. In an extensive analysis of the workload, we discussed the different interactions and
traffic produced by the benchmark and described how to specify a customized transaction mix
by configuring, e.g., message properties such as size, delivery mode, and arrival rate. We illus-
trated correlations between the configuration options and presented a methodology for using a
standard benchmark to evaluate the performance of a MOM. We demonstrated our approach in a
comprehensive case study of leading commercial JMS platforms, the Oracle Weblogic Enterprise
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Server, conducting an in-depth performance analysis of the platform under a number of different
workload and configuration scenarios and illustrated how the workload may be customized to
exercise and evaluate selected aspects of MOM performance.

The SPECjms2007 workload scenario was designed in a general fashion and can be easily
applied to specific types of EBS. For this purpose, we explained how the workload can be
implemented for a pure publish/subscribe environment considering jms2009-PS—a benchmark
for publish/subscribe-based communication—as an example. jms2009-PS provides a flexible
framework for performance analysis with a strong focus on research and implements the workload
using topic-based pub/sub. It allows the user to define complex scenarios in an easy and flexible
way. In a case study we demonstrated how the benchmark can be used as test harness to
compare different topic deployments and analyzed the influence of message filtering.

Both benchmarks are actively used by industry and academia. Since they exercise MOMs
in a realistic way, they are used as benchmarks, as test harnesses, and as reference applications.
Resulting from our efforts on benchmarking and performance analysis, we have established and
maintained several successful collaborations with middleware vendors and academic institutions:
e.g., we cooperated with JBoss and the Apache Foundation to publish official SPECjms2007
results (reviewed by OSG Java Subcommittee of SPEC1) and Karlsruhe Institute of Technology
[215].

The results of our work focusing on benchmark development and SPECjms2007 (including
workload characterization and framework) were published in [203, 202, 198, 130]. Our method-
ology for performance evaluation using standard benchmarks was introduced in [201]. The
jms2009-PS benchmark is within the focus of [199, 197]. An overview of our activities in the
area of MOM benchmarking is provided in [200], and in [12] we demonstrated an approach to
benchmark AMQP-based middleware using SPECjms2007 and jms2009-PS.

1.3.3 Summary

The contributions of this thesis are in the areas of benchmarking and performance engineering
of event-based systems. The main contributions can be outlined as follows:

1. Conceptually:

(a) Analysis and Classification of Benchmark Requirements
An analysis of the requirements that a benchmark and its workload must meet in
order to be meaningful. We deduce a classification for these requirements.

(b) Performance Evaluation Methodology Based on Benchmarks
A new methodology to analyze the performance of messaging middleware using stan-
dard benchmarks.

(c) Performance Modeling Methodology for EBS
A novel approach to model EBS, using queueing Petri nets for predicting system and
performance behavior.

(d) Queueing Petri Net (QPN) Extensions
An extension of the QPN formalism in several ways, e.g., by simplifying the abstrac-
tions for modeling logical software entities, such as, message destinations.

2. Practically:

(a) A Novel Representative Workload and Benchmark for EBS
The first standard benchmark for MOM—SPECjms2007 :

1Standard Performance Evaluation Corporation (SPEC) is a non-profit organization whose mission is to
establish, maintain, and endorse standardized benchmarks to evaluate performance for the newest generation of
computing systems. With more than 80 members and associates from industry and academia, SPEC is one of
the world’s largest and most successful performance standardization organizations.
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• Standardized by the Standard Performance Evaluation Corporation (SPEC).

• A comprehensive and representative workload for message-oriented EBS.

• Additionally, a flexible benchmark framework for in-depth analysis.

(b) Performance Evaluation of a State-of-the-Art MOM
A case study of a leading commercial MOM conducting an in-depth performance
analysis of the platform under a number of different workload and configuration
scenarios using the SPECjms2007 standard benchmark.

(c) Performance Modeling Case Studies of EBS

Case Study I: A simple application deployed on a representative DEBS platform.

Case Study II: A complex and realistic application deployed on a representative
MOM.

1.3.4 Related Activities and Publications

Event-Based Applications and Enabling Technologies

In [101], we introduced the basic notions of event processing to create a common understanding,
presented the enabling technologies that are used for the implementation of event-based systems,
surveyed a wide range of applications identifying their main features, and discussed open research
issues.

ECA Rule Engines

We demonstrated in [83] an implementation of an ECA rule engine of an embedded system.
Such ECA rule engines provide a flexible environment for supporting the management, recon-
figuration, and execution of business rules. However, modeling the performance of a rule engine
is challenging because of its reactive nature. In [84], we presented an analytical performance
model for ECA rule engines. We discussed the difficulties in building a performance model of an
ECA rule engine and introduced a novel methodology for the performance evaluation of ECA
rule engines. We introduced the concept of event paths and showed how ECA rules can be
mapped to queueing networks.

QoS of Event-Based Systems

In [11], we provided a general overview of QoS in event-based systems. We introduced an
architecture that supports different types of QoS in an EBS and discussed the QoS in the
context of MOM and complex event processing (CEP).

Statistical Inference and Performance Models

Statistical inference is the process of drawing conclusions by applying statistics to observations
or hypotheses based on quantitative data. The goal is to determine the relationship between
input and output parameters. In [88], we proposed an approach to the statistical inference of
performance models based on observation data. In our case study, we used multivariate adaptive
regression splines (MARS) and genetic optimization to estimate the influence of message sizes
and arrival rates on the system performance of a MOM. We considered message delivery time,
throughput, and resource utilization as part of our analysis.

1.4 Thesis Organization

This thesis is organized as follows. In Chapter 2, we provide an overview of the state-of-the-
art and related work in the areas of event-based systems (EBS), performance modeling, and
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benchmarking. We discuss the meaning of events and typical applications as well as different
middlewares for EBS. We introduce queueing Petri nets (QPN).

Chapter 3 reviews the related work in the areas of performance modeling of EBS including
the use of patterns in performance modeling. We discuss the current state of EBS benchmark-
ing, especially in the area of message-oriented middleware (MOM), and provide an overview of
previous work and performance studies.

In Chapter 4, we present a methodology for modeling performance aspects of event-based
systems. In the second part of this chapter, we introduce the performance modeling patterns
(PerfMP) for EBS. The PerfMP describe how common interaction patterns and communica-
tion behaviors of EBS can be represented in a performance model. As an example of these
representations, we use QPNs. At the end of the chapter we introduce a set of extensions for
QPNs. These extensions are developed to support the modeling of EBS and component-oriented
software.

In Chapter 5 we start with an analysis of the different requirements a benchmark has to
fulfill and then provide a classification for these requirements. Taking these requirements into
account, we developed the SPECjms2007 benchmark, which is the focus of this chapter. The
complex workload of this benchmark was implemented using a flexible framework with numer-
ous configuration options. Furthermore, we illustrate the different aspects of SPECjms2007 in
detail including a comprehensive workload characterization and a description of the framework.
A case study showing how to apply the SPECjms2007 benchmark to a MOM for analyzing
different performance aspects is provided. The workload is defined based on the experience of
the industrial members of SPEC. Since it is mainly focused on point-to-point communication,
we extended the workload of SPECjms2007 and used the benchmark framework to develop a
performance test harness for publish / subscribe based communication, the jms2009-PS perfor-
mance test harness. An introduction to the different features of jms2009-PS and a case study
using jms2009-PS complete the chapter.

In Chapter 6, we combine the results of the previous chapters (area performance modeling,
event-based systems, and benchmarking) and present the results of two case studies where we
apply our modeling methodology to two different scenarios. In the first case study, we apply
the method to a distributed event-based system (DEBS). As workload, we use messages of the
SPECjms2007 scenario. As underlying DEBS, we use SIENA. In the second case study, we
model the complete workload of SPECjms2007 (including different message sizes etc.) using our
PerfMP and extended QPNs.

Finally, the summary and conclusions of this thesis including an outlook for future research
are presented in Chapter 7.



Chapter 2

Background

In this chapter we provide an overview of the state-of-the-art in the area of event-based systems
(EBS) and performance modeling. We discuss the meaning of events and typical applications as
well as different middlewares for EBS and introduce performance models called queueing Petri
nets (QPN).

2.1 Event-Based Systems

For a better understanding of event-based systems we first introduce our understanding of events
and related terms. The following definitions are based on our work presented in [101]. However,
slightly different definitions are used by [144, 143, 223].

An event is defined as a significant change in the state of the universe [48, 50]. By referring
to significant changes, the infinite number of events is limited to those that are relevant to
an application. Since time is an inherent dimension of the universe, two observations of the
universe at different points in time constitute two distinct events, even if no other properties
have changed.

Further, we distinguish between change events and status events:

• A change event is an observed state change in comparison to the previous state.
Example: An object has changed its position by a few meters.

• A status event describes a current state.
Example: Two readings of a temperature sensor at different points in time. Even the
observation that both yielded the same temperature constitutes an event.

By considering time an integral part of the state of the universe, both change and status events
can be modeled in a uniform manner: a status event is a change event, in which the time has
changed.

Events must be observed to be reported and processed. An observation captures a discrete
instance of a (possibly continuous) signal. An observation of an event carries a timestamp and
descriptive parameters and is typically represented as a tuple of values. Depending on the type
of event and application system, the timestamp may be just one point (point semantics of time,
instantaneous event) or an interval (interval semantics of time, interval event). Parameters may
be absolute values or deltas relative to older reference values (⇒ change event).

Events, or more precisely, their representation, must be reported to event consumers (event
sink, event handler, event listener, event subscriber) using an event notification. It is generally
accepted that event notifications are routed from event producers (event source, publisher) to
event consumers by a notification service. The notification service decouples producers and
consumers, and provides the routing from source to sink [155]. In the simplest form, this

9
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Figure 2.1: Event Notification in an EBS

may be a low-level channel into which event notifications are placed and from where they are
retrieved. In this case, the envelope of the notification is minimal and streams of tuples are
delivered over a fixed channel. However, the notification service may be a more sophisticated
network of brokers routing the notifications based on type or content. Notifications consist of
one or more event representations packaged in an envelope. Routing may occur on the content
of the envelope data or the content of the notification. The notification process is illustrated in
Figure 2.1.

Events may be simple events or compositions of simple and/or other composite events. Sim-
ple events may be individual sensor observations, method invocations or absolute temporal
events. Composite events are aggregations or collections of other events. Composite events are
produced from event representations and the operators of an event algebra. Two commonly
used approaches to event composition exist:

1. Event trees consisting of events at the leaves and the operators of an event algebra in the
inner nodes [46] pioneered by active database systems, and

2. Continuous or streaming queries based on the operators of relational algebra applied to
subsets of streams of tuples (sliding windows) [47].

Derived events (synthesized events) are caused by other events and often are at a different
level of abstraction. For example, five failed logins with the wrong password may cause an
intrusion attempt event to be signaled. Derived events involve semantic knowledge. They
may be detected automatically, e.g., from a combination of sensor readings as the action part
of an event-condition-action (ECA) [54, 84] rule or be raised explicitly, e.g., based on direct
observation of an event by a user. Derived events are often enriched with data from external
sources.

An event-based system is a software system in which observed events cause reactions in the
system. Event-based systems consist of three essential parts:

• Monitoring component,

• Transmission mechanism, and

• a Reactive component.

The monitoring component is responsible for event observation, representation, and compo-
sition as described above. The transmission mechanism is responsible for event notification. It
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is generally accepted that event notification is push-based. In push-based systems, producers
disseminate information to consumers; in pull-based systems the consumer must request the
information. Some authors go as far as requiring a complete decoupling of event producers and
event consumers through a publish/subscribe notification service [155]. For generality, we also
accept point-to-point notification of events, e.g., in the context of messaging systems [103]. This
implies a tighter coupling between producers and consumers, since the producers must be aware
of the consumers to notify them without the help of a broker.

The reactive component of an event-based system expresses the application logic in form of
rules (or other code) triggered by the corresponding events. This behavior is also called event-
driven: an entity is event-driven, if it consumes event notifications and, if appropriate, reacts
on them.

Rules may have different formats that result in different execution models. Procedural ECA
rules are fired whenever the corresponding event (simple, composite or derived) is raised. The
condition acts as a guard that can be used to express more complex application logic. Only
if the condition is met, the action is executed. Missing conditions are considered to be true
and result in event-action rules. Much debate has occurred in the past concerning the best
separation of functionality between events and conditions. More powerful event expressions
decrease the need for explicit conditions but require more powerful event algebras. This also
makes the event detection mechanism heavier and more difficult for users to use properly. On
the other hand, a lightweight event mechanism can be more responsive and is less error prone
but requires an explicit condition to express more powerful application logic. The decision on
the trade-off between expressiveness of the event language and the lightweight nature of the
event system is domain-dependent.

While the logical distinction is clear, specific implementations of event-based systems may
partition the functionality differently. In particular the event composition may be implemented
at the monitoring component, in the notification service, or as part of the reactive component.
The decision of where to realize event composition depends on many application and environment
specific factors, such as capabilities of the sensing devices, bandwidth of the communication
channels, complexity of the composite events, and source of the events that are to be composed.
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2.2 Technology Platforms of Event-based Systems

Many different technologies have contributed to the field of event-based systems. We review the
contributions of the following platforms in this section:

• Active databases

• Continuous queries, stream processing

• Distributed event-based systems (DEBS)

• Materialized views

• Message-oriented middleware (MOM)

• Reactive middleware

Since our work presented in this thesis is focusing on MOMs and DEBS, we discuss them in
more detail than the others.

2.2.1 Active Databases

Active databases were developed in the mid to late 1980s [174, 233]. Two distinct strands can
be identified:

• Relational and

• Object-oriented active databases.

Relational active databases were limited mainly to basic database events, such as update,
insert and delete. They could express conditions on either the old or new state of a relation,
and the action was always some SQL statement. Today’s triggers in SQL are the relational
incarnation of simple ECA rules. Relational active databases introduced the notions of before,
after or instead execution, meaning that the rule should be executed accordingly before, after
or instead of the triggering statement.

Object-oriented active databases had a richer event type system. It included any method
invocation, state changes effected through generic accessor functions, temporal events, control
flow events, arbitrary user defined events, and composition of events through event algebras
of varying expressiveness. The first generation of active ooDBMSs assumed a central clock,
point semantics for the events, and a complete ordering of events. Active ooDBMSs introduced
coupling modes to define when a rule should be executed (immediately or deferred) and whether
it should be executed within the scope of the triggering transaction or as a separate transaction.
If rules execute in separate transactions this can occur independently or be causally dependent,
in which case the triggered transaction may only begin or end execution depending on the fate
of the triggering transaction. The various causal dependence modes take care of violations of
ACID properties that occur when uncommitted data is made visible to independent transactions.
Another major contribution was the notion of event consumption, referring to the way in which
events are consumed during event composition. Four consumption modes (originally termed
contexts) were defined: chronicle, recent, continuous, and cumulative. These determine that the
events be consumed either in chronological order (typical in workflow-like applications), always
using the most recent occurrence (typical in control applications), in form of windows (typical in
financial applications) or accumulating the effects of incoming events until another event occurs
(typical in inventory control situations).
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Sender

Receiver
Msg y, Msg x

Sender

Queue n

Queue 1

JMS Server

Msg x

Msg y

Figure 2.2: Point-to-point messaging.

Publisher

Publisher

Msg x

Msg y, Msg x

Topic m

Topic 1

JMS Server

Subscriber

Subscriber

Subscriber

Msg y, Msg x

Msg y, Msg x

Msg y

Figure 2.3: Example for Pub/Sub Messag-
ing.

2.2.2 Continuous Queries, Stream Processing

Continuous queries [52] can be seen as an attempt to change the processing paradigm from issuing
a single non-persisting query against stored, persistent data to storing the query persistently in
the database and applying it to streams of incoming data. Continuous/continual queries were
expressed in variants of the SQL language modified to operate on windows [140]. These can be
defined either through temporal events or through a count of incoming events. While early work
on continuous queries assumed that the continuous queries would operate on the stored data
and would be executed by the traditional query engine, work on streaming queries has changed
the processing paradigm: queries defined in a SQL dialect, such as StreamSQL, process streams
of data or events before they are placed in the database and results of this processing step are
only selectively stored in the database. Many of the extensions to the relational operators and
how to process for example joins on windows in continuous queries, have carried over to current
products for stream processing and have been extended there for high volume applications [45].

2.2.3 Materialized Views

Materialized views can be seen as a particular application of active database principles. Views
are typically subsets of a database that are defined in the database schema. They are computed
on the fly from the stored base tables. As an optimization, views were materialized, i.e., stored,
resulting in the need for maintaining them whenever the base data changed. Propagation of
base-table updates to the materialized views was accomplished using the mechanisms developed
for active relational databases [86].

2.2.4 Message-Oriented Middleware (MOM)

Message-oriented middleware (MOM) is a specific class of middleware that supports loosely
coupled communication between distributed software components by means of asynchronous
message-passing as opposed to a request/response metaphor. This allows a producer to send a
message (event notification) and then continue working while the message is being delivered and
processed. Optionally the message producer can be notified later when the message is completely
processed. The decoupling of communicating parties has several important advantages:

• Message producers and consumers do not need to know about each other.

• They do not need to be active at the same time to exchange information.

• They are not blocked while sending or receiving messages [67].

Message-oriented Middleware contains notification services supporting two message models:
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1. Point-to-point (P2P)1 and

2. Publish/subscribe (pub/sub)

Both are depicted in Figures 2.2 and 2.3. P2P messaging is built around the concept of
a message queue which forms a virtual communication channel. Each message is sent to a
specific queue and is retrieved and processed by a single consumer. Pub/sub messaging is a
one to many communication model. Each message is sent (published) by a message producer
(publisher) to the notification service and it may be delivered to multiple consumers (subscriber)
interested in the notification. Consumers are required to register (subscribe) for notifications
they are interested in before being able to receive messages. Publish/subscribe systems come
in many different flavours, both centralized and distributed. A common distinction is based on
the information carried by the notification, and whether the content of the notification is used
for routing or only the information on the envelope of a message [67]:

Channel-based: Producers place their notifications into a channel and consumers subscribe to a
channel of interest (see Figure 2.4(a)).

Subject-based: Pioneered in the 1990’s by TIBCO [49], defines subject hierarchies according to
which messages are classified. A combination of subject hierarchy levels with the use of
wild cards allows for reasonably powerful subscriptions. One disadvantage, though, is the
relative inflexibility of subject hierarchies (see Figure 2.4(b)).

Topic-based: A variant of channel based publish/subscribe with additional predicates definable
on the envelope data used by JMS [221] (see Figure 2.4(c)).

Content-based: The content of a message is used to route the message from producer to sub-
scriber [194]. Filters are placed as close as possible to the source to minimize traffic.
Predicates of different degrees of expressiveness can be specified. However, the more pow-
erful the predicate language and the more fine grained the filters are, the more critical it
becomes to control the size of the routing tables.

Type-based: Type-based is comparable to subject-based. As illustrated in Figure 2.5(a), con-
sumers subscribe for a certain event type of event publications whereby object inheritance
is considered [155].

Type- & attribute-based: Type-based is extended by content-based filtering on event attributes [66,
155]. Type-& attribute-based pub/sub is illustrated in Figure 2.5(b))

XML-based: A variant of content-based where notifications are XML messages with a flexible
document structures [224]. Subscriptions should be expressed by a powerful language
based on XPath [235] or XQuery [234].

Concept-based: Originally addresses the problem of heterogeneity [55]. All the previous ap-
proaches to publish/subscribe assume a common understanding of the name space used.
If this is not the case, an additional layer of mediation that resolves semantic conflicts
based on an ontology service can be used. Concept-based publish/subscribe uses prede-
fined contexts. If notifications are to be routed within a common context, i.e., publisher
and subscriber use the same context, no additional mediation is needed. If publisher and
subscriber use different contexts, an additional mediation step is needed. Concept-based
publish/subscribe can be implemented on top of any of the other publish/subscribe meth-
ods. This in turn requires merging of filters. An example for concept-based pub/sub is
shown in Figure 2.5(c).

1The usage of P2P in this thesis is distinct from the acronym referring to peer-to-peer systems.
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Organization: Standard Description

Sun: Java Message Service
(JMS)

The quasi-standard is Java Message Service (JMS) [221], a standard
Java API, which is widely being adopted by almost all MOM products.

OMG: CORBA Event Ser-
vice

Specifies how Event Supplier und Event Consumer communicate via
an Event Channel using asynchronous message exchange [163]. Push
and pull communication models are defined.

OMG: CORBA Notification
Service

The Notification Service is an extended version of the Event Service
[164], e.g., in the area of event filtering. A Notification/JMS Inter-
working Service allows to manage Notification Service interworking
with Java Message Service [165].

OMG: Data Distribution
Service for Real-time Sys-
tems (DDS)

Provides an API specification as well as a wire level protocol for
publish-subscribe middleware[166].

Apache: OpenWire An open binary wire level protocol [7]. To the best of our knowledge
OpenWire is only supported by ActiveMQ.

Apache: Streaming Text
Orientated Messaging Pro-
tocol (Stomp)

A very simple text based-protocol formerly known as TTMP with lim-
ited features [216]. Native support for Stomp is implemented by Ac-
tiveMQ and announced for the next release of HornetQ. With Stomp-
Connect [217] all Stomp clients can communicate with JMS providers.
Since not all features on JMS are supported by Stomp it is not possible
to use a JMS to connect to a Stomp provider.

Digistan & RestMS: RestMS
(RESTful Messaging Ser-
vice)

RestMS works over plain HTTP/HTTPS [98]. Three implementations
exist: Ahkera[74], Zyre (part of OpenAMQ [99]), and a client stack
written in Perl. Additionally an AMQP/0.9.1 profile for RestMS was
implemented.

AMQP Working Group:
Advanced Message Queuing
Protocol (AMQP)

AMQP is a wire-level protocol specification with the goal to provide
interoperability between MOM products.

Table 2.1: Standards for MOMs

There exist several important standards, which cover different aspects such as transport
protocols or APIs. Some of these standards are popular in certain application domains, e.g.,
DDS is widely used in military applications and is part of the Navy Open Architecture. In
Table 2.2 we provide a comprehensive overview of MOM products and which standards are
supported by these products. The most important standard is JMS, which is supported by most
products. Our work in the area of MOM focuses on the JMS standard and the knowledge of its
features is required for an understanding of our work. Therefore, we discuss the Java Message
Service in detail in this section. Further, we summarize the latest state in the development
of the Advanced Message Queuing Protocol (AMQP), an emerging wire level protocol. Other
standards are briefly listed in Table 2.1.

Java Message Service (JMS)

The Java Message Service (JMS) [221] is a standard Java-based interface for accessing the
facilities of enterprise MOM servers and part of the Java EE standard [191]. In the terminology
of JMS, a MOM server that supports the JMS API is referred to as JMS provider (or JMS server)
and applications that use the JMS provider to exchange messages are referred to as JMS clients.
JMS supports P2P as well as topic-based publish/subscribe communication models. JMS queues
and topics are commonly referred to as destinations. The JMS specification defines several modes
of message delivery with different QoS attributes:

Non-Persistent/Persistent: In non-persistent mode, pending messages are kept in main
memory buffers while they are waiting to be delivered and are not logged to stable storage.
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This provides low messaging overhead at the cost of losing undelivered messages in case
of a server crash. In persistent mode, the JMS provider takes extra care to ensure that no
messages are lost in case of a server crash. This is achieved by logging messages to per-
sistent storage such as a database or a file system. In case of a server crash, undelivered
messages are recovered from stable storage on system restart. In non-persistent mode,
each message is guaranteed to be delivered at-most-once, whereas in persistent mode it is
guaranteed to be delivered once-and-only-once.

Non-Durable/Durable: JMS supports two types of subscriptions, durable and non-durable.
Non-durable subscriptions last for the lifetime of their subscriber, i.e., a subscriber will
only receive messages that are published while it is active (connected). Messages pub-
lished while the subscriber is inactive, will be missed by the latter. In contrast to this,
durable subscriptions ensure that a subscriber does not miss any messages during periods
of inactivity.

Non-Transactional/Transactional: A JMS messaging session can be transactional or non-
transactional. A transaction is a set of messaging operations that are executed as an
atomic unit of work. JMS supports two types of transactions: local and distributed. Local
transactions are limited to messaging operations executed on a JMS server. Distributed
transactions allow other transactional operations such as database updates to be executed
with JMS messaging operations as part of a single atomic transaction.

In addition to the above described delivery modes, JMS allows the specification of selectors
to enable message filtering. When publishing messages, producers can specify property-value
pairs (e.g., “color=red”) which are stored in the message headers. When subscribing, consumers
can specify a selector to receive only messages with certain property values (e.g., “color=blue
AND size=42”). Selectors are specified using a subset of the SQL92 conditional expression
syntax. For a more detailed introduction to MOM and JMS the reader is referred to [103, 221].

Advanced Message Queuing Protocol (AMQP)

Advanced Message Queuing Protocol (AMQP) is an increasingly important protocol for MOMs
with its origin in the financial services industry. The motivation behind AMQP is the need for
an open standard which enables complete interoperability between MOM providers [230, 133].
AMQP provides a wire-level protocol specification and not an API as JMS. Due to the popularity
of JMS, it was decided to design AMQP to encompass JMS semantics [167, 4]. This allows
building JMS clients for AMQP products. Therefore, JMS and AMQP complement each other
by defining interoperability on the application level (JMS) as well as on the wire level (AMQP).
To achieve this interoperability, AMQP specifies the exact semantic of services in its queueing
model; the specification covers messaging models (P2P, pub/sub, request/response), transaction
management, distribution, security and clustering [5]. AMQP offers several features which are
not supported by JMS.

Even if the AMQP specification is not finalized yet, several products [3] supporting dif-
ferent drafts of AMQP exist today (see Table 2.2). They are already used in mission critical
deployments, e.g., JPMorgan reported an AMQP environment supporting 2,000 users on five
continents processing 300 million messages per day [167]. There were some discussions in the
AMQP community because Red Hat submitted a patent application closely related to AMQP
[192]. Since the main target was to establish an open standard, this patent application was
criticized as being counterproductive [232].

2.2.5 Distributed Event-Based Systems (DEBS)

A generic distributed event-based system (DEBS) is normally composed of nodes deployed in a
distributed environment and exchanging information through a set of communication networks
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Figure 2.6: Router Network of REBECA [155]

(see Figure 2.6). Clients of the system are either publishers or subscribers depending on whether
they act as producers or consumers of information. Publishers publish information in the form
of events which are commonly structured as a set of attribute-value pairs. Subscribers express
their interest in specific events through subscriptions. Most generally, subscriptions are defined
as a set of constraints on the content of events. The constraints are specified using a subscription
language. A published event is said to match a subscription if it satisfies all constraints of the
subscription on the event attributes. The main task of the system is to deliver published events
to all subscribers that have issued matching subscriptions.

Depending on the subscription model, DEBS can be classified, e.g., as topic-based or content-
based. As discussed in Section 2.2.4 the various subscription models have different expressive
power. Highly expressive models enable subscribers to precisely specify the events they are
interested in. However, the more expressiveness, the higher is the system’s overhead for matching
events. The typical architecture of DEBS can be decomposed into four logical layers: network
layer, overlay layer, event routing layer and event matching layer. A detailed overview of these
layers as well as the techniques used for implementation can be found in [19]. Many prototypes
of DEBS exist, such as CEA (Cambridge Event Architecture) [14, 16], Cobra [193], Echo [65],
Elvin [205], GREEN [207], Hermes [179], IBM Gryphon [218, 107], IndiQoS [39], JEDI (Java
Event-Based Distributed Infrastructure) [60], Le Subscribe [68], Narada Brokering [173], ONYX
[63], PADRES [113, 114], REBECA [154], READY [81, 82], REDS [61], SCRIBE [195, 43],
SIENA (Scalable internet event notification architecture) [40], ToPSS [139], WebFilter [175] and
XMessages [208]. An overview and discussion of different DEBSs and their features are provided,
e.g., in [180, 155, 142, 113].

2.2.6 Reactive Middleware

Reactive middleware can be traced back to the CORBA platform and the event service defined
therein [89]. Modern versions of basic reactive capability can be found in the form of the J2EE
message driven beans, which consume event notifications and allow the asynchronous processing
of messages in the J2EE platform [222].

Reactive middleware benefited to some extent from work on active databases and the at-
tempts to unbundle active functionality from active databases. Major insights gained while
unbundling were the need for interval semantics instead of point semantics for many distributed
environments, the impossibility of using a central clock and the fact that notification delays
cause uncertainty. This resulted in the 2g–precedence model used in networks with bounded
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delay and the imprecision interval model that distinguishes between the stable past, the unstable
past and the present for networks without an upper bound on delay [138].

2.3 Introduction to Queueing Petri Nets

In this section we provide a brief introduction to queueing Petri nets (QPNs). QPNs can
be considered an extension of stochastic Petri nets that allow queues to be integrated into
the places of a Petri net [20]. QPNs allow the modeling of process synchronization and the
integration of hardware and software aspects of system behavior [24, 125] and provide greater
modeling power and expressiveness than conventional queueing network models and stochastic
Petri nets [24]. QPNs were applied successfully in several case studies to model system behavior,
e.g., [125, 124, 125, 123, 132]. First, we present the formal definition of QPNs. This section is
based on [26, 123, 125, 125]. Afterwards we discuss the existing tool support for QPNs.

Formal Definition

Queueing Petri nets can be seen as a combination of a number of different extensions to con-
ventional Petri nets (PNs) along several dimensions. In this section, we include some basic
definitions and briefly discuss how queueing Petri nets have evolved. A more detailed treatment
of the subject can be found in [26, 21]. Petri nets (PNs) were originally introduced by C.A.
Petri in the year 1962. An ordinary Petri net is a bipartite directed graph composed of places
P , drawn as circles, and transitions T , drawn as bars, which is defined as follows [26, 32, 125]:

Definition 1 An ordinary Petri net (PN) is a 5-tuple PN = (P, T, I−, I+,M0) where:

1. P = {p1, p2, ..., pn} is a finite and non-empty set of places,

2. T = {t1, t2, ..., tm} is a finite and non-empty set of transitions, P ∩ T = ∅,

3. I−, I+ : P × T → N0 are called backward and forward incidence functions, respectively,

4. M0 : P → N0 is called initial marking.

Different extensions to ordinary PNs have been developed in order to increase the mod-
eling convenience and/or the modeling power, e.g., [77, 121]. One of these extensions are col-
ored PNs (CPNs) which were introduced by K. Jensen [120, 119] and provide the base for QPNs.
In CPNs a type called color is attached to a token. A color function C assigns a set of colors
to each place, specifying the types of tokens that can reside in the place. In addition to intro-
ducing token colors, CPNs also allow transitions to fire in different modes, so-called transition
colors. The color function C assigns a set of modes to each transition and incidence functions
are defined on a per mode basis. Formally CPNs are defined as follows [26]:

Definition 2 A colored PN (CPN) is a 6-tuple CPN = (P, T,C, I−, I+,M0) where:

1. P = {p1, p2, ..., pn} is a finite and non-empty set of places

2. T = {t1, t2, ..., tm} is a finite and non-empty set of transitions, P ∩ T = ∅

3. C is a color function that assigns a finite and non-empty set of colors to each place and
a finite and non-empty set of modes to each transition

4. I− and I+ are the backward and forward incidence functions defined on P × T , such that
I−(p, t), I+(p, t) ∈ [C(t)→ C(p)MS ], ∀(p, t) ∈ P × T 2

5. M0 is a function defined on P describing the initial marking such that M0(p) ∈ C(p)MS

2The subscript MS denotes multisets. C(p)MS denotes the set of all finite multisets of C(p)
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Other extensions of ordinary PNs allow timing aspects to be integrated into the net de-
scription [26, 32]. In particular, generalized stochastic PNs (GSPNs) attach an exponentially
distributed firing delay (or firing time) to each transition, which specifies the time the transition
waits after being enabled before it fires. Two types of transitions are defined: immediate (no
firing delay) and timed (exponentially distributed firing delay). If several immediate transitions
are enabled at the same time, the next transition to fire is chosen based on firing weights (proba-
bilities) assigned to each of the transitions. Timed transitions fire after a random exponentially
distributed firing delay. The firing of immediate transitions always has priority over that of
timed transitions. GSPNs can be formally defined as [26, 32]:

Definition 3 A generalized Stochastic PN (GSPN) is a 4-tuple GSPN = (PN, T1, T2,W ) where:

1. PN = (P, T, I−, I+,M0) is the underlying ordinary PN,

2. T1 ⊆ T is the set of timed transitions, T1 6= ∅,

3. T2 ⊂ T is the set of immediate transitions, T1 ∩ T2 = ∅, T1 ∪ T2 = T ,

4. W = (w1, ..., w|T |) is an array whose entry wi ∈ R+ is a rate of a negative exponential
distribution specifying the firing delay, if ti ∈ T1 or is a firing weight specifying the relative
firing frequency, if ti ∈ T2.

Combining definitions 2 and 3 leads to Colored GSPNs (CGSPNs) [26]:

Definition 4 A colored GSPN (CGSPN) is a 4-tuple CGSPN = (CPN, T1, T2,W ) where:

1. CPN = (P, T,C, I−, I+,M0) is the underlying CPN,

2. T1 ⊆ T is the set of timed transitions, T1 6= ∅,

3. T2 ⊂ T is the set of immediate transitions, T1 ∩ T2 = ∅, T1 ∪ T2 = T ,

4. W = (w1, ..., w|T |) is an array with wi ∈ [C(ti) 7→ R+] such that ∀c ∈ C(ti) : wi(c) ∈ R+

is a rate of a negative exponential distribution specifying the firing delay due to color c, if
ti ∈ T1 or is a firing weight specifying the relative firing frequency due to c, if ti ∈ T2.

CGSPNs have proven to be a very powerful modeling formalism. However, they do not pro-
vide any means for direct representation of queueing disciplines. To overcome this disadvantage,
queueing Petri nets (QPN) were introduced based on CGSPNs with so-called queueing places.
Such a queueing place consists of two components, a queue and a token depository (see Fig-
ure 2.7). The depository stores tokens which have completed their service at the queue. Only
tokens stored in the depository are available for output transitions. QPNs introduce two types
of queueing places:

1. Timed queueing place:
The behavior of a timed queueing place is as follows:

(a) A token is fired by an input transition into a queueing place.

(b) The token is added to the queue according to the scheduling strategy of the queue.

(c) After the token has completed its service at the queue, it is moved to the depository
and available for output transitions.

2. Immediate queueing place:
Immediate queueing places are used to model pure scheduling aspects. Incoming tokens are
served immediately and moved to the depository. Scheduling in such places has priority
over scheduling/service in timed queueing places and firing of timed transitions.
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Figure 2.7: QPN Notation

Apart from this, QPNs behaves similar to CGSPN. Formally QPNs are defined as follows:

Definition 5 A Queueing PN (QPN) is an 8-tuple QPN = (P, T,C, I−, I+,M0, Q,W ) where:

1. CPN = (P, T,C, I−, I+,M0) is the underlying Colored PN

2. Q = (Q̃1, Q̃2, (q1, ..., q|P |)) where

• Q̃1 ⊆ P is the set of timed queueing places,

• Q̃2 ⊆ P is the set of immediate queueing places, Q̃1 ∩ Q̃2 = ∅ and

• qi denotes the description of a queue taking all colors of C(pi) into consideration, if
pi is a queueing place or equals the keyword ‘null’, if pi is an ordinary place.

3. W = (W̃1, W̃2, (w1, ..., w|T |)) where

• W̃1 ⊆ T is the set of timed transitions,

• W̃2 ⊆ T is the set of immediate transitions, W̃1 ∩ W̃2 = ∅, W̃1 ∪ W̃2 = T and

• wi ∈ [C(ti) 7−→ R+] such that ∀c ∈ C(ti) : wi(c) ∈ R+ is interpreted as a rate of a
negative exponential distribution specifying the firing delay due to color c, if ti ∈ W̃1

or a firing weight specifying the relative firing frequency due to color c, if ti ∈ W̃2.

Example 1 (QPN [26]) Figure 2.8 shows an example of a QPN model of a central server
system with memory constraints based on [26]. Place p2 represents several terminals, where users
start jobs (modeled with tokens of color ‘o’) after a certain thinking time. These jobs request
service at the CPU (represented by a G/C/1/PS queue, where C stands for Coxian distribution)
and two disk subsystems (represented by G/C/1/FCFS queues). To enter the system each job
has to allocate a certain amount of memory. The amount of memory needed by each job is
assumed to be the same, which is represented by a token of color ‘m’ on place p1. According to
Definition 5, we have the following: QPN = (P, T,C, I−, I+,M0, Q,W ) where

• CPN = (P, T,C, I−, I+,M0) is the underlying Colored PN as depicted in Figure 2.8,

• Q = (Q̃1, Q̃2, (null,G/C/∞/IS,G/C/1/PS, null,
G/C/1/FCFS,G/C/1/FCFS)),
Q̃1 = {p2, p3, p5, p6}, Q̃2 = ∅,

• W = (W̃1, W̃2, (w1, ..., w|T |)), where W̃1 = ∅, W̃2 = T and ∀c ∈ C(ti) : wi(c) := 1, so that
all transition firings are equally likely.
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Figure 2.8: A QPN Model of a Central Server with Memory Constraints (reprinted from [26]).

Solving of QPNs & Tools for QPNs

For QPNs, the analytic solving approach is well-defined [26] and implemented by several tools,
e.g. [25, 23]. However, the analytic approach has limitations regarding the number of possible
tokens and places which lead to a state explosion for models of real world applications [123].
Therefore, we decided to use a simulation-based QPN solver for our models. Such a simulation-
based approach was presented in [123] which is implemented by the QPME tool (Queueing Petri
net Modeling Environment) [127, 129, 128]. We employed this tool to build and analyze our
QPN models. QPME provides a QPN editor including a graphical user interface, which helps
to construct QPN models and the optimized simulation engine SimQPN [127, 123] for model
analysis. As a result of our work, several new features were added to QPME and to the SimQPN
engine. Further, the performance of the solver was increased significantly.

2.4 Concluding Remarks

In this chapter we provided the background needed for the understanding of this thesis. We
started with the concept of events and event-based systems in general. As part of this dis-
cussion, we reviewed related concepts such as publish/subscribe communication in detail and
described underlying technologies such as Active Databases and their properties. Focusing on
MOMs and DEBS, established standards were specified in detail. Additionally, we composed
a comprehensive list of existing middleware products and supported standards. At the end of
this chapter, we introduced the queueing Petri net paradigm and gave an overview of existing
tools and solvers. QPNs provide several benefits over conventional modeling paradigmas by
combining the ideas of QNs and SPNs. As a result, system aspects such as blocking, software
and hardware contention and synchronization can be easily reflected in a QPN model.



Chapter 3

Related Work

In this chapter, we provide an overview of the current state in performance modeling and
benchmarking of event-based systems. We will focus on distributed event-based systems as well
as MOMs. A comprehensive overview can also be found in [131].

3.1 Performance Modeling of Event-Based Systems

In this section we present an overview of existing performance modeling techniques for event-
driven systems considering both centralized and distributed environments.

Modeling of MOM

A method for modeling MOM systems using performance completions is presented in [87]. Per-
formance completions provide a general mechanism for including low-level details of execution
environments into abstract performance models. A pattern-based language for configuring the
type of message-based communication is proposed and model-to-model transformations are used
to integrate low-level details of the MOM system into high-level software architecture models.
A case study based on part of the SPECjms2007 workload (more specifically Interaction 4) is
presented as a validation of the approach. However, no interactions involving multiple mes-
sage exchanges or interaction mixes are considered. In [141], an approach for predicting the
performance of messaging applications based on the Java Enterprise Edition (JavaEE) is pro-
posed. The forecast is carried out during application design, without access to the application
implementation. This is achieved by modeling the interactions among messaging components us-
ing queueing network models, calibrating the performance models with architecture attributes
associated with these components, and populating the model parameters using a lightweight
application-independent benchmark. However, again the workloads considered are very simple
and do not include any complex messaging interactions. In [88], the dependency between the
MOMs usage and its performance was analyzed using statistical inference. For the validation of
the approach, parts of SPECjms2007 and jms2009-PS were used.

Modeling of Distributed Publish/Subscribe Systems

Several performance modeling techniques specifically targeted at distributed publish/subscribe
systems [40] exist in the literature. However, such techniques are normally focused on model-
ing the routing of events through distributed broker topologies from publishers to subscribers
as opposed to modeling interactions and message flows between communicating components
in event-driven applications. In [115], an analytical model of publish/subscribe systems that
use hierarchical identity-based routing is presented. The model is based on continuous time

25
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birth-death Markov chains. Closed analytical solutions for the sizes of routing tables, for the
overhead required to keep the routing tables up-to-date, and for the leasing overhead required
for self-stabilization are presented. The proposed modeling approach, however, does not provide
means to predict the event delivery latency and it suffers from a number of restrictive assump-
tions. For example, the broker topology is assumed to be a complete n-ary tree and publishers
are only allowed to be connected to leaf brokers. Furthermore, subscriptions are assumed to
be equally distributed among filter classes and brokers. Finally, the considered metrics are lim-
ited to routing table sizes and the message bandwidth which do not directly characterize the
system performance. Many of these assumptions were relaxed in [156] where a generalization
of the model was proposed, however, the generalized model is still limited to systems based on
hierarchical identity-based routing. In [42], an analytical model of pub/sub systems based on
subscription forwarding is presented. The authors provide closed form analytical expressions for
the overall network traffic required to disseminate subscriptions and propagate notifications, as
well as for the message forwarding load on individual system nodes. However, the same restric-
tive assumptions as in [115] are made about system topology and the distribution of publishers
and subscribers among brokers. Thus, the proposed model is not applicable in most practical
scenarios. Finally, in [90], probabilistic model checking techniques and stochastic models are
used to analyze publish/subscribe systems. The communication infrastructure (i.e., the trans-
mission channels and the publish/subscribe middleware) are modeled by means of probabilistic
timed automata. Application components are modeled by using statechart diagrams and then
translated into probabilistic timed automata. The analysis considers the probability of message
loss, the average time taken to complete a task and the optimal message buffer sizes.

In [17, 231] a computational model of a publish/subscribe notification service is proposed,
where the latter is abstracted as a black box connecting all participants in the computation.
Based on the computational model, a probabilistic model for measuring the effectiveness of the
notification service in delivering publications to the set of interested subscribers is developed.
The effectiveness of the notification service is studied as a function of the subscription and dif-
fusion delays. While some interesting results are presented, the proposed model is too coarsely
grained and it is based on the assumption that the subscription and diffusion delays are known
which is not realistic to expect. In [18], the authors present an attempt to formally model a
publish/subscribe communication system as a classical distributed computation. The authors
formalize the concept of information availability and model a few properties of the computation,
namely completeness and minimality, that capture the expected behavior of a publish/subscribe
system from an application viewpoint. The protocol-level requirements for managing availabil-
ity and providing basic QoS properties under very simplified conditions are discussed. In [115],
a stochastic analysis of self-stabilizing routing algorithms for publish/subscribe systems is pre-
sented. The analysis is based on continuous time birth-death Markov Chains and investigates
the characteristics of systems in equilibrium. Closed analytical solutions for the sizes of routing
tables, for the overhead required to keep the routing tables up-to-date, and for the leasing over-
head required for self-stabilization are presented. The proposed modeling approach, however,
does not provide means to predict the event delivery latency and it is rather limited in terms of
generality. In [34], Bricconi et al. present a simple model of the Jedi publish/subscribe system.
The model is mainly used to calculate the number of notifications received by each broker for
uniformly distributed subscriptions. To model the multicast communication, the authors intro-
duce a spreading coefficient between 0 and 1 which models the probability that a broker at a
given distance (in hops) from the publishing broker receives a published notification.

A general overview of relevant QoS metrics in the context of distributed and decentralized
publish/subscribe systems can be found in [27]. In [13], it is advocated that QoS attributes
in publish/subscribe systems should be managed in a uniform way with regard to other event
attributes such as type or content. The authors propose a model for QoS-aware publications
and subscriptions in which QoS-related properties are decoupled from event type and content.
In a following paper [39], the authors present an architecture of a distributed QoS-aware pub-
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lish/subscribe broker. The broker, called IndiQoS, leverages existing network-level QoS reser-
vation mechanisms to automatically select QoS-capable paths. The approach, however, concen-
trates on QoS at the network level and does not consider contention for processing resources
at the broker level. In [57] an overview of the QoS aspects of publish/subscribe middleware is
given. Two industrial standards for publish/subscribe middleware, the Java Message Service
(JMS) [221] and the Data Distribution Service (DDS) [166] are described and their QoS-related
features are discussed.

Modeling of ECA Rule Engines

In [84], a new approach named event paths for modeling ECA rule engines was introduced. It
simplifies the modeling of the different components of a rule engine. The idea of the model is
to consider all possible paths that events may cause. A path is defined as the sequence of ECA
components an event goes through, possibly of different rules. The simplest paths to be identified
are those initiated by events (whether they are simple or composite) that directly trigger a single
rule and then exit the system. These paths then must be distinguished if, depending on the
event values, the execution may conclude at the condition component or it may proceed until the
action service. Moreover, the path must be split if it involves condition or action statements that
differ in their service time under certain situations (first-time invocations, warm-up, caching,
etc.). Finally, if a statement may generate another event which in turn triggers another rule,
an extra path is included with the additional services. This avoids having loops in the model
(i.e., services are never visited twice). In a case study, the performance of an ECA rule engine
[83, 33] was evaluated on an embedded device using the Performance Evaluation Tool Set.

3.2 Benchmarking of Event-Based Systems

In this section, we review related work in the area of benchmark development and benchmarking
of event-based systems in particular.

Benchmark Development

Benchmark development has turned into a complex team effort. While historical benchmarks
were only some hundreds lines long, modern benchmarks are composed of hundert thoundsands
or millions of lines of code. Compared to traditional software, the development process has
different goals and challenges. Unfortunately, even if an enormous number of benchmarks exist,
only a few contributions focusing on the benchmark development process were published.

The best known publication is Gray’s The Benchmark Handbook [80]. Besides a detailed
description of several benchmarks, the author discusses the need for domain specific benchmarks
and defined four important criteria, which a domain-specific benchmark has to fulfill:

• Relevance: the benchmark result has to measure the performance of the typical operation
within the problem domain.

• Portability: it should be easy to implement on many different systems and architectures.

• Scalability: it should be scaleable to cover small and large systems.

• Simplicity: the benchmark should be understandable to avoid lack of credibility.

Another newer work dealing with the question, which criteria a benchmark should fulfill is
[104]. The questions, what a ’good’ benchmark should look like and which aspects should be
kept in mind from the beginning of the development process, are discussed in detail and five key
criteria are presented:
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• Relevance: the benchmark has to reflect something important.

• Repeatable: the benchmark result can be reproduced by rerunning the benchmark under
similar conditions with the same result.

• Fair & Portable: All systems compared can participate equally (e.g., portability, ’fair’
design).

• Verifiable: There has to be confidence that documented results are real. This can, e.g., be
achieved by reviewing results by external auditors.

• Economical: The cost of running the benchmark should be affordable.

The author believes that it is impossible to be perfect in all criteria and good benchmarks
have clear strengths in one or two areas, and accommodate the others.

Standardization organizations such as the SPEC (Standard Performance Evaluation Cor-
poration) or the TPC (Transaction Processing Performance Council) use internal guidelines
covering the development process. A short summary of the keypoints of the SPEC Benchmark
Development Process is provided in [136]. However, these guidelines mostly cover formal require-
ments, e.g., design of run rules and result submission guidelines, not the benchmark development
process itself.

Benchmarking of MOM & Publish/Subscribe:

A number of proprietary and open-source benchmarks for MOM supporting JMS have been
developed and used in the industry, for example, the SonicMQ Test Harness [213], IBM’s Perfor-
mance Harness for Java Message Service [106], Apache’s ActiveMQ JMeter Performance Test [8]
and JBoss’ Messaging Performance Framework [118]. Using these and other similar benchmarks,
numerous comparative performance studies of competitive products have been conducted and
published by MOM product vendors over the last years, see for example [58, 134, 212, 210, 38,
71, 190, 72, 97].

Even though these works mostly focus on pure JMS environments, for other MOM stan-
dards such as DDS, benchmarks and test harnesses exist as well. The DDS Benchmarking
Environment (DBE) [236] is an open-source framework for automated performance testing of
DDS environments. It comes with a repository storing scripts, configuration files, test data and
provides several Perl scripts for test setup. Further, it contains a shared library for collecting
results and calculating statistics. Another DDS benchmark is the DDS TouchStone Benchmark
Suite [182]. It was originally published by PrismTech and is available as open source since
version 4.1. It allows the measurement of roundtrip latencies and throughput numbers and sup-
ports the creation of workload scenarios. Further, a test harness named Middleware Evaluation
Test Tool (METT) was used in [146] to compare the performance of two different products
and some simple test environments for DDS-based systems were used in different performance
studies, e.g., [189, 187]. A first benchmark for AMQP was presented in [219] including several
simple test cases. A primitive benchmark was used in [36] to measure the performance of two
implementations.

Some general guidelines for designing a benchmark suite for evaluating distributed pub-
lish/subscribe systems are presented in [41], however, no specific implementation or measure-
ment results are provided.

As evident from the above, numerous approaches to benchmark MOM performance have
been developed and used in industry and academia. However, almost all of them are based
on artificial workloads that do not reflect real-world application scenarios. Furthermore, they
typically concentrate on exercising individual MOM features in isolation and do not stress the
server in a manner representative of real-life applications. In most cases, performance studies
conducted using these workloads have been biased in favor of particular products leading to
contradictory claims made by MOM vendors [116, 211, 210, 58, 134, 220].
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Benchmarking of CEPs

The Java-based framework FINCoS [29] is focusing on performance aspects of complex event
processing systems [148]. FINCoS was developed as part of the BiCEP project [31] and provides
a set of benchmarking tools for load generation and performance measuring of event processing
systems. It follows a flexible and neutral approach, which allows to attach load generators,
datasets, queries, and adapters for diverse CEP systems. In [149], a case study evaluating three
different CEPs using the FINCoS framework is presented. In this case study several micro-
benchmarks, e.g., for aggregation and window policies, were defined.

Benchmarking of Active Databases

Several research benchmarks were published for active databases. The first benchmark for
object-oriented active databases was the BEAST Benchmark [79, 44]. Using the database and
schema of the OO7 Benchmark [37], the BEAST Benchmark runs a series of tests targeting
different aspects of an active database such as event detection and rule management. As perfor-
mance metric, system response time is reported. The workload can be scaled by modifying the
number of defined events (simple and composite) and the number of rules. In [78], performance
results using the BEAST Benchmark for four active database systems were presented. Another
benchmark for active databases is the ACT-1 benchmark. The ACT-1 benchmark concentrates
on the minimal features of an active database [237]. Using a simple underlying database, ACT-1
models the operation of a power plant to address four basic issues: overhead of method wrapping,
rule firing cost, event consumption costs and serialization of rules. To overcome the limitations
of the ACT-1 Benchmark and the BEAST Benchmark the OBJECTIVE Benchmark was devel-
oped. Design goals were to provide a comprehensive set of operations which stress all critical
functions using (compared to the schema of the OO7 Benchmark used in the BEAST) a simple
database, and consider both hot and cold execution times [44]. An extended version of the
OBJECTIVE Benchmark targeting additional features of component-based active rule systems
is presented in [122].

Performance Studies and Analyses of Message-oriented Middleware

In [228], an evaluation of IBM’s MQSeries V5.2 platform is presented. The authors study the
performance of four different styles of messaging: non-persistent non-transactional, persistent
non-transactional, persistent local transactional and persistent global transactional. The server’s
maximum sustainable throughput is introduced as a metric for characterizing the server perfor-
mance. The results show the impact of various factors including the message length, the server
log buffer space and the number of receiver threads. In [227], the authors evaluate three leading
JMS providers, IBM WebSphere MQ/MQIntegrator, TIBCO Rendezvous/MessageBroker V4.0
and Mercator Integration Manager V6.0. A synthetic transactional workload is used and the
maximum sustainable throughput for persistent and non-persistent messages is measured. Sim-
ilarly, in [53] an empirical methodology for evaluating the QoS of JMS products is presented.
In addition to the maximum sustainable throughput, several further evaluation criteria are con-
sidered, such as the message delivery latency, the elapsed time for batch messaging and the
effectiveness of persistent message recovery after a server crash. Two leading JMS servers are
evaluated. Unfortunately, the study only considers point-to-point messaging and the authors do
not disclose the names of the tested products.

Another performance study comparing TIBCO Rendezvous (TIB/RV) with SonicMQ was
published in [145]. This study considers both point-to-point and publish/subscribe messaging.
For point-to-point messaging, the effects of increasing the number of sender and receiver pairs
is analyzed. For publish/subscribe messaging, the effect of increasing the number of publishers
and subscribers is analyzed. Furthermore, the authors consider the duration of the time taken
for a batch of messages to be delivered, the connection time for new subscribers, as well as the
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server memory and CPU utilization. Some general guidelines for designing a benchmark suite for
distributed publish/subscribe systems are presented in [41], however, no specific implementation
or measurement results are provided. In [64], the performance of the individual elements used
in message broker applications is evaluated highlighting the cost of using each element rather
than the cost of running complete applications.

In [96], the capacity of the WebsphereMQ JMS server is evaluated in terms of its throughput
performance. The message throughput in the presence of filters is studied and it is shown that
the message replication grade and the number of installed filters have a significant impact on
the server throughput. An analytical model of the message processing time and the server
throughput is presented and validated through measurements. Several similar studies using
Sun Java System Message Queue, FioranoMQ, ActiveMQ and BEA WebLogic JMS server were
published in [95], [92], [93] and [94], respectively. The study in [93] considers complex AND-,
OR-. and IN-filters of different length. In [151], the results from the evaluation of the different
products are compared and summarized. A more in-depth analysis of the message waiting time
for the FioranoMQ JMS server is presented in [150]. The authors study the message waiting time
based on an M/G/1−∞ approximation and perform a sensitivity analysis with respect to the
variability of the message replication grade. The analysis shows that the message waiting time
is low as long as the server throughput is sufficiently high. The authors derive formulas for the
first two moments of the message waiting time based on different distributions (deterministic,
Bernoulli and binomial) of the replication grade. Finally, two simple distributed architectures
based on conventional JMS servers that increase the JMS capacity beyond the capacity provided
by a single server are proposed.

In [135], a simple test harness for testing of JMS providers for correctness and performance
is presented. The authors develop a formal model for JMS behavior based on the I/O automata
used in other group communication systems. The focus here is on verifying the correctness of
JMS implementations and only basic support for performance analysis is provided. In [85], an
efficient strategy for reliable messaging using different persistence methods with various kinds
of messages is developed. The strategy utilizes daemon threads to reduce its influence on the
system and has been implemented as part of a JMS server.

3.3 Patterns in Performance Modeling

Performance models should reflect real world applications. In this context we face commonly
occurring themes. The goal of design patterns is to identify, name, and abstract these themes
[76]. Similar to software engineering, where the concept of design patterns is well established,
several research results focusing on the usage of patterns in performance engineering and mod-
eling were published. Most of these publications fall in one of the following two categories.
The first category focuses on describing knowledge of experienced modelers in a structured way
and/or providing reusable building blocks, which can be used by modelers. The goal is to trans-
fer expert knowledge to less experienced modelers, to decrease the time needed for modeling the
applications and, by reusing expertise and proven components, to improve the quality of models.
In the second category we find research focusing on model-to-model transformation, e.g., UML
models to (C)PNs. The ongoing research is closely related to the question how CPNs, QPNs
and similar models can be applied in the software development life cycle.

A template for the description of Petri net patterns is introduced in [161]. The authors use
a template to describe a number of sample patterns and suggest the introduction of a Petri
net pattern repository. In [159] a template is proposed for the systematic description of CPNs.
Furthermore, the same authors present a comprehensive and structured collection of 34 design
patterns for CPNs in [158]. These patterns have been modeled using CPN Tools. In [28] the
authors mention that they created a library of QPN patterns, which contains models of basic
constructs appearing repeatedly in the Tomcat architecture such as blocking. An extension to
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hierarchical colored Petri nets (HCPN) named reusable colored Petri nets (RCPN) is published
and demonstrated in [137]. RCPN support the definition of reusable components.

The authors of [176, 177, 178] discuss how to construct an underlying CPN representation
based on an UML software architecture model. For this purpose behavioral design patterns
(BDP) are specified and mapped to CPN templates. This allows software engineers to focus on
the UML design independent from the CPN model. The generated CPN may be analyzed for
performance and functionality. Observed behavioral problems resulting from the CPN analysis
can be corrected in the UML software design.

Our work differs from the previous ones in at least two ways. To the best of our knowledge, no
patterns for QPNs are published. Existing work focuses mostly on CPNs and PNs. Furthermore,
there is no work discussing such patterns for event-based applications.

3.4 Concluding Remarks

This chapter provided an overview of related work in the areas of performance modeling and
benchmarking of EBS and discussed the usage of performance modeling patterns in previously
published work. In our review of current research we considered all kinds of EBS including
DEBS, MOMs and ECA rule engines. While several benchmarks for EBS exist, these bench-
marks do not fulfill the requirements we defined. We identified a lack of test harnesses and
benchmarks using representative workloads for EBS. The same applies to performance models.
While performance and QoS issues in EBS have been discussed in several publications, no pre-
vious work exists that provides a general methodology for performance modeling with the goal
of performance prediction.

In previous work, performance modeling pattern collections were introduced and approaches
to use them for system modeling were proposed. However, none of these publications used QPNs
for their patterns nor did they focus on EBS.



32 CHAPTER 3. RELATED WORK



Chapter 4

Performance Engineering of
Event-Based Systems

As already discussed in Section 2.1, event-based systems differ from traditional software in
several aspects. Since they are used in business critical environments, there is a need for per-
formance models [101] which allow the user to predict system behavior or analyze certain per-
formance aspects and to identify possible bottlenecks.

The fact that event consumer and producer are completely decoupled from each other and
communicate using asynchronous patterns, influences the modeling approach for the perfor-
mance aspects of event-based systems. Further, dynamic changes and implementations of EBS
in very large scale and distributed environments make it even harder to find the right model
representation for a given scenario.

As a consequence, we have to investigate whether and how traditional performance modeling
approaches can be applied on EBS. Our first step is to redefine the performance metrics to reflect
particular properties of EBS.

For example, when a request is sent in a traditional request/reply-based distributed system,
it is sent directly to a given destination which makes it easy to identify the system components
and resources involved in its processing. The response time in such an environment can be
defined as time needed by the client to trigger the request and by the server to reply to the
request (see Figure 4.1(a)). The client is blocked while waiting for the answer of the server. This
understanding of response time is not applicable to EBS systems. When an event is published
in an EBS, it is not addressed to a particular destination, but rather routed along all paths
that lead to subscribers with matching subscriptions. Since event producer and consumers are
decoupled, the event producer does not wait for an acknowledgement by the event consumer.
As illustrated in Figure 4.1(b), from the perspective of the event producer the response time
does include the execution time of the event consumer nor the time needed to forward the event
notifications to the n consumers by the transport layer. Therefore, it is questionable whether
metrics such as response time are still appropriate in a decoupled and asynchronous environment
and we see a need for new metrics.

The high concurrency in EBS, their flexibility and the large number of events pose high
requirements to the efficiency and features of modeling technologies. Challenges are, e.g., the
correct representation of event forking, changing or durable subscriptions as well as mobile con-
sumers and, especially in real world scenarios with thousands or millions of events, a reasonable
solving time for the models is mandatory.

In this chapter, we present our contributions to the area of performance engineering of event-
based system.

Formal Definition of EBS:

33
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Figure 4.1: Response Time (RT) in Traditional Request / Reply and in EBS

We provide a formal definition of EBS and their performance aspects which allows among
other to characterize workload properties. Our definitions reflect a distributed event-based
system, but can easily be applied to a non-distributed environment.

Modeling Methodology:
Based on these definitions, we present a modeling methodology for EBS. Our approach
allows to predict system behavior including the utilization of different components and
can be used in a wide range of applications, e.g., as decision base for self-adaptive systems
or for capacity management.

Performance Modeling Pattern:
We discuss how different features of EBS can be reflected in performance models and
introduce in this context performance modeling patterns for the most common settings
and features of EBS. We use QPNs as modeling technique to illustrate the patterns.

Extensions of QPNs:
Several of our patterns are not, or only with high effort, convertible with standard QPNs.
Therefore, we developed several new features for QPNs and conclude this chapter with a
list of extensions for standard QPNs.
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Figure 4.2: System Topology

4.1 Modeling Methodology for EBS

Modeling EBS is challenging because of the complete decoupling of communicating parties on
the one hand, and, on the other hand, the dynamic changes in system structure and behavior.
The event might have to be processed by multiple system nodes on its way to subscribers. It
is hard to know in advance which system nodes will be involved in delivering the event. There
are numerous event routing algorithms and they all have different implementation variants
leading to different routing behavior. Moreover, depending on existing subscriptions, individual
events published by a given publisher might be routed along completely different paths visiting
different sets of system nodes. Therefore, it is hard to partition events into workload classes
that have similar resource usage. Another difficulty stems from the fact that every time a new
subscription is created or an existing one is modified, or when nodes join or leave the system,
this might lead to significant changes in the workload. Thus, the dynamics of EBS necessitate
that workload characterization be done more frequently in order to reflect the changes in the
system configuration and workload.

4.1.1 Formal Definition

Let us consider a (distributed) event-based system implemented as a network of event brokers
arranged in the topology depicted in Figure 4.2. Formally, the system can be represented as a
5-tuple G = (N,C, P, S,E) where:

N = {n1, n2, ..., n|N |} is the set of system nodes (in our example event brokers).

C = {c1, c2, ..., c|C|} is the set of connections between nodes.
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P = {p1, p2, ..., p|P |} is the set of publishers.

S = {s1, s2, ..., s|S|} is the set of subscribers.

E = {e1, e2, ..., e|E|} is the set of event types.

We will use the following additional notation:

HP (r) is the id of the system node that publisher pr is connected to.

HS(l) is the id of the system node that subscriber sl is connected to.

HL
C(q) is the id of the system node on the “left side” of connection cq. The left side is defined

as the side of the node with lower id.

HR
C (q) is the id of the system node on the “right side” of connection cq.

Bq is the bandwidth of the underlying network corresponding to connection cq.

M t
q is the size of the message that has to be transferred (taking protocol overhead into
account) when an event of type et is sent over the network corresponding to connection cq.

νt,ki,j is the probability that an event of type et, published by publisher pk, is forwarded to

system node nj after visiting system node ni. If i = j, νt,ki,j
def
= 0.

λt,k is the rate at which events of type et are published by publisher pk.

λt,kj is the rate at which events of type et, published by publisher pk, arrive at node nj .

λtj is the total rate at which events of type et (published by any publisher) arrive at node nj .

τ tq is the rate at which events of type et (published by any publisher) are sent over connec-
tion cq.

SCPUt,j is the mean CPU service time of an event of type et at node nj .

S
I/O
t,j is the mean disk I/O service time of an event of type et at node nj .

SNETt,q is the mean network service time when an event of type et is sent over the network link
corresponding to connection cq.

δi,j is the Kronecker function, i.e., δi,j = 1 if i = j and δi,j = 0 if i 6= j.

We can consider the events published in the system as basic components of the workload.
Events can be partitioned into workload classes based on their type. However, events of the
same type published by different publishers could have completely different routing behavior and
resource consumption. Therefore, to make the workload classes more homogeneous in terms of
resource consumption, we further partition them based on the publisher.

4.1.2 Analysis of the Event Routing Behavior

To determine the routing behavior of events in the system, we suggest conducting some experi-
ments in a small testing environment. Brokers are configured according to the desired topology
(Figure 4.2), however, instead of being deployed on separate servers distributed over a WAN,
they are deployed on a few locally hosted servers connected to a LAN. Ideally, all brokers should
be deployed on a single machine, however, this might be impossible due to technical reasons.
Note that co-located brokers still use TCP/IP to exchange messages and event routing at the
overlay and event routing layers is done in exactly the same way that it would be done in the
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target environment. Subscriptions are set up according to the target workload and experiments
are conducted to estimate the routing probabilities νt,ki,j for 1 ≤ i ≤ |N |, 1 ≤ j ≤ |N | and i 6= j.
We assume that the system has been instrumented to monitor the event traffic and extract the
routing probabilities. In each experiment, a subset of the overall set of publishers are emulated
by generating events of the respective types. The event publication rates need not be equal to
the target publication rates λt,k and they should be chosen in such a way that the load injected
does not exceed the capacity of the testing environment. If content-based routing is used, it
must be ensured that events with content representative of the target workload are generated
when conducting the experiments, i.e., the distributions of the event attributes must match their
distributions in the target workload.

The following relationship between the routing probabilities νt,ki,j and the arrival rates λt,kj
holds for j = 1, 2, ..., |N |:

λt,kj = λt,kδj,HP (k) +

|N |∑
i=1

λt,ki νt,ki,j (4.1)

Dividing both sides of Eq. (4.1) by λt,k we obtain:

λt,kj
λt,k

= δj,HP (k) +

|N |∑
i=1

λt,ki νt,ki,j
λt,k

(4.2)

The ratio
λt,kj
λt,k

is equal to the mean number of visits to node nj of an event of type et

published by publisher pk. This ratio is known as visit ratio or relative arrival rate and we will
denote it as V t,kj . Thus, from Eq. (4.2) the following relationship between the visit ratios and
routing probabilities follows:

V t,kj = δj,HP (k) +

|N |∑
i=1

V t,kj νt,ki,j (4.3)

Solving the above simultaneous equations enables us to derive the visit ratios based on the
measured routing probabilities.

4.1.3 Estimation of Event Service Times

The next step is to determine the service times of events at the system resources. This includes
all resources used by the system to deliver published events. The two types of resources that we
have to consider are the CPUs of the system nodes and the networks used for communication
between nodes. In addition, secondary storage devices at the system nodes (e.g., disk drives)
might have to be considered if they are used by the event-based middleware, e.g., for reliable
delivery.

There are different approaches to estimate the service times of events at the CPU of a system
node. First, the system node can be instrumented to directly measure the CPU usage when
processing events. Another approach which does not require instrumentation is to estimate
the service times based on measured CPU utilization and event throughput. Assume that
the considered system node is deployed on a separate dedicated machine running on a given
reference hardware configuration if possible similar to the node’s configuration in the target
environment. By injecting events of the respective type and measuring the throughput Xt

j of

events at the node and the machine CPU utilization UCPUj , we can derive the mean service time

SCPUt,j = UCPUj /Xt
j .



38 CHAPTER 4. PERFORMANCE ENGINEERING OF EVENT-BASED SYSTEMS

This obvious relationship follows from the Utilization Law [62]. Once the CPU service times
of events at the considered system node on the reference hardware configuration have been esti-
mated, they can be used as reference values to extrapolate the service times to the node’s con-
figuration in the target environment. Benchmark results (e.g., SPECcpu2006 or SPECjms2007)
for the respective hardware configurations can be exploited in such extrapolations. If the chosen
reference configuration is similar to the target configuration, no extrapolation is necessary. If,
in addition to the CPUs, further resources at the system node are used when delivering events
(e.g., secondary storage devices), the mean service times at these resources can be estimated
based on the measured resource utilization in exactly the same way as shown above for the
CPUs. In certain cases, techniques can be employed that help to estimate the service times
without the need to do any measurements on the system [147]. Such techniques are based on
analyzing how the system components are implemented at the code level.

The mean network service time SNETt,q can be calculated based on the available bandwidth and
the size of the message that has to be transferred (taking protocol overhead into account) when
an event of type et is sent over the network corresponding to connection cq: S

NET
t,q = M t

q/Bq.

4.1.4 System Operational Analysis

If we look at the CPUs of the nodes in our system as M/M/1 queues, we can use the following
relationship from queueing theory to obtain an approximation for the mean response time RCPUt,j

of events of type et at the CPU of node nj :

RCPUt,j =
SCPUt,j

1− UCPUj

(4.4)

From the Utilization Law it follows that:

UCPUj =

|E|∑
t=1

λtjS
CPU
t,j =

|E|∑
t=1

 |P |∑
k=1

λt,kj

SCPUt,j (4.5)

Similarly, it follows that the disk I/O utilization of node nj can be computed as

U
I/O
j =

|E|∑
t=1

 |P |∑
k=1

λt,kj

S
I/O
t,j (4.6)

and an approximation for the mean response time R
I/O
t,j of events of type et at the disk I/O

subsystem of node nj is given by:

R
I/O
t,j =

S
I/O
t,j

1− U I/Oj

(4.7)

Analogously, an approximation for the mean response time R
I/O
t,j of events of type et at

the disk I/O subsystem of node nj can be obtained. The arrival rates λt,kj can be derived by
solving the system of simultaneous equations (4.1). Using the same approach, we can estimate
the utilization of the network links in the system and the network response times. The rate at
which events of type et (published by any publisher) are sent over connection cq can be computed
as follows:

τ tq =

|P |∑
k=1

(
λt,kl νt,kl,r

)
+

|P |∑
k=1

(
λt,kr νt,kr,l

)
(4.8)
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where l = HL
C(q) and r = HR

C (q). Assuming that connections use dedicated network links,
the utilization UNETq of the network link corresponding to connection cq is:

UNETq =

|E|∑
t=1

τ tqS
NET
t,q (4.9)

An approximation for the mean response time RNETt,q of events of type et at connection cq
can be computed according to:

RNETt,q =
SNETt,q

1− UNETq

(4.10)

If multiple connections are sharing a network link, the utilization of the network link due
to each of these connections must be taken into account when computing the mean response
times at the connections. Assume for example that connections cq1 , cq2 , ..., cqm all share a single
physical network link. The relative utilization of the link due to connection cqi is given by:

UNETqi =

|E|∑
t=1

τ tqiS
NET
t,qi (4.11)

The total utilization of the network link can be computed by summing up the relative
utilizations due to the connections that share it:

UNETq1,...,qm =

m∑
i=1

UNETqi (4.12)

An approximation for the mean response time RNETt,qi of events of type et at connection cqi
can then be obtained by substituting UNETq1,...,qm for UNETq in Eq. 4.10. Now that we have ap-
proximations for the mean response times of events at the system nodes and network links, we
can use this information to derive an approximation for the mean event delivery latency. In
order to do that we need to capture the paths that events follow on their way from publishers
to subscribers.

Definition 6 (Delivery Path) A delivery path of an event is every ordered sequence of nodes
(ni1 , ni2 , ..., nim) without repetitions that is followed by the event upon its delivery to a subscriber
(the event is published at node ni1 and delivered to a subscriber at node nim).

Event delivery paths can be determined by monitoring the system during the experiments
conducted to measure the routing probabilities νt,ki,j (Section 4.1.2). Every delivery path can be
seen as a vector ~w = (ni1 , ni2 , ..., nim) whose elements are system nodes.

Definition 7 (Dissemination Tree) The set W of all delivery paths of an event will be re-
ferred to as the dissemination tree of the event.

Let W t,k be the union of the dissemination trees of all events of type et published by pub-
lisher pk. By definition, W t,k = ∅, if publisher pk does not publish any events of type et. Let
W t be the union of the dissemination trees of all events of type et irrespective of the pub-

lisher, i.e., W t =
⋃|P |
k=1W

t,k is the set of all delivery paths of events of type et. Let Q(i, j) for
1 ≤ i < j ≤ |N | be the id of the connection between nodes ni and nj assuming that such a
connection exists.

Definition 8 (Mean Delivery Latency) If W̃ ⊆ W t, the mean delivery latency Lt(W̃ ) of
an event of type et over the set of delivery paths W̃ is defined as the average time it takes to
deliver an event of type et over a randomly chosen path from W̃ .
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If W̃ includes a single delivery path ~w = (ni1 , ni2 , ..., nim), an approximation for Lt(W̃ ) can
be computed as follows:

Lt({~w}) =

(
m∑
r=1

RCPUt,ir +

m∑
r=1

R
I/O
t,ir

)
+

m−1∑
r=1

RNETt,Q(ir,ir+1) (4.13)

If W̃ includes multiple delivery paths {~w1, ~w2, ..., ~wh}, we have:

Lt({~w1, ~w2, ..., ~wh}) =

∑h
k=1 Lt({~wk})

h
(4.14)

Definition 9 (Max Mean Delivery Latency) If W̃ ⊆ W t, the max mean delivery latency
Lt,MAX(W̃ ) of an event of type et over the set of delivery paths W̃ is defined as max delivery

latency time it takes to deliver an event of type et over a randomly chosen path from W̃ .

If W̃ includes a single delivery path ~w = (ni1 , ni2 , ..., nim), than Lt,MAX(W̃ ) = Lt(W̃ )

If W̃ includes multiple delivery paths {~w1, ~w2, ..., ~wh}, we have:

Lt,MAX({~w1, ~w2, ..., ~wh}) = max(Lt({~w1}), Lt({~w2}), ...Lt({~wn})) (4.15)

4.1.5 Performance Model Construction and Evaluation

If approximate results are not enough and accurate performance prediction is required, a more
detailed performance model must be built. One possibility is to model the system using a
queueing network, where system nodes and networks are represented as queues and events are
represented as jobs served at the queues. Modeling the system in this way would result in a non-
product form queueing network. This is because every time an event arrives at a system node, it
might be forwarded to multiple other nodes, resulting in forking of multiple asynchronous tasks.
Even though extended queueing networks make it possible to model the forking of asynchronous
tasks, existing analysis techniques for this type of model (for example [91]) are rather restrictive
and only provide approximate results.

An alternative approach is to model the system using a QPN, where system nodes and
networks are represented as queueing places and events are represented as tokens. The forking
of asynchronous tasks is much easier to model in this case. Whenever an event is forwarded
to multiple system nodes, a transition can be used to create an instance of the event, i.e., an
event token, at each of the queueing places corresponding to the target nodes. Modeling the
system using QPNs provides a number of important benefits. QPN models provide excellent
expressiveness and allow the integration of hardware and software aspects of system behavior
into the same model [125]. This can be exploited to model the individual system nodes at a
higher level of detail, capturing both hardware and software contention aspects. Furthermore,
the knowledge of the structure and behavior of QPNs can be exploited for fast and efficient
simulation [127]. This, on the one hand, ensures that models of realistically sized systems
can be analyzed. On the other hand, it allows us to have service times with non-exponential
distributions, thus improving the model’s representativeness.

Figure 4.3 shows a QPN model of the system topology in Figure 4.2. In this model, we ignore
the network, assuming that network delays are negligible. We will later show how the model can
be extended to include contention for network resources. Each system node is modeled using
a nested QPN (represented as a subnet place). The latter can be made as detailed as required
to accurately capture the internal behavior of the node. Events are modeled using tokens and
transitions are used to move events among nodes as they are routed in the system. Every system
node has a single output transition. Event publications are modeled using timed transitions.
We will use the following notation:
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Figure 4.3: High-Level System Model.

πi is the subnet place corresponding to node ni.

ϕi is the output transition of place πi.

φk is the timed transition used to model event publications by publisher pk.

To distinguish between events with different resource consumption and routing behavior, a
separate token color xt,k is defined for every combination of event type et and publisher pk that
publishes events of this type (λt,k > 0). The token color xt,k is defined for place πi, if and only

if events of type et, published by publisher pk, visit the place, i.e., λt,ki > 0.
Every timed transition φk has a separate firing mode ηtk for each event type et published by

the publisher it represents:

ηtk : ∅ → πHP (k){1′xt,k} (4.16)

This definition specifies that whenever the transition fires in mode ηtk, no tokens are removed
from any place and only one xt,k token is deposited in place πHP (k). The firing delay ρ(ηtk) of this
mode is set to the reciprocal of the rate at which events of type et are published by publisher pk:
ρ(ηtk) = 1/λt,k.

Since the firing delays of timed transitions in QPNs are assumed to be exponentially dis-
tributed, the above approach to modeling event publications results in Poisson event arrivals. If,
however, the distribution of the time between successive event publications is not exponential, a
different approach can be used. Instead of a timed transition, a queueing place and an immedi-
ate transition are used to model event publications as shown in Figure 4.4. The queueing place
has an integrated queue with an Infinite Server (IS) scheduling strategy. The queue service time
distribution is equal to the distribution of the time between successive event publications. For
every event type et published by the publisher, there is a single event token xt,k in the initial
marking of the place. After an event token is served at the IS queue, the immediate transition
fires, moving the token back to the queue and depositing a copy of it in the system node the
publisher is connected to. The latter corresponds to an event publication.
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Figure 4.4: Modeling Non-Poisson Event Publications.

We now show how the firing weights of the immediate transitions ϕi for i = 1..N must be
set in order to achieve the desired routing behavior. We use the notation

µ : A1{c1′x1} ∧A2{c2′x2} ∧ ... ∧An{cn′xn} → B1{d1
′y1} ∧B2{d2

′y2} ∧ ... ∧Bm{dm′ym}
to denote a transition mode µ in which ci × xi tokens are taken from place Ai for i = 1..n

and dj × yj tokens are deposited in place Bj for j = 1..m. If an event modeled by token
color xt,k visits the system node corresponding to place πi, from there it can possibly be for-
warded to every node nj such that νt,ki,j > 0. Assuming that there are m such nodes, let us

denote the set of their id’s as ζ = {j1, j2, ..., jm} = {j : νt,ki,j > 0}. For every subset of these
nodes σ = {l1, l2, ..., lr} ⊆ {j1, j2, ..., jm}, we define a firing mode µσi of transition ϕi as follows:

µσi : πi{1′xt,k} → πl1{1′xt,k} ∧ πl2{1′xt,k} ∧ ... ∧ πlr{1′xt,k} (4.17)

which means that a xt,k token is taken from place πi and a xt,k token is deposited in each
of the places πl1 , πl2 , ..., πlr , as shown in Figure 4.5. This corresponds to node ni forwarding an
arriving event of type et, published by publisher pk, to nodes nl1 , nl2 , ..., nlr . In order to achieve
the desired routing behavior, the firing weight ψ(µσi ) of the mode is set as follows:

ψ(µσi ) =
∏
g∈σ

νt,ki,g
∏
g∈ζ\σ

(1− νt,ki,g ) (4.18)

To explain this, let us consider the action of node ni forwarding an arriving event to node nlh
as an “event” in terms of probability theory. For h = 1..r, we have r events and their probabilities
are given by νt,ki,lh . At the same time for each g ∈ ζ \ σ we can consider the action of node ni
not forwarding an event to node ng as an event. We have m− r such events in total and their

probabilities are given by (1 − νt,ki,g ). If we assume that all these events are independent, the
probability of all of them occurring at the same time would be equal to the product of their
probabilities. Thus, Eq. (4.18) can be interpreted as the probability of forwarding an arriving
event of type et, published by publisher pk, to nodes nlh for h = 1..r and no other nodes. Even
though in reality the independence assumption might not hold, it is easy to see that by setting
the firing weights as indicated above, routing behavior with equivalent resource consumption is
enforced.

The model we presented is focused on capturing resource contention inside the system nodes,
however, it can easily be extended to also capture contention for network resources. Network
links can be modeled using queueing places that event tokens visit when they are sent from one
place to another. Figure 4.6 shows an example of how networks can be modeled. Nodes ni1
and ni2 (represented with places πi1 and πi2) communicate with nodes nj1 and nj2 over a network
(e.g., a LAN) modeled using queueing place χ1. Node ni2 communicates with node nj3 through
another network modeled using queueing place χ2. Depending on the size of QPN models,
different methods can be used for their analysis, from product-form solution methods [22] to
optimized simulation techniques [127].
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Figure 4.6: Modeling Network Connections.

4.2 Performance Modeling Pattern

In this Section we introduce performance modeling patterns (PerfMP) for QPNs. To the best
of our knowledge, no such patterns have been published yet for QPNs or for EBS. Overall, we
define eleven patterns, which we illustrate in Table 4.1. Our goal is to provide solutions for
common application scenarios in EBS. Some of the patterns target specific scenarios of EBS
while others provide solutions to general modeling issues, e.g., thread pooling.

In detail we reflect the following aspects in our QPN patterns:

• Asynchronous communication

• Pull-based vs. push-based communication

• Point-to-point vs. one-to-many communication

• Resource management, e.g., the number of events a consumer can process in parallel

• Time controlled behavior, e.g., connection times

• Load balancing

Several of our patterns can be combined or modified to reflect a certain application behavior
in our QPN models. In the following we have a closer look at our patterns. However, before
we discuss them in detail, we introduce our template that we use to describe the patterns in a
structured way.

Pattern Template

Our pattern is composed of four parts:

1. Characteristics: In this part the main aspects of a pattern are summarized in keywords.

2. Example: Providing a sample scenario for the pattern.

3. Description: A detailed description of the pattern including motivation and underlying
ideas.
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Name Description

Pattern 1: Standard
Queue

Models a queue, which pushes notifications to the consumer.

Pattern 2: Standard
Pub / Sub - Fixed
Number of Subscribers

Models a standard publish / subscribe scenario, in which incom-
ing notifications are pushed to a constant number of subscribers.

Pattern 3: Standard
Pub / Sub - Config-
urable Number of Sub-
scribers

A standard publish / subscribe scenario, in which incoming no-
tifications are pushed to a variable number of subscribers.

Pattern 4: Time con-
trolled Pull I

Implementation of simple time-controlled pull communication.
An event consumer connects frequently to pull one event.

Pattern 5: Time con-
trolled Pull II

An event consumer connects frequently to the broker to pull all
waiting event notifications.

Pattern 6: Resource
controlled Pull I

An event consumer pulls an event and processes it. When the
event is processed, the consumer pulls the next event.

Pattern 7: Resource
controlled Pull II

Similar to Pattern 6, but a different implementation for parallel
event processing.

Pattern 8: Time Win-
dow

A consumer connects frequently to a broker and stays online for
a specified time interval before disconnecting.

Pattern 9: Random
Load Balancer

A load balancer which distributes incoming event notifications
randomly among the consumers.

Pattern 10: Round-
Robin Load Balancer

A load balancer which distributes incoming event notifications
round-robin among the consumers.

Pattern 11: Queuing
Load Balancer

A load balancer stores incoming event notifications and con-
sumers pull events for processing them.

Table 4.1: Performance Modeling Patterns

4. QPN Definition: The definition of the QPN is presented in four tables:

(a) Places: A list of all places including the name, type (Q=queueing place, O=ordinary
place, S=subnet place) and a short description.

(b) Colors: A list of all colors.

(c) Initial Number of Colors: Specifies, how many tokens of which color in which place
are generated in the initial phase of a QPN.

(d) Transitions: A description of all transitions including colors, places and firing weight
(FW, mostly 1 or ∞ ).

Additionally, a graphical illustration of the underlying QPN is provided for each pattern. If
no cardinality for a transition is specified in the illustration, the cardinality is 1.
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Pattern 1: Standard Queue

Producer Queue T1 Consumers 

1‘Event 1‘Event 1‘Event 1‘Event 

T2 

Figure 4.7: Standard Queue Pattern

Characteristics

• 1 : 1 communication

• Push-based

Example

A customer sends an order message to a component for “incoming orders”. All incoming orders
are first stored by a queue of a message-oriented middleware and afterwards delivered to the
order-processing application.

Description

The standard queue pattern is a simple example for modeling asynchronous point-to-point mes-
saging : An event is sent by its producer to the queue. After the queue processed the event, the
event is forwarded (pushed1) to exactly one consumer.

QPN Definition

Places:
Place Type Description

Producer S Publishes events.
Queue Q Queue for incoming events.
Consumer S Consumes events.

Colors:
Color Description

Event Represents the event notification.

Transitions:
Id Input Output FW Description

T1 1 Event ( Producer) 1 Event (Queue) 1 Prod. publishes event.

T2 1 Event (Queue) 1 Event (Consumer) 1 Forwarding of events of
the Consumer.

1A support for push-based communication using queues is, e.g., part of the JMS specification.
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Pattern 2: Standard Pub/Sub - Fixed Number of Subscribers

Producer Broker T1 

Publish Event 

T2 

Create Notifications 

Consumers 

1‘Event 1‘Event 1‘Notification 

1‘Event! 

" n‘Notification 

1‘Notification 

T3 

Forward Event 

Producer Broker T1 

Publish Event 
Consumers 

1‘Event 1‘Event 1‘Notification 1‘Notification 

T3 

Forward Event 

Controller Init T0 

Configure Controlller 

1‘Conf.No 1‘Conf.No 

T2‘ 

Creates the configured no.  

of notifications per Event. 

Broker  

Event 

Broker 

Not. n 1 

Transition 2 

In T2, for every incoming event n 

notifications are created.   

Figure 4.8: Standard Pub/Sub Pattern - Fixed Number of Subscribers

Characteristics

• 1 : n communication (one event is consumed by n consumers)

Example

A fixed number of event consumers subscribe to a topic.

Description

A producer publishes an event, which is received by a broker. The broker notifies the event
consumers (e.g. subscribers of a topic) by sending a notification event to them.

The idea of this pattern is based on the presumption that the service demand per event on
the broker is composed of two parts, the service demand needed for every incoming event and
the aggregated service demands for the notification of the subscribers:

SEventTotal,Broker = SEvent,Broker + n · SNotification,Broker (4.19)

where

n : No. of event notifications.
SEvent,Broker : Service demand for receiving and processing incoming message.
SNotification,Broker : Service demand of broker to create, process and send notifications.

We implement the service demand in our patterns by using two different token colors, one
for the general service costs (event) and one for the notifications (notification) created by the
broker. Therefore each incoming event is represented by one token event and n tokens of the
color notification, where n is the number of consumers.

In this version of the pattern, we implemented a straight-forward approach for a 1:n commu-
nication. The number of consumers is directly set in the cardinality of the transition (see Figure
4.8). The downside of this approach is, that the number of consumers is fixed in the transition
and therefore cannot be modified without changing the transition (and therefore the structure
of the model). The reason is that cardinality of transitions in standard QPNs is defined as
constant number. To add more flexibility we propose to allow not only constants but also, e.g.,
distribution functions (see Section 4.3).
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QPN Definition

Places:

Place Type Description

Producer S Publish events.
Broker Q Receives all incoming events and forwards notifIcation

events to n consumers.
Consumer S Consumes incoming events.

Colors:
Color Description

Event Represents the published event.
Notification (Not.) Event notification.

Transitions:
Id Input Output Description

T1 1 Event (Producer) 1 Event (Broker) Producer publishes
event.

T2 1 Event (Broker) n Notifications (Broker) Notifications are cre-
ated.

T3 1 Notification (Broker) 1 Not. (Consumer) Consumer receives
event.
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Pattern 3: Standard Pub/Sub - Configurable No. of Subscribers
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Figure 4.9: Standard Pub/Sub Pattern - Configurable No. of Subscribers

Characteristics

• 1 : n communication (one event is consumed by a configurable number of consumers)

• Dynamic number of notifications

Example

A dynamic number of event consumers subscribe to a topic.

Description

In complex and flexible models we need the possibility to scale the number of notifications easily.
In these cases Pattern 2 is not applicable. As a consequence, we define Pattern 3 where the
number of notifications per event can be configured by the token count.

Pattern 3 is based on the underlying idea of Pattern 2 regarding the service demand. In
contrast to Pattern 2, the user can configure the number of notifications for each event simply
by adjusting the number of tokens named Subscriber in the system without modifying the
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Figure 4.10: Example for Pattern 3

cardinality of the transitions. The number of Subscriber tokens can be set either by modifying
the number of initial tokens in the system or by adjusting them dynamically at simulation time.
The idea is that for an incoming event a notification is created for each Subscriber token and
forwarded to the consumers.

For this purpose we introduce an ordinary place Controller and define two colors, State A
and State B, in QPNs. These colors are used to represent whether the Controller is either in
state A or B, depending on the token stored in its depository. Further, for each subscriber, a
token Subscriber A or Subscriber B depending on the state exists.

An incoming Event triggers a state change from state A to B (or vice versa). As a response
to an incoming Event the configured number of event notifications is generated. This is imple-
mented by Transition 2-III / 2-IV (see Figure 4.9). As a reaction to a state change from A (B)
to B (A), all n Subscriber A (B) tokens are transformed to n Subscriber B (A) tokens stored in
the Controller and to n Notification tokens forwarded to the consumer.

For a better understanding, we provide a detailed description of the different steps and states.
The underlying transitions are illustrated in Figure 4.9.

1. System Initialization
First, we configure the number of subscribers by setting the initialization number of Sub-
scriber tokens n. These n tokens are then transformed by transition T0 to n Subscriber A
tokens stored in the Controller place. This step is illustrated in Figure 4.10(a). Transition
T0 is only fired once at system initialization time.
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The Controller place is in state A which is represented by a State A token stored in the
depository.

After the system initialization, the following tokens exist in the system:

Place Color Count Note

Controller State A 1 Init value.
Controller Subscriber A n Received via T0.

2. Creation of Notifications

(a) Producer Publishes Event
The producer publishes an Event token, which arrives via T1 at the broker. After
the broker received the Event token, the transition T2-II is fired and changes the
state of the Controller from A to B by replacing the State A token with a State B
token.

Place Color Count Note

Controller State B 1 Produced by T2.
Controller Subscriber A n

(b) Notification of Subscribers
Since the Controller place is now state B, transition T2-IV is fired for each of the
n Subscriber A tokens and transforms them as illustrated in Figure 4.10(b) into
Notification tokens (sent to the Broker) and into Subscriber B tokens stored in the
Controller, respectively. These Notification tokens will be processed by the Broker
and afterwards delivered to the consumers. Therefore, each Event token triggers the
generation of n Notifications.

Place Color Count Note

Controller State B 1
Controller Subscriber B n
Broker Notification n To be forwarded to the consumer.

QPN Definition

Places:
Place Type Description

Producer S Publishes events.
Broker Q Receives all incoming events and forwards notifications to

the consumers.
Consumer S Consumes incoming events.
Controller O Controls the creation of Notification token.
Init O Central place for the configuration.

Note The Init place can be used to configure the number of subscribers of different
interactions.

Colors:
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Color Description

Event Represents the published event.
Notification (Not.) Event notification.
State A Exists only if Controller is in state A.
State B Exists only if Controller is in state B.
Subscriber A (Sub.
A)

Each Sub. A stands for a notification, which will be generated after
the state of the Controller place changes to state B.

Subscriber B (Sub.
B)

Each Sub. B stands for a notification, which will be generated after
the state of the Controller place changes to state A.

Subscriber Is used to initialize the number of subscribers. Each token represents
one subscriber.

Init No. of Colors:
Color Place No. Description

State A Controller 1 At the beginning the Controller place is in state A.
Subscriber Init n One token for each consumer.
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Transitions (see Figure 4.9):
Id Input Output FW Description

T0 1 Conf. Not. (Init) n Not. B (Controller) 1 Initialization of Con-
troller place.

T1 1 Event (Producer) 1 Event (Broker) 1 Producer publishes
event.

T2-I 1 State A (Controller) 1 State B(Controller) 1 Switch state of
1 Event (Broker) Controller to B.

T2-II 1 State B (Controller) 1 State A(Controller) 1 Switch state of
1 Event (Broker) Controller to A.

T2- 1 State A (Controller) 1 State A (Controller) ∞ If in state A, all Not.
III 1 Sub. B (Controller) 1 Not. (Broker) A are converted

1 Sub. A (Controller) to Notications
T2- 1 State B (Controller) 1 State B (Controller) ∞ If in state B, all Not.
IV 1 Sub. A (Controller) 1 Not. (Broker) B are converted

1 Sub. B (Controller) to Notications

T3 1 Notification (Broker) 1 Not. (Consumer) 1 Consumer receives
event.

Missing Priorities of Transitions

The Controller is defined as an ordinary place. Since standard QPNs do not support priorities
of transitions this may become an issue: if two events arrive exactly at the same time the
state of the controller can be changed to the next state without waiting for the creation of the
notification.

Imagine a situation where the Controller is in state A and two Event tokens arrive at the
same time. First, transition T2-I is fired and the state of the Controller is changed to state B.
Second, n notifications should be created by firing transition T2-IV n times. However, a major
problem arrises if the second Event token triggers a second state change back to A (via T2-II )
before all n notifications for the first token are generated.

To solve this issue we developed three approaches:

1. Using transition priorities
We suggest to extend standard QPNs by adding transition priorities. This allows to define
rules such as: “If possible, fire transitions T2-III / T2-IV always before T2-I / T2-II.”

2. Set the firing weight of T2-III and T2-IV to ∞.
This solution does not completely rule out the incorrect state changes, but the probability
converges to zero.

3. Adding an additional queueing place (see Figure 4.11)
This Enqueuer place is a queueing place with a single server and used to form a line of
events. This allows us to process the Events one after another and to avoid incorrect state
changes. In addition to the new queueing place, a new transition T4 has to be added
and the existing transitions T2-I and T2-II have to be modified as described below. By
defining a service demand close to zero for Event tokens on the Enqueuer, a distortion of
the results should be avoided.

Id Input Output FW Description

T2-I 1 State A (Controller) 1 State B(Controller) 1 Switch state of
1 Event (Enqueuer) Controller to B.

T2-II 1 State B (Controller) 1 State A(Controller) 1 Switch state of
1 Event (Enqueuer) Controller to A.

T4 1 Event (Broker) 1 Event (Enqueuer) 1
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Figure 4.11: Pattern 3 using an Enqueuer for Incoming Events

Note: This problem does not occur if the broker place has a single server. In this case, two
events never arrive at the same time.
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Pattern 4: Time Controlled Pull I
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Figure 4.12: Time-Controlled Pull Pattern

Characteristics

• Pull-based communication

• Time controlled behavior : the consumer connects frequently to the broker to pull one event
after a certain time interval.

Example

An event consumer connects frequently to a broker to check whether notifications are waiting.
If yes, he downloads exactly one of them to process it. Afterwards, the consumer closes the
connection and waits a specified period of time before reconnecting.

A real world scenario represented by this pattern are Wireless-Sensor Networks (WSN). To
save battery, the nodes are mostly disconnected. However, they connect frequently for a short
moment to other nodes to exchange events and data.

Description

In modeling techniques such as QPNs, events are pushed by transitions from one place to another,
e.g., after an event was served at one place, it is pushed to the next place. However, in scenarios
like our example we are facing pull-based communication behavior and an approach is needed to
reflect this in our models. Therefore we introduce a methodology how pull-based communication
can be modeled using, e.g., QPNs. To model all aspects of our scenario, we presents additionally
a way to implement time-controlled behavior.

In our scenario the Consumer connects frequently to the Broker, tries to pull, if available,
exactly one event and disconnect. To model this behavior, we need a timer which is responsible
for establishing the connection. As shown in Figure 4.12 we implement the timer by adding a
queuing place Timer (scheduling strategy: infinite server) and a new token color named Trigger,
which triggers the establishment of the connections and the pull attempt after a certain time
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interval. The interval between two connections is controlled by the service demand of the Trigger
token on the Timer place (STrigger,T imer). Since the consumer disconnects immediately after
the pull attempt there is no need to model connection times. We model the scenario as an
endless loop composed of four phases. In the first phase, the consumer is disconnected and the
Timer is processing the Trigger token. When the Timer has processed the Trigger token, the
second phase starts and the connection is established. In the next phase, the consumer tries to
pull an Event. Finally, the consumer closes the connection and we re-enter the first phase.

In the following we illustrate our modeling approach in more detail:

1. System Initialization
In the beginning, the connections is closed and one Trigger token is stored in the depository
of the Timer place (end of the first phase).

2. Open and Close Connections
When the Trigger token is available in the depository of the Timer, transition T2 is fired.

Transition T2 implements the establishment of a connection (II. phase), the pull attempt
(III. phase) and the disconnection (IV. phase). Two possibilities exist (see Figure 4.12):

(a) The connection is established and the consumer pulls one Event from the Broker
(T2-I ).

(b) The connection is established, but no Event is available (T2-II ).

In both cases, the connection has to be closed afterwards. This is implemented by adding
the Trigger token to the Timer queue. When the connection is closed, we are back in the
first phase. After t=STrigger,T imer

2, the Timer has processed the Trigger token and moves
it to its depository. The next step is to enter the second phase and to open a connection
to the broker again.

Note T2-II should only be fired if no Event is available in the depository of the Broker.
If an Event is available, T2-I has to be fired. Again, we have to face the limitation of standard
QPNs that transition priorities are not supported. In this scenario, the easiest way is to define
the firing weights of the transitions so that Firing Weight of T2-II

Firing Weight of T2-I is close to zero, i.e. the possibility
that T2-II is fired although a Event token exists is close to zero.

QPN Definition

Places:
Place Type Description

Producer S Publishes events.
Broker Q Broker for all incoming events.
Timer Q Timer place (scheduling strategy: Infinite Server).
Consumer S Pulls events from broker.

Colors:
Color Description

Event Represents the published event.
Trigger Triggers pull commands.

Init No. of Colors:
Color Place Count

Trigger Trigger Store 1

2Since the Timer is using InfiniteServer as scheduling strategy, the response time of the queue for a token
is equal to its service demand (and waiting time is zero).
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Transitions:
Id Input Output FW Description

T1 1 Event (Producer) 1 Event (Broker) 1 Producer publishes
event.

T2-I 1 Event (Broker) 1 Event (Consumer) ∞ Pull exactly one event
1 Trigger (Timer) 1 Trigger (Timer) and go back to sleep.

T2-II 1 Trigger (Timer) 1 Sleep (Timer) 1 If no event is available
→ go back to sleep.
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Pattern 5: Time Controlled Pull II
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Figure 4.13: Time-controlled Pull Pattern

Characteristics

• Dynamic pull-based communication

• Time controlled behavior : the consumer connects frequently to the broker to pull all
waiting events after a certain time interval.

Example

An event consumer connects frequently to a broker to check whether notifications are waiting.
If yes, the consumer downloads all of them, closes the connection afterwards and waits for a
specified period of time before reconnecting.

Description

In this scenario we face again a time controlled pull-based communication behavior. In contrast
to Pattern 4, the consumer does not only pull one event per connection, but all event notifications
available at the broker. To reflect this, we introduce this pattern.

Similar to Pattern 4, the scenario can be described as a loop composed of four phases:

Phase I: Consumer is disconnected
Phase II: Establish connection
Phase III: Pull all available events
Phase IV: Consumer disconnects

Phase I, II and IV are comparable to the one of the previous pattern. However, Phase
III differs from Pattern 4, where the consumer tries to pull a fixed number (1) of Events. In the
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underlying scenario of this scenario, the consumer wants to pull all existing Event tokens. Since
the number of existing Event tokens is changing, our model has to dynamically adjust itself to
pull all tokens.

As illustrated in Figure 4.13 we model Phase I similar to Pattern 4 by defining a Timer
place and a token named Disconnected. While the Timer is processing the Disconnected token
(and the Disconnected exists), the consumer is disconnected. In Phase II the connection is
established: the Disconnected token is transformed by transition T3 to a Trigger token. This
token is stored in an ordinary place named Trigger Store. While the Trigger token exists, the
consumer is connected to the broker. When the connection is established, the consumer tries
to pull all waiting event notifications (Phase III ). The number of notifications are waiting for
the consumer is unknown. Therefore, we pull them one by one by firing transition T2-I for
each Event notification. If no further Event exists in the depository of the broker, the consumer
closes the connection. In our model this is performed by transition T2-II which transforms the
Trigger token back to a Disconnected token. It has to be guaranteed that T2-II is only fired if
no further Event tokens exist (→ transition priorities).

QPN Definition

Places:
Place Type Description

Producer S Publishes events.
Broker Q Stores all incoming events.
Timer Q Timer queue (scheduling strategy: Infinite Server). If the

Timer is empty, the consumer is connected to the broker.
Trigger Store O Stores Trigger token. If the consumer is disconnected, it is

empty.
Consumer S Pulls events from broker.

Colors:
Color Description

Event Represents the published event.
Trigger Triggers pull commands.
Disconnected Represents disconnected state.

Init No. of Colors:
Color Place Count

Trigger Trigger Store 1

Transitions:
Id Input Output FW Description

T1 1 Event (Producer) 1 Event (Broker) 1 Producer publishes
event.

T2-I 1 Event (Broker) 1 Event (Consumer) ∞ Pull one event.
1 Trigger (Trigger
Store)

1 Trigger (Trigger
Store)

T2-II 1 Trigger (Trigger
Store)

1 Disconnected
(Timer)

1 If no event is available
→ go back to sleep.

T3 1 Disconnected (Trig-
ger Store)

1 Event (Broker) 1 Establishes a connec-
tion.



4.2. PERFORMANCE MODELING PATTERN 59

Pattern 6: Request Controlled Pull I
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Figure 4.14: Standard Pull Patterns

Characteristics

• Pull-based communication on demand

• Resource modeling (number of service places)

Example

An event consumer connects frequently to a broker to check whether notifications are waiting.
If yes, the consumer downloads one of them, closes the connection and processes the event
notification. As soon as the event has been processed the consumer connects again to the broker
to pull the next event. If no event is available, the consumer closes the connection and waits for
a specified period of time before pursuing the next pull attempt.

Description

This scenario differs mainly from the previous ones in that the pull attempt of the consumer is
not only controlled by time but also by the availability of the consumer. The consumer tries
to pull the next event as soon as he is ready, i.e. after the last event was processed. Only if
no further event is available at the depository of the broker, the consumer disconnects and the
next connection is triggered after a specified time interval.

This behavior is reflected in transitions 2 & 3. When the consumer has processed an event,
the Event token is transformed by transition 3-I to a Trigger token. Next, transition 2 is fired.
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Depending on the availability of Event tokens in the depository of the Broker, either mode 2-I
(Event available) or mode 2-II (no Event token) is chosen:

1. If an Event token exists the consumer pulls it (transition 3-I ) and disconnects. He will
not reconnect before the Event token is processed.

2. If no Event token exists the consumer disconnects and waits for a specified time interval.
Then, a new Trigger token is generated by transition 3-II and the consumer tries to pull
an Event.

Number of Service Places (Parellel Events) and Issues The pattern offers a simple way
to set the maximum number of Events processed in parallel by defining the initial number of
Trigger tokens.

However, there is a drawback of this approach: Imagine a scenario where we set the number
of parallel events processed by the consumer to two. For the case that no Event token was
available at the broker, two Trigger tokens were transformed to Sleep tokens and moved to
the Timer. After the specified time interval one of the Sleep tokens is processed by the Timer
and transformed back to a Trigger token by transition T3-II : the consumer ’wakes up’ and
establishes a connection to the broker. In the meantime two new Event tokens arrived in the
depository of the Broker. Since there is one Trigger token, only a single Event is moved to the
consumer. The second Event token remains in the depository of the broker until the second
sleep token has been processed by the timer, even if the Consumer has enough resources to
process both Events.

Another approach is presented in Pattern 7, where the consumer pulls as many Events at once
as free resources are available. This avoids opening several connections and allows processing
them as fast as possible.

How to Modify Pattern 6 to Model Thread Pool

By removing the Timer place and transitions T2-II and T3-II the underlying idea of this
approach is made suitable for modeling a thread pool. As illustrated in Figure 4.15, all we need
to implement such a pool are Thread tokens and a Thread Pool ordinary place (corresponding
to Thread tokens, respectively Thread Store).

QPN Definition

Places:
Place Type Description

Producer S Publishes events.
Broker S Stores all incoming events.
Timer Q Timer queue (scheduling strategy: infinite server).
Trigger Store O Stores trigger tokens.
Consumer S Consumes incoming events.

Colors:
Color Description

Event Represents the published event.
Trigger Triggers pull commands.
Sleep Exists for time between an unsuccessful pull attempt and a recon-

nect.



4.2. PERFORMANCE MODELING PATTERN 61

Producer Broker T1 Consumer 

1‘Event 1‘Event 1‘Event 1‘Event 

T2 

T3 

!1‘Thread 

T3: Consumer is ready 

1 1 

Thread Pool 

Thread 

Consumer 

Event 

1
‘E

v
e
n
t"

 

Broker 

T2: Pull Event   

 Event Consumer 

 Event 
1 

1 

1 

Thread Pool 

Thread 

!
1
‘T

h
re

a
d
 

Thread  

Pool 

Figure 4.15: Modeling a Thread Pool

Init No. of Colors:
Color Place Count Description

Trigger Trigger Store j j is equal to the number of events the consumer can
process in parallel.
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Transitions:
Id Input Output FW Description

T1 1 Event (Producer) 1 Event (Broker) 1 Producer publishes an
event.

T2-I 1 Event (Broker) 1 Event (Consumer) ∞ Consumer pulls an
1 Trigger
(TriggerStore)

event and processes it.

T2-II 1 Trigger
(TriggerStore)

1 Sleep (Timer) 1 If no event is stored
at the Broker → go to
sleep.

T3-I 1 Event (Consumer) 1 Trigger
(TriggerStore)

1 After an event is pro-
cessed, the consumer
creates a trigger for a
pull attempt.

T3-II 1 Sleep (Timer) 1 Trigger
(TriggerStore)

1 After a specified time
interval, the consumer
wakes up to pull an
event.
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Pattern 7: Request Controlled Pull II
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Figure 4.16: Pull Pattern - Request controlled II

Characteristics

• Pull-based communication on demand

• Resource controlled

• Resource modeling (number of service places)

Example (similar to Pattern 6)

An event consumer connects frequently to a broker to check whether notifications are waiting.
If yes, the consumer downloads one of them, closes the connection and processes the event
notification. As soon as the event has been processed the consumer connects again to the broker
to pull the next event. If no event is available, the consumer closes the connection and waits for
a specified period of time before pursuing the next pull attempt.

Description

This pattern addresses the same scenario as Pattern 6. It solves the issues of Pattern 6 discussed
in the previous section for the costs of higher model complexity. In the previous pattern we
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used a single color (Trigger) to model the pull attempt of the consumer and its resources. In
this pattern, we use two colors to model these aspects:

1. Trigger : responsible to trigger pull attempt.

2. Slot : represents available resources of consumer.

The Trigger token controls if and when the consumer establishes a connection to the broker.
The pull attempt of the consumer is modeled by transition T2 : if an Event, a Trigger and a
Slot (standing for free resources) exist, the consumer pulls an Event. The consumer tries to pull
Events (by firing transition T2 ) until no further resources (Slots) or Events are available in the
depository of the Store respectively the Broker:

• If no further resources are available, the consumer disconnects and waits for resources to
be released (see transition T3 ) before establishing a new connection.

• If there are free resources (Slot tokens) available but no further Event token available, the
consumer closes the connection and waits for ceratin time interval before he reconnects
(see transitions T4 & T5 ).

All places and transitions are illustrated in Figure 4.16. The number of initial Slot tokens
in the ordinary place Store defines, how many events the consumer is able to handle in parallel,
e.g., the number of service places.

QPN Definition

Places:
Place Type Description

Producer S Publishes an event.
Broker S Stores incoming events.
Timer Q Timer queue (scheduling strategy: infinite server).
Store O Stores trigger and slot tokens. Used to model free resources.
Consumer S Consumes events.
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Colors:
Color Description

Event Represents the published event.
Trigger Triggers pull commands.
Slot Represents resources of consumer.
Sleep Exists for time interval the consumer waits after an unsuccessful

pull attempt before reconnecting.

Init No. of Colors:
Color Place Count Description

Trigger Store 1
Slot Store j j is equal to the number of events the consumer can process

in parallel.

Transitions:
Id Input Output FW Description

T1 1 Event (Producer) 1 Event (Broker) 1 Producer publishes an
event.

T2 1 Event (Broker) 1 Event (Consumer) Consumer pulls
1 Trigger (Store) 1 Trigger (Store) ∞ an event.
1 Slot (Store)

T3 1 Event (Consumer) 1 Slot (Store) 1 After an event is pro-
cessed the consumer
releases the resources.

T4 1 Trigger (Store) 1 Slot (Store) 1 If no event is
1 Slot (Store) 1 Sleep (Timer) available, disconnect

and wait for a specified
time interval.

T5 1 Sleep (Timer) 1 Trigger (Store) 1 After a specified time
interval, the consumer
wakes up to pull
events.
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Pattern 8: Time Window
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Figure 4.17: Standard Queue Pattern

Characteristics

• Time-controlled

• Modeling of a time window

• Modeling of connections

Example

An event consumer connects to a broker to receive events, stays online for a specified interval
(time window) and disconnects afterwards, e.g., a consumer connects every hour for five minutes
to a broker to receive events.

Description

In the previous pattern, we implemented a consumer who connects to the broker, pulls events and
immediately disconnects. In this pattern, we handle another situation in which the consumer
connects and stays online for specified a period. Therefore, we present a way to model a
connection with two states (connected and disconnected) in this pattern.

The state change is triggered by two colors named Connect respectively Disconnect. The
Connection itself is modeled by an ordinary place. If the Consumer has established a connection
(transition T3 ), a token Connected is stored in the Connection place and a Disconnect token
is sent to the Timer. The Timer controls the time between the state changes: the time a
consumer stays connected (disconnected) is equal to the service demand of the Disconnect
token (Connect token) of the Timer place. As soon as the Consumer disconnects (triggered by
an Disconnect token), the Connected token is removed from the Connection place by transition
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T2. As illustrated in Figure 4.17, Events are only pushed to the Consumer by the transition T1
if a Connected token exists.

QPN Definition

Places:
Place Type Description

Broker S Responsible for forwarding events to the consumer.
Connection O Represents the state of connection. If a Connected token is

stored inside, the consumer is connected.
Consumer S Consumes incoming events.

Colors:
Color Description

Event Represents the published event.
Connected Only exists if connection is active.
Connect Triggers to establish a connection.
Disconnect Triggers the consumer to disconnect.

Init No. of Colors:
It is possible to configure the model in two ways: either the consumer is connected and
disconnects immediately or the consumer establishes a connections as first action:

The Consumer is connected and disconnects:
Color Place Count

Connected Trigger 1
Disconnect Timer 1

The Consumer establishes a connection:
Color Place Count

Connect Timer 1

Transitions:
Id Input Output FW Description

T1 1 Event (Broker) 1 Event (Consumer) 1 An event is forwarded
1 Connect (Conn.) 1 Connected (Conn.) 1 to the consumer.

T2 1 Disconnect (Timer) 1 Connect (Conn.) 1 Closes connection and
1 Connected (Conn.) 1 triggers reconnection.

T3 1 Connect (Timer) 1 Disconnect (Conn.) 1 Opens connection and
1 Connected (Conn.) 1 triggers disconnection.
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Pattern 9: Random Load Balancer
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Figure 4.18: Load Balancer - Random

Characteristics

• Load balancing

• Random load distribution (uniformly distributed)

Example

Incoming events are distributed uniformly among consumers by a load balancer. Each event is
forwarded to exactly one consumer.

Description

Incoming events are arriving at the place Load Balancer and are forwarded (pushed) to the Con-
sumer by transition T1. For each Consumer, an own mode in transition T1 is implemented. All
these modes have the same fire weight. The events are uniformly distributed among consumers.

QPN Definition

Places:
Place Type Description

Load Balancer S Receives inc. events and forwards them to the Consumer.
Consumer i S Consumes incoming events. One place for each Consumer.

Colors:
Color Description

Event Represents a published event.

Transitions:
Id Input Output FW Description

T1 1 Event (Load Balancer) 1 Event (Consumer) 1 Forwards event to
Consumer.
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Pattern 10: Round-robin Load Balancer
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Figure 4.19: Load Balancer - Round Robin

Characteristics

• Load balancing

• Round-robin

Example

Incoming events are processed by a load balancer and afterwards distributed among event con-
sumers in a round robin manner. Each event is forwarded to exactly one consumer.

Description

Incoming events are arriving at the place Load Balancer and forwarded to the Consumer by
transition T1. For each Consumer exists an own mode in transition T1. Further, a token named
NextIsC i is defined. i is the unique id of the consumer, e.g. for Consumer 1 the color name is
NextIsC1. To implement a round robin behavior the load balancer needs to keep track which
Consumer is next. We model this knowledge by storing a NextIsC i token in the Load Balancer.
This token identifies the Consumer i who should receive the next Event. As illustrated in Figure
4.19, the modes of transition T1 takes into account, which consumer is next and update the
state of the Load Balancer by replacing the NextIsC i token with a NextIsC i+1 token.

For example, if an Event token and a NextIsC1 token are stored in the depository place
of the load balancer, the corresponding mode of transition T1 is fired. The Event token is
forwarded to Consumer 1 and the NextIsC1 token is replaced by a NextIsC2 token.

To initialize the model we have to specify the consumer that should receive the first Event
token. This is done by initializing the corresponding NextIsC i token.
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QPN Definition

Places:
Place Type Description

Load Balancer S Receives incoming events and forward an event.
Consumer i S Consumes incoming events. One place for each of the n

Consumers.

Colors:
Color Description

Event Represents the published event.
NextIsCi If exists, the next Event will be forwarded to Consumer i. One color

for each of the n Consumers.

Init No. of Colors:
Color Place Count Description

NextIsCi LoadBal. 1 Defines that Consumer i will receive the first Event to-
ken.

Transitions:
Id Input Output FW Description

If i < n:
T1-i 1 Event (Load Balancer) 1 Event (Consumer i) 1 Forwards event

1 NextIsCi 1 NextIsCi+ 1 1 to consumer.
(Load Balancer) (Load Balancer)

If i = n:
T1-n 1 Event (Load Balancer) 1 Event Consumer 1 1 Forwards event

1 NextIsCn 1 NextIsC1 1 to consumer.
(Load Balancer) (Load Balancer)

Note: n is the count of Consumers.
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Pattern 11: Queuing Load Balancer
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Figure 4.20: Load Balancer - Pull

Example

Incoming events are stored at the load balancer, e.g., in a queue. If a consumer has free resources
he pulls an event and processes it.

Characteristics

• Load Balancing

• Resource controlled

• Pull-based

Description

Patterns 9 & 10 model a Load Balancer, who pushes Events directly after processing them to the
Consumer. In this scenario the Load Balancer stores them after processing and the Consumer
pulls Event tokens based on the availability of resources.



72 CHAPTER 4. PERFORMANCE ENGINEERING OF EVENT-BASED SYSTEMS

Each Consumer is reflected by an own place. Available resources of the consumer are rep-
resented by Ready tokens which are stored at the consumer place. The pull attempt of the
Consumer is implemented by transistion T1 : if an Event is available at the Load Balancer and
the Consumer is ready (symbolized by a Ready token) to process the next Event token, the
Event is forwarded to the Consumer. If multiple Consumers are ready, an Event is randomly
assigned to one Consumer. After an Event is processed by the Consumer, the resources are
released by creating a Ready token, which is done by transition T2. The number of available
resources of a Consumer can be modeled by the initial number of Ready tokens at a Consumer
place.

QPN Definition

Places:
Place Type Description

Load Balancer S Receives incoming events.
Consumer i S Consumes incoming events. One place for each of the n

consumers.

Colors:
Color Description

Event Represents the published event.
Ready Represents that the Consumer is ready to process an Event.

Init No. of Colors:
Color Place Count Description

Ready Consumer i j Specifies for each Consumer i the number of Events,
which can be processed in parallel.

Transitions:
Id Input Output FW Description

T1 1 Event (Load Balancer) 1 Event (Consumer i) 1 Forwards event
1 Ready (Consumer i)

T2 1 Event (Consumer i) 1 Ready (Consumer i) 1 After an event is pro-
cessed, the resources
are released.

Note: n is the count of Consumers.
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Figure 4.21: Physical and Logical Layers

4.3 Extensions of QPNs

In this section we discuss how QPNs can be conceptually extended to solve the mentioned short-
comings and limitations and to increase modeling simplicity and flexibility without increasing
complexity. We propose three extensions for standard QPNs:

1. Mapping of logical to physical resources

• QPNs are extended to support multiple queueing places that share the same physical
queue.

• A flexible mapping of logical to physical resources that makes it easy to customize
the model to a specific deployment of the application is introduced.

2. Non-constant cardinalities of transitions

3. Priority support for transitions

• With transition priorities we introduce a firing hierarchy and can control the firing
order of transitions effectively.

Our target implementation platform is the SimQPN simulation engine of QPME [127, 129,
128]. The concept of mappings of logical to physical resources is already available in the current
version of QPME while both the others are planned for future release.

4.3.1 Mapping of Logical to Physical Resources

In traditional QPNs, the physical resources of an application in a specific setup are modeled.
In our approach, we introduce a new level of indirection to increase flexibility and reusability of
the models by distinguishing between logical layer and physical layer (see Figure 4.21).

In our approach the first step is to model the logical relations of an application and to
focus on the interactions of logic entities such as components instead on physical resources such
as CPU. By using subnet places to represent these logical entities, we provide flexibility in
choosing the level of detail at which the system components are modeled. Each subnet place is
bound to a nested QPN that may contain multiple queueing places representing logical system
resources available to the respective client or server components, e.g., CPUs, disk subsystems and
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Figure 4.22: Example for Priority of Transitions

network links. The respective physical system resources are modeled using the queues inside the
queueing places. After completing our logical model we can use it to generate different physical
representations by defining mappings of logical resources to physical resources.

In Figure 4.21, an example application composed of two different components is illustrated.
In the logical model, we define how they interact with each other. Multiple queueing places
can be mapped to the same physical queue. For example, if all entities are deployed on a
single server, their corresponding queueing places should be mapped to a set of central queues
representing the physical resources of the server.

The hierarchical structure of the model not only makes it easy to understand and visualize,
but most importantly, it provides flexibility in mapping logical resources to physical resources
and thus makes it easy to customize the model to a specific deployment and to reuse the
logical model by mapping into different physical scenarios. Further, it is possible to map several
logic models in one physical model, e.g., to verify if a server has enough resources to run two
applications.

4.3.2 Non-Constant Cardinalities of Transitions

In standard QPNs, the cardinalities of transitions are specified by a constant value. This has
several limitations. In our approach it is possible to specify the cardinality of a transition by
using a distribution function. This increases the flexibility and at the same time minimizes the
number of transition modes. Furthermore, models are easier to maintain.

For example, in Pattern 2 (1:n communication) we define the number of subscribers directly
by setting a constant integer value for the cardinality of the transition. For each different sized
subscriber set we have to define an extra transition mode (e.g. one for 10 subscribers, one for 15,
etc.). By allowing distribution functions, such scenarios are easier to model with less complexity.
The modeler can concentrate on the logical relations instead of creating and maintaining a high
number for transition modes.

4.3.3 Priority of Transitions

Standard QPNs do not support priorities of transitions. This approach provides only limited
control of transition firing order. To illustrate this limitation we have a look at the example in
Figure 4.22. We have two modes defined for transition T1 and would like to model the following
behavior:

• If Token A and Token B exist, the first mode T1-I should be fired.

• If only Token A and no Token B exist, T1-II should be fired.
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Without priorities of transitions it is not possible to implement this correctly. However, while
designing our patterns we faced frequently situations where we need a way to model such be-
havior. Therefore, there is a strong need for a solution, which we provide by extending QPNs
with transition priority.

There are several possibilities to implement priorities. We propose the following one:

• Each transition is extended with a property Priority that stores an integer value

• Larger value means higher priority

• All transitions with the same priority x are element of a set Priority Group PGx = t1, ...tm

• If x < y, all transitions ∈ PGx can only be fired, if no transition t ∈ PGy can be fired.

• Each transition is member of a priority group, therefore T = PG1 ∩ PG2 ∩ ...PGm, m is
the highest defined priority

To decide whether a transition (and if yes which transition) should be fired, we do not
consider all transitions in T in the beginning. Instead, we start by checking PGm (containing
the transitions with the highest priority). If no transition ∈ PGm can be fired, the next transition
set PGm−1 are inspected and so on. If two or more transitions of the same priority group could
be fired, we choose a transition by taking the firing weight into account.

A more detailed discussion of the limitations and issues of missing priorities and possible
modeling tricks are available in the section describing Pattern 3.

4.3.4 Tool Extension

We extended the QPME tool [128] to build and analyze the QPN. In the new version of QPME
a first implementation of our approach to model logical and physical relations separately is
available. Queues are now defined centrally (similar to token colors) and can be referenced
from inside multiple queueing places. The flexible mapping of logical to physical resources is
the ability to have multiple queueing places configured to share the same physical queue. This
allows using queueing places to represent software entities, e.g., software components, which
can then be mapped to different hardware resources modeled as queues. The introduced QPN
extension allows building multi-layered models of software architectures similar to the way this
is done in layered queueing networks, however, with the advantage that QPNs enjoy all the
benefits of Petri nets for modeling synchronization aspects. To the best of our knowledge, none
of the currently available QPN modeling tools supports a comparable feature which means that
the modeler would have to manage the tags manually which is cumbersome and error-prone

The support of priorities of transitions and non-constant cardinalities is announced for future
QPME releases. In addition to the conceptual changes we contributed to QPME by improving
performance, stability and usability.

4.4 Concluding Remarks

Performance engineering of EBS has it own specific challenges and differs from modeling tra-
ditional systems. Therefore, new methodologies are needed. In this chapter, we introduced a
comprehensive methodology for workload characterization and performance modeling of EBS.
We developed a workload model of a generic EBS and used operational analysis techniques to
characterize the system traffic and derive an approximation for the mean event delivery latency.
QPNs were chosen as a modeling paradigm because of their modeling power and expressiveness.
Our methodology is general and can be applied to model and analyze different types of EBS,
not only MOMs or DEBS.
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As a further contribution of this chapter, we introduced a novel terminology for Performance
Modeling Patterns, which we used to describe eleven performance modeling patterns for EBS.
Our goal is to support modelers in building good performance models of EBS in a structured and
efficient way by providing building blocks, which reflect common aspects of EBSs and capture
their performance relevant aspects. These performance modeling patterns are the first published
patterns using QPNs as modeling paradigm. Furthermore, they are the first patterns targeting
EBS applications.

Additionally to the modeling methodology and the performance modeling patterns, we
present several newly developed extensions for QPNs to improve their flexibility and efficiency.
Our extensions are already implemented in the QPME tool or planned for future releases.



Chapter 5

Benchmarking of Event-Based
Systems

In this chapter we discuss how to benchmark EBS using the example of MOMs and present a
methodology for performance evaluation of MOM platforms using the SPECjms2007 standard
benchmark. SPECjms2007 is the first industry standard benchmark for message-oriented mid-
dleware and was developed by SPEC member organizations under the lead of TU Darmstadt.
The main contributions of SPECjms2007 are a comprehensive and standardized workload de-
scribing use cases of a real world application and a flexible benchmark framework. The workload
itself is not specific to MOMs and can easily be adopted for other systems. We show by means
of the example of the jms2009-PS benchmark we show how the workload can be adopted for
pub/sub-based platforms. In two comprehensive case studies we show how both benchmarks,
SPECjms2007 and jms2009-PS, can be applied to analyze specific features of the underlying
middleware.

5.1 SPECjms2007 - A Standard Benchmark

SPECjms2007 is the first industry standard benchmark for MOM servers based on the Java
Message Service standard interface. It was developed by the Java subcommittee of the Standard
Performance Evaluation Corporation with the participation of TU Darmstadt, IBM, Sun, BEA,
Sybase, Apache, Oracle and JBoss [130, 198, 200]. One of the major benefits of SPECjms2007
is that, in addition to providing a standard workload and metrics for MOM performance, the
benchmark provides a flexible and robust framework for in-depth performance evaluation of
messaging infrastructures [202, 201]. It allows us to create custom workload scenarios and
interactions to stress selected aspects of the MOM infrastructure. Several officially reviewed
results for different MOM products were published by SPEC [215].

In this section we discuss the requirements and provide an in-depth analysis of the workload.
We describe the workload interactions, the way they are interrelated and how they can be
customized. In a detailed case study we present how to apply this knowledge and evaluate
different performance aspects of a MOM using SPECjms2007.

5.1.1 Workload Requirements and Goals of the SPECjms2007 Bench-
mark

In order to guarantee that applications meet their QoS requirements, it is essential that the
platforms on which they are built are tested using benchmarks to measure and validate their
performance and scalability. Benchmarks not only help to compare alternative platforms and
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validate them, but can also be exploited to study the effect of different platform configuration
parameters on the overall system performance. However, if a benchmark is to be useful and
reliable, it must fulfill the following fundamental requirements [123]:

• It must be based on a workload representative of real-world applications.

• It must exercise all critical services provided by platforms.

• It must not be tuned/optimized for a specific product.

• It must generate reproducible results.

• It must not have any inherent scalability limitations

The major goal of the SPECjms2007 benchmark is to provide a standard workload and metrics
for measuring and evaluating the performance and scalability of JMS-based MOM platforms1.
In addition, the benchmark should provide a flexible framework for JMS performance analysis.
To achieve this goal, the workload must be designed to meet a number of requirements that can
be grouped according the following five categories:

1. Representativeness

2. Comprehensiveness

3. Focus

4. Configurability

5. Scalability

We now briefly discuss each of these requirements.

Representativeness

No matter how well a benchmark is designed, it would be of little value if the workload it is
based on does not reflect the way platform services are exercised in real-life systems. Therefore,
the most important requirement for the SPECjms2007 benchmark is that it is based on a
representative workload scenario including a representative set of interactions, message types,
message sizes and message delivery modes. The communication style and the types of messages
sent and received by the different parties in the scenario should represent a typical transaction
mix. The goal is to allow users to relate the observed behavior to their own applications and
environments.

Comprehensiveness

Another important requirement is that the workload is comprehensive in that it exercises all
platform features typically used in the major classes of JMS applications. Both the point-to-
point and publish/subscribe messaging domains should be covered. The features and services
stressed should be weighted according to their usage in real-life systems. There is no need to
cover features of MOM platforms that are used very rarely in practice.

The following dimensions have to be considered when defining the workload transaction mix:

• Transactional vs. non-transactional messages.

• Persistent vs. non-persistent messages.

1For an introduction to MOM and JMS see Section 2.2.4
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• Usage of different message types, e.g. TextMessages, ObjectMessages, StreamMessages or
MapMessages.

• Usage of messages of different sizes (small, medium, large).

• Publish/subscribe vs. point-to-point messages (queues vs. topics).

• One-to-one vs. one-to-many vs. many-to-many interactions.

• Durable vs. non-durable subscriptions.

• Ratio of message producers over message consumers.

In the case of SPECjms2007 the definition of the subset of JMS functionality and weighting of
the different functions was done with respect to the observations in practice of different vendors.

Focus

The workload should be focused on measuring the performance and scalability of the JMS
server’s software and hardware components. It should minimize the impact of other components
and services that are typically used in the chosen application scenario. For example, if a database
would be used to store business data and manage the application state, it could easily become
the limiting factor of the benchmark, as experience with previous benchmarks shows [126]. This
is especially true in the case of SPECjms2007, since JMS servers, in their role as mediators in
interactions, are typically less loaded than database or application servers. Another potential
concern is the client side of the benchmark where messages are sent and received. The impact
of client-side operations, such as XML parsing, on the overall performance of the benchmark
should be minimized.

Configurability

As mentioned earlier, in addition to providing standard workload and metrics for JMS perfor-
mance, SPECjms2007 aims to provide a flexible performance analysis framework which allows
users to configure and customize the workload according to their requirements. Producing
and publishing standard results for marketing purposes will be just one usage scenario for
SPECjms2007. Many users will be interested in using the benchmark to tune and optimize their
platforms or to analyze the performance of certain specific MOM features. Others could use
the benchmark for research purposes in academic environments where, for example, one might
be interested in evaluating the performance and scalability of novel methods and techniques
for building high-performance MOM servers. All these usage scenarios require that the bench-
mark framework allows the user to precisely configure the workload and transaction mix to be
generated. Providing this configurability is a challenge because it requires that interactions are
designed and implemented in such a way that one could run them in different combinations
depending on the desired transaction mix. The ability to switch interactions off implies that in-
teractions should be decoupled from one another. On the other hand, it should be ensured that
the benchmark, when run in its standard mode, behaves as if the interactions were interrelated
according to their dependencies in the real-life application scenario.

Scalability

The SPECjms2007 application scenario must provide a way to scale the workload along the
following two dimensions:

1. Horizontal scaling

2. Vertical scaling
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Company HQ

Super-
markets

Suppliers Supermarket Company

Distribution
Centers

= goods and 
information flow

= only information 
flow

Figure 5.1: Overview of the Workload Scenario and its Roles

In horizontal scaling, the workload is scaled by increasing the number of destinations (queues
and topics) while keeping the traffic per destination constant. In vertical scaling, the traffic (in
terms of message count) pushed through a destination is increased while keeping the number of
destinations fixed. Both types of scaling should be supported in a manner that preserves the
relation to the real-life business scenario modeled. In addition, the user should be offered the
possibility to scale the workload in an arbitrary manner by defining an own set of scaling points.

5.1.2 Workload Scenario

The workload scenario chosen for SPECjms2007 models the supply chain of a supermarket
company. The participants involved are the supermarket company, its stores, its distribution
centers and its suppliers. The scenario offers an excellent basis for defining interactions that
stress different subsets of the functionality offered by MOM servers. Moreover, it offers a natural
way to scale the workload. The participants involved in the scenario can be grouped into the
following four roles:

1. Company Headquarters

2. Distribution Centers

3. Supermarkets

4. Suppliers

The first three roles are owned by the supermarket company and therefore all communica-
tion among them is intra-company. The suppliers are external companies and therefore their
communication with the roles of the supermarket company is inter-company. The interactions
among the different roles are illustrated in Figure 5.1.

Company Headquarters (HQ)

The company’s corporate headquarters are responsible for managing the accounting of the com-
pany, managing information about the goods and products offered in the supermarket stores,
managing selling prices and monitoring the flow of goods and money in the supply chain.

Distribution Centers (DCs)

The distribution centers supply the supermarket stores. Every distribution center is responsible
for a set of stores in a given area. The distribution centers in turn are supplied by external
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suppliers. The distribution centers are involved in the following activities: taking orders from
supermarkets, ordering goods from suppliers, delivering goods to supermarkets and providing
sales statistics to the HQ (e.g. for data mining).

Supermarkets (SMs)

The supermarkets sell goods to end customers. The scenario focuses on the management of
the inventory of supermarkets including their warehouses. Some supermarkets are smaller than
others, so that they do not have enough room for all products, others may be specialized for
some product groups like certain types of food. We assume that every supermarket is supplied
by exactly one of the distribution centers.

Suppliers (SPs)

The suppliers deliver goods to the distribution centers of the supermarket company. Different
suppliers are specialized for different sets of products and they deliver goods on demand, i.e.
they must receive an order from the supermarket company to send a shipment. Not every
supplier offers the same products. Instead, the suppliers have their own product catalogues.
They deliver goods on demand, i.e. they must receive an order from the supermarket company
to send a shipment. As a simplification, it is assumed that each SP offers either all products of
a given product family or none of them.

5.1.3 Modeled Interactions

The following seven interactions between the participants in the supermarket supply chain are
modeled in SPECjms2007:

1. Order / Shipment Handling between SM and its assigned DC

2. (Purchase) Order / Shipment Handling between a DC and the SPs

3. Price Updates

4. Inventory Management

5. Sales Statistics Collection

6. Product Announcements

7. Credit Card Hotlists

Inter-company communication, i.e. communication between the suppliers and the super-
market company, is implemented using TextMessages containing XML documents. For intra-
company communication (between supermarkets, distribution centers and the company head-
quarters) the whole set of possible message types supported by JMS is used. For a better
understanding of the data flow we provide detailed message schemas of the exchanged messages
in Appendix ??.

Note: In the following, unless otherwise noted, all messages exchanged are assumed to be
persistent and transactional.
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Figure 5.3: Interaction 2 - Communication
between SP and DC

Interaction 1: Order/Shipment Handling between SM and DC This interaction ex-
ercises persistent P2P messaging between the SMs and DCs. The interaction is triggered when
goods in the warehouse of a SM are depleted and the SM has to order from its DC to refill stock.
The following steps are followed as illustrated in Figures 5.2 and 5.4(a) :

1. A SM sends an order to its DC.

2. The DC sends a confirmation to the SM and ships the ordered goods.

3. Goods are registered by RFID readers upon leaving the DC warehouse.

4. The DC sends information about the transaction to the HQ (sales statistics).

5. The shipment arrives at the SM and is registered by RFID readers upon entering the SM
warehouse.

6. A confirmation is sent to the DC.

Interaction 2: Order/Shipment Handling between DC and SP This interaction exer-
cises persistent P2P and pub/sub (durable) messaging between the DCs and SPs. The interac-
tion is triggered when goods in a DC are depleted and the DC has to order from a SP to refill
stock. The following steps are followed as illustrated in Figures 5.3 and 5.4(b) :

1. A DC sends a call for offers to all SPs that supply the types of goods that need to be
ordered.

2. SPs that can deliver the goods send offers to the DC.

3. Based on the offers, the DC selects a SP and sends a purchase order to it.

4. The SP sends a confirmation to the DC and an invoice to the HQ. It then ships the ordered
goods.

5. The shipment arrives at the DC and is registered by RFID readers upon entering the DC’s
warehouse.

6. The DC sends a delivery confirmation to the SP.

7. The DC sends transaction statistics to the HQ.
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Figure 5.4: Workflow of the SPECjms2007 Interactions
(N)P=(Non-)Persistent; (N)T= (Non-)Transactional



84 CHAPTER 5. BENCHMARKING OF EVENT-BASED SYSTEMS

Interaction 3: Price Updates This interaction exercises persistent, durable pub/sub mes-
saging between the HQ and the SMs. The interaction is triggered when selling prices are
changed by the company administration. To communicate this, the company HQ sends mes-
sages with pricing information to the SMs. The communication here is one-to-many and is based
on pub/sub messaging.

SMs subscribe to all messages related to products they sell.

1. HQ sends a price update to SMs.

2. Affected SMs update their information systems.

Interaction 4: SM Inventory Management This interaction exercises persistent P2P
messaging inside the SMs. The interaction is triggered when goods leave the warehouse of a SM
(to refill a shelf). Goods are registered by RFID readers and the local warehouse application is
notified so that inventory can be updated.2

1. As goods leave a SM’s warehouse, they get registered by RFID-readers.

2. RFID-readers send observations to the local warehouse application.

3. The local warehouse inventory is updated.

Interaction 5: Sales Statistics Collection This interaction exercises non-persistent P2P
messaging between the SMs and the HQ. The interaction is triggered when a SM sends sales
statistics to the HQ. HQ can use this data as a basis for data mining in order to study customer
behavior and provide useful information to marketing. For example, based on such information,
special offers or product discounts could be made.

1. SM sends a non-transactional, non-persistent message to HQ containing sales statistics.

2. HQ update their data warehouse (OLAP).

Interaction 6: New Product Announcements This interaction exercises non-persistent,
non-durable pub/sub messaging between the HQ and the SMs. The interaction is triggered
when new products are announced by the company administration. To communicate this, the
HQ sends messages with product information to the SMs selling the respective product types.

SMs subscribe to announcement messages related to the product classes they sell.

1. HQ sends a new product announcement to SMs.

2. Subscribed SMs update their information systems.

Interaction 7: Credit Card Hot Lists This interaction exercises non-persistent, non-
durable pub/sub messaging between the HQ and the SMs. The interaction is triggered when
the HQ sends credit card hot lists to the SMs (complete list once every hour and incremental
updates as required).

1. HQ sends a credit card hot list to SMs.

2. Subscribed SMs receive the list and store it locally.

Interaction 3 to 7 are illustrated in 5.4(c).

2Note: Since incoming goods are part of another interaction (Interaction 1), they are not considered here.
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5.1.4 SPECjms2007 Workload Characterization

In this section we discuss different design issues and decisions regarding the workload. Amongst
others the focus of this section is on scaling of the benchmark, the message sizes and the
transaction mixes of the workload. Especially the first is a very important issue for us. A
workload with scalability limitations is somehow useless and does not provide a proper base
for a benchmark. Therefore we put our main focus on this aspect and its validation. From
our point of view, in a scalable benchmark, the relative proportions of different aspects of the
workload (like ratio between Publish / Subscribe and P2P communication, proportion of the
different interactions, etc. ) should be independent from the scaling factor. This is needed to
allow comparability of benchmarks results.

Message Traffic Analysis

We start with a detailed analysis of the message traffic produced by the benchmark workload in
terms of the number and type of messages generated and their sizes. We consider the workload
parameters that can be configured in the most general freeform topology and show how they
affect the resulting message traffic. The different types of messages and destinations used in the
various interactions are detailed in Table 5.1.

Messages Sizes The sizes of the messages generated as part of each interaction can be config-
ured by setting an interaction-specific message sizing parameter (for example, “number of order
lines sent to DC” for Interaction 1). Each sizing parameter can be assigned three possible values
with respective probabilities (discrete probability distribution). The message sizing parameters
used for the different interactions are listed in Table 5.2, along with some data that can be used
to compute the resulting message sizes in KBytes. This data is based on measurements we took
using a deployment of SPECjms2007 on a major JMS server platform3. The exact message sizes
may be slightly different on different platforms, as MOM servers add their own platform-specific
message headers. The measurements provided here were compared against measurements on a
second popular JMS server and the differences were negligible. Based on the data in Table 5.2,
the message sizes in KBytes for Interactions 1, 2, 4, 6 and 7 can be computed as ϑ = m1 · x+ b
where x is the interaction’s message sizing parameter and m1 and b are set to their respective
values from Table 5.2. The priceUpdate messages of Interaction 3 have constant size that
cannot be changed by the user. The size of the statInfoSM messages used in Interaction 5 is
configured using two sizing parameters as follows ϑ = x · (m1 +m2 · y) + b where x and y are the
two sizing parameters (i.e. “number of SM cash desks” and “number of sales lines”) and m1,
m2 and b are set to their respective values from Table 5.2. Based on the above two formulas and
the data in Table 5.2, the user can configure the benchmark to use message sizes that match
the user’s own target workload.

Message Throughput We now characterize the message throughput first on a per interaction
basis and then on a per location basis. The two most important sets of workload parameters that
determine the message throughput are the number of locations of each type and the interaction
rates. We denote the sets of physical locations as follows:

ΨSM = {SM1, SM2, SM3, . . . , SM|ΨSM |}
ΨDC = {DC1, DC2, DC3, . . . , DC|ΨDC |}
ΨSP = {SP1, SP2, SP3, . . . , SP|ΨSP |}
ΨHQ = {HQ1, HQ2, HQ3, . . . ,HQ|ΨHQ|}

3Due to product license restrictions, the specific configuration used cannot be disclosed.
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Intr. Message Destination Type Prop. Description

order Queue (DC) ObjectMsg P, T Order sent from SM to DC.
orderConf Queue (SM) ObjectMsg P, T Order confirmation sent from DC to

SM.
shipDep Queue (DC) TextMsg P, T Shipment registered by RFID readers

upon leaving DC.
1

statInfo-
OrderDC

Queue (HQ) StreamMsg NP, NT Sales statistics sent from DC to HQ.

shipInfo Queue (SM) TextMsg P, T Shipment from DC registered by
RFID readers upon arrival at SM.

shipConf Queue (DC) ObjectMsg P, T Shipment confirmation sent from SM
to DC.

callForOffers Topic (HQ) TextMsg P, T, D Call for offers sent from DC to SPs
(XML).

offer Queue (DC) TextMsg P, T Offer sent from SP to DC (XML).
pOrder Queue (SP) TextMsg P, T Order sent from DC to SP (XML).
pOrderConf Queue (DC) TextMsg P, T Order confirmation sent from SP to

DC (XML).
2

invoice Queue (HQ) TextMsg P, T Order invoice sent from SP to HQ
(XML).

pShipInfo Queue (DC) TextMsg P, T Shipment from SP registered by
RFID readers upon arrival at DC.

pShipConf Queue (SP) TextMsg P, T Shipment confirmation sent from DC
to SP (XML).

statInfo-
ShipDC

Queue (HQ) StreamMsg NP, NT Purchase statistics sent from DC to
HQ.

3 priceUpdate Topic (HQ) MapMsg P, T, D Price update sent from HQ to SMs.

4 inventoryInfo Queue (SM) TextMsg P, T Item movement registered by RFID
readers in the warehouse of SM.

5 statInfoSM Queue (HQ) ObjectMsg NP, NT Sales statistics sent from SM to HQ.

6 product-
Announcement

Topic (HQ) StreamMsg NP, NT,
ND

New product announcements sent
from HQ to SMs.

7 creditCardHL Topic (HQ) StreamMsg NP, NT,
ND

Credit card hotlist sent from HQ to
SMs.

Table 5.1: Message Types Used in The Interactions - (N)P=(Non-)Persistent;
(N)T=(Non-)Transactional; (N)D=(Non-)Durable
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Intr. Message Sizing Parameters Message m1 m2 b

orderConf 0.0565 na 1.7374
statInfoOrderDC 0.0153 na 0.1463
shipInfo 0.0787 na 0.8912

1 No of order lines sent to DC
shipDep 0.0787 na 0.7222
order 0.0565 na 1.4534
shipConf 0.0202 na 0.7140

callForOffers 0.1785 na 0.8094
offer 0.2489 na 0.9414
pOrder 0.2498 na 1.1076
pShipConf 0.0827 na 0.7612

2 No of purchase order lines sent to SP
statInfoShipDC 0.0831 na 0.7681
pOrderConf 0.2410 na 1.3494
invoice 0.1942 na 1.1211
pShipInfo 0.0827 na 0.7279

3 Message has fixed size priceUpdate na na 0.2310

4 No of registered items leaving warehouse inventoryInfo 0.0970 na 0.5137

5 No of cash desks & sales lines statInfoSM 0.0139 0.3650 0.9813

6 No of new products announced productAnnouncement 0.0103 na 0.1754

7 No of credit cards in hot list creditCardHL 0.0166 na 0.1846

Table 5.2: Parameters for Message Size Calculation

Group a b c d

Type Pub/Sub Pub/Sub P2P P2P

Properties NP NT ND P T D NP NT P T

Table 5.3: Message Groups

Note that although the modeled scenario has a single physical HQ location, the benchmark
allows multiple HQ instances to exist each with its own set of queues. The goal is to avoid the
HQ queues becoming a bottleneck when scaling the number of SMs, DCs and SPs. It is assumed
that messages sent to the HQ are distributed evenly among the HQ instances. Multiple HQ
instances are considered as separate servers within the same physical location.

For each interaction, the interaction rate specifies the rate at which the interaction is ini-
tiated by every physical instance of its initiating location, SM for Interaction 1, DC for Inter-
action 2, etc. We denote the interaction rates as λi, 1 ≤ i ≤ 7. Since multiple HQ instances
are not considered as separate physical locations, it follows that the rates of Interactions 3, 6
and 7 which are initiated by the HQ are interpreted as rates over all HQ instances as opposed
to rates per HQ instance. Interaction 2 uses a set of topics representing the different product
families offered by suppliers. These topics help to distribute the callForOffers messages sent
by DCs. Suppliers subscribe to all topics corresponding to groups of products they offer so that
they receive all relevant callForOffers messages. We denote the set of product families as
Π = {PF1, PF2, PF3, . . . , PF|Π|}.

The probability that a SP offers products from a given product family PFi ∈ Π is a config-
urable workload parameter and will be denoted as ρ. Every SP subscribes to ρ · |Π| product
families and thus |ΨSP | · ρ · |Π| subscriptions exist overall. The number of subscribers that
subscribe to a given product family is denoted as ζ = |ΨSP | · ρ.

In the following, we show how the message throughput, in terms of the number of messages
sent and received per unit of time, can be broken down according to the type of messaging
(P2P vs. pub/sub) and the message delivery mode (persistent vs. non-persistent, transactional
vs. non-transactional, durable vs. non-durable). To this end, we group messages as shown in
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Table 5.3. Further, we define the following sets:

Γ = {a, b, c, d}
Message groups as defined in Table 5.3.

Ω = {se, re}
Messages sent vs. messages received.

Λ = {SM,SP,DC,HQ}
Types of physical locations.

Message Throughput per Interaction We first analyze the message throughput on a per
interaction basis. We will use the following notation:

ξji,k for j ∈ Ω, 1 ≤ i ≤ 7 and k ∈ Γ
No of messages of group k sent/received per sec as part of Interaction i.

ξji =
∑
k∈Γ ξ

j
i,k for 1 ≤ i ≤ 7, j ∈ Ω

Total no of messages sent/received per sec as part of Interaction i.

ξj =
∑7
i=1 ξ

j
i for j ∈ Ω

Total no of messages sent/received per sec over all interactions.

Based on the information provided in the previous sections and analysis of the benchmark
design, the following equations are derived characterizing the message throughput of each inter-
action:

Interaction 1: ξse1,c = ξre1,c = λ1 · |ΨSM |
ξse1,d = ξre1,d = 5 · λ1 · |ΨSM |

ξj1,k = 0, ∀k ∈ {a, b} ∧ j ∈ Ω

Interaction 2: ξj2,a = 0, ∀j ∈ Ω

ξse2,b = λ2 · |ΨDC |
ξre2,b = ζ · λ2 · |ΨDC |
ξse2,c = ξre2,c = λ2 · |ΨDC |
ξse2,d = ξre2,d = (ζ + 5) · λ2 · |ΨDC |

Interaction 3: ξse3,b = λ3

ξre3,b = λ3 · |ΨSM |

ξj3,k = 0, ∀k ∈ Γ, k 6= b ∧ j ∈ Ω

Interaction 4: ξse4,d = ξre4,d = λ4 · |ΨSM |

ξj4,k = 0, ∀k ∈ Γ, k 6= d ∧ j ∈ Ω

Interaction 5: ξse5,d = ξre5,d = λ5 · |ΨSM |

ξj5,k = 0, ∀k ∈ Γ, k 6= d ∧ j ∈ Ω
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Interaction 6: ξse6,a = λ6

ξre6,a = λ6 · |ΨSM |

ξj6,k = 0, ∀k ∈ Γ, k 6= a ∧ j ∈ Ω

Interaction 7: ξse7,a = λ7

ξre7,a = λ7 · |ΨSM |

ξj7,k = 0, ∀k ∈ Γ, k 6= a ∧ j ∈ Ω

Message Throughput per Location We now analyze the message throughput on a per
location basis. The following notation will be used:

χjl,k for j ∈ Ω, l ∈ Λ, k ∈ Γ
No of messages of group k sent/received per sec by a location of type l.

χjl =
∑
k∈Γ ξ

j
l,k for j ∈ Ω, l ∈ Λ

Total no of messages sent/received per sec by a location of type l.

SMs participate in all interactions apart from Interaction 2. The following equations char-
acterize the message throughput of each SM:

χseSM,a = χseSM,b = χreSM,c = 0

χreSM,a = λ6 + λ7

χreSM,b = λ3

χseSM,c = λ5

χseSM,d = 2λ1 + λ4

χreSM,d = 2λ1 + λ4

SPs participate only in Interaction 2. Overall λ2 · |ΨDC | callForOffers messages are sent
by the DCs per sec. Therefore, every SP receives ρ · λ2 · |ΨDC | messages and for each of them
it sends an offer to the respective DC. The probability that an offer is accepted is 1

ζ and hence
the number of SP offers accepted per sec is given by:

ρ · λ2 · |ΨDC |
ζ

=
λ2 · |ΨDC |
|ΨSP |

The following equations characterize the message throughput of each SP:

χseSP,a = χreSP,a = χseSP,b = χseSP,c = χreSP,c = 0

χreSP,b = ρ · λ2 · |ΨDC |

χseSP,d = ρ · λ2 · |ΨDC |+
3λ2 · |ΨDC |
|ΨSP |

χreSP,d =
2λ2 · |ΨDC |
|ΨSP |

DCs participate in Interactions 1 and 2 both as producers and consumers of messages. The

number of SMs supplied by each DC is given by δ = |ΨSM |
|ΨDC | .
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The following equations characterize the message throughput of each DC:

χseDC,a = χreDC,a = χreDC,b = χreDC,c = 0

χseDC,b = λ2

χseDC,c = δ · λ1 + λ2

χseDC,d = 3λ1 · δ + 2λ2

χreDC,d = 3λ1 · δ + λ2(ζ + 2)

The HQ participate in Interactions 1, 2, and 5 as message consumer and in Interactions 3,
6, and 7 as message producer. The following equations characterize the message throughput of
the HQ:

χreHQ,a = χreHQ,b = χseHQ,c = χseHQ,d = 0

χseHQ,a = λ6 + λ7

χseHQ,b = λ3

χreHQ,c = λ1 · |ΨSM |+ λ2 · |ΨDC |+ λ5 · |ΨSM |
χreHQ,d = λ2 · |ΨDC |

The detailed message throughput analysis presented above serves two main purposes. First,
using the throughput equations, the user can assemble a workload configuration (in terms of
number of locations and interaction rates) that stresses specific types of messaging under given
scaling conditions. As a very basic example, the user might be interested in evaluating the
performance and scalability of non-persistent pub/sub messaging under increasing number of
subscribers. In this case, a mix of Interactions 6 and 7 can be used with increasing number of
SMs. Second, the characterization of the message traffic on a per location basis can help users to
find optimal deployment topology of the agents representing the different locations such that the
load is evenly distributed among client nodes and there are no client-side bottlenecks. This is
especially important for a messaging benchmark where the server acts as mediator in interactions
and a significant amount of processing is executed on the client side.

Horizontal Topology

As mentioned earlier, the goal of the horizontal topology is to exercise the ability of the system to
handle increasing number of destinations. To achieve this, the workload is scaled by increasing
the number of physical locations (SMs, DCs, etc) while keeping the traffic per location constant.
A scaling parameter BASE is introduced and the following rules are enforced:

1. |ΨSM | = BASE

2. |ΨDC | = d |ΨSM |
5 e

3. |ΨSP | = [0.4 · |ΨSM |]

4. |ΨHQ| = d |ΨSM |
10 e

5. |Π| = |ΨSM |

6. ρ = 5
|Π|

7. λi, 1 ≤ i ≤ 7 are set as shown on Table 5.4

Figure 5.5 shows how the number of locations of each type is scaled as the BASE parameter is
increased. The rates λi at which interactions are initiated by participants are fixed so that the
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Figure 5.5: # Locations for Horiz. Topology
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Figure 5.6: Horiz. Topology Message Mix

Figure 5.7: Proportions of the Interactions
based on Msg. Throughput

Figure 5.8: Proportions of the Interactions
based on Msg. Traffic in KBytes

λ1 λ2 λ3 λ4 λ5 λ6 λ7

1.53920154 2.13333333 6.00000000 3.37837837 11.54401154 11.38519924 9.23076923

Table 5.4: Interaction Rates for the Horizontal Topology

traffic per location (and therefore also per destination) remains constant. In the Figures 5.7 and
5.8 the relative weights of the interactions is illustrated. They are set based on a detailed business
model of the supermarket supply chain which captures the interaction interdependencies. This
model has several input parameters (e.g. total number of product types, size of supermarkets,
average number of items sold per week) whose values are chosen in such a way that the following
overall target messaging mix is achieved as close as possible:

• 50% P2P messages and 50% pub/sub

• 50% of P2P messages persistent, 50% non-persistent

• 25% of pub/sub messages persistent, 75% non-persistent

The goal is to put equal weight on P2P and pub/sub messaging. Within each group the
target relative weights of persistent vs. non-persistent messaging have been set according to
the relative usage of these messaging styles in real-life applications. The criteria for what is
a typical MOM application were defined based on input provided by the various participating
vendors in the SPECjms working group including IBM, Sun, Oracle, BEA, Sybase and Apache.
A comprehensive survey was conducted considering real-life customer applications and analyzing
their workloads.

Table 5.5(a) shows the resulting message mix in the horizontal topology. Figure 5.6 presents
the same data in graphical form. Figures 5.9 and 5.10 show how the number of messages of each
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Figure 5.10: Message Traffic in Kbytes

type and the bandwidth they use are scaled as a function of the BASE parameter. As evident
from the figure, when scaling the workload the proportions of the different types of messages
remain constant. This is expected since the relative weights of the various messaging styles used
by the workload should not depend on the scaling factor.

The sizes of the messages used in the various interactions have been chosen to reflect typical
message sizes in real-life MOM applications. Pub/sub messages are generally much smaller
than P2P messages due to the decoupled nature of the delivery mechanism. For every type
of message, SPECjms2007 generates messages with sizes chosen from a discrete distribution
with three possible values as shown in Table 5.5. There are two exceptions, the priceUpdate

message used in Interaction 4 and the statInfoSM message used in Interaction 5. The former
has a fixed size, while the latter has size between 4.7 and 24.78 KBytes with an average of
5.27 KBytes. Since statInfoSM messages contain sales statistics, their size is determined by
the rate at which items are sold in supermarkets which depends on the number of customers
visiting a supermarket per day and the average number of items sold per customer.

P2P transactional messages tend to be medium in size and P2P non-transactional range from
very small (≤ 1KBytes) to big (50 KBytes). Large messages are very rarely used in practice.

We decided to model three different messages sizes per message type based on a certain
probability:

• Small messages: up to 2 KBytes, probability 95 %

• Medium messages: up to 10 KBytes, probability of 4 %

• Large messages: up to 55 KBytes, probability of 1 %

Vertical Topology

The goal of the vertical topology is to exercise the ability of the system to handle increasing
message traffic through a fixed set of destinations. Therefore, a fixed set of physical locations
is used and the workload is scaled by increasing the rate at which interactions are executed.
Similar to the horizontal case, a single parameter BASE is used as a scaling factor. The following
rules are enforced:

1. |ΨSM | = 10

2. |ΨDC | = 2

3. |ΨSP | = 5
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Message Size 1 Size 2 Size 3 Avg.
Intr. Probability 95 % 4 % 1 % Size

orderConf 2.02 7.39 41.29 2.63
statInfoOrderDC 0.22 1.67 10.83 0.39
shipInfo 1.28 8.76 55.95 2.13

1
shipDep 1.12 8.59 55.79 1.96
order 1.74 7.10 41.01 2.34
shipConf 0.81 2.73 14.83 1.03

callForOffers 1.35 7.06 36.52 1.93
offer 1.69 9.65 50.71 2.50
pOrder 1.86 9.85 51.07 2.67
pShipConf 1.01 3.65 17.29 1.28

2
statInfoShipDC 1.02 3.68 17.38 1.29
pOrderConf 2.07 9.79 49.56 2.86
invoice 1.70 7.92 39.95 2.33
pShipInfo 0.98 3.62 17.26 1.24

3 priceUpdate 0.24 0.24 0.24 0.24

4 inventoryInfo 1.48 10.22 49.03 2.31

5 statInfoSM na 5.27

6 productAnnouncement 1.21 0.28 10.51 1.26

7 creditCardHL 1.01 8.49 50.00 1.80

Table 5.5: Message Sizes in KByte

(a) Horizontal

Message Message Count Bandwidth
Group Target Achieved Used

a 37.50% 37.46% 24.66%

b 12.50% 12.45% 2.41%

c 25.00% 24.55% 49.19%

d 25.00% 25.55% 23.74%

(b) Vertical

Message Message Count Bandwidth
Group Target Achieved Used

a 15.00% 14.19% 7.19%

b 5.00% 5.99% 2.25%

c 40.00% 39.09% 61.03%

d 40.00% 40.74% 29.52%

Table 5.6: Topology Message Mix
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Figure 5.11: Vert. Topology Message Mix
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c1 c2 c3 c4 c5 c6 c7
0.076190476 0.106666667 0.050000000 0.162162162 0.577200577 0.142314991 0.102564103

Table 5.7: Interaction Rate Scaling Factors for the Vertical Topology
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Figure 5.13: Message Traffic in Kbytes

Figure 5.14: Proportions of the Interactions
based on Msg. Throughput

Figure 5.15: Proportions of the Interactions
based on Msg. Traffic in KBytes

4. |ΨHQ| = 2

5. |Π| = 100

6. ρ = 50%

7. λi = ci · BASE, where ci is a fixed factor (see Table 5.7) and 1 ≤ i ≤ 7

Again, the relative weights of the interactions are set based on the business model of the
supply chain scenario (see Figures 5.14 and 5.15). Unlike the horizontal topology, however,
the vertical topology places the emphasis on P2P messaging which accounts for 80% of the
total message traffic. The aim is to exercise the ability of the system to handle increasing
traffic through a destination by processing messages in parallel. This aspect of MOM server
performance is more relevant for P2P messaging (queues) than for pub/sub messaging where
the message throughput is inherently limited by the speed at which subscribers can process
incoming messages.

Table 5.5(b) shows the achieved message mix in the vertical topology. Figure 5.11 presents
the same data in graphical form. Figures 5.12 and 5.13 show how the number of messages of
each type and the bandwidth they use are scaled as a function of the BASE parameter. Again,
when scaling the workload the message mix remains constant which is the expected behavior.
The sizes of the messages used in the various interactions are computed in the same way as for
the horizontal topology (see Table 5.5).
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5.1.5 Benchmark Implementation

Event Handlers and Agents

SPECjms2007 is implemented as a Java application comprising multiple JVMs and threads dis-
tributed across a set of client nodes. For every destination (queue or topic), there is a separate
Java class called Event Handler (EH) that encapsulates the application logic executed to pro-
cess messages sent to that destination. Event handlers register as listeners for the queue/topic
and receive call backs from the messaging infrastructure as new messages arrive. For maxi-
mal performance and scalability, multiple instances of each event handler executed in separate
threads can exist and they can be distributed over multiple physical nodes. Event handlers can
be grouped according to the physical location (e.g. HQ, SM, DC or SP) they pertain to in the
business scenario. In addition to the event handlers, for every physical location, a set of threads
is launched to drive the benchmark interactions that are logically started at that location. These
are called driver threads. The set of all event handlers and driver threads pertaining to a given
physical location is referred to as agent. For example, each DC agent is comprised of a set of
event handlers for the various destinations inside the DC and a set of driver threads used to
drive Interaction 2, which is the only interaction with logical starting point at DCs.

Driver Framework

The SPECjms2007 scenario includes many locations represented by many event handlers. In
order to drive the JMS server to its capacity, event handlers may well be distributed across
many physical machines. The reusable control framework designed for SPECjms2007 aims to
coordinate these distributed activities without any inherent scalability limitations. Key design
decisions were that

• It should be written as far as possible in plain Java. Since Java is the natural prerequisite
of a JMS application this reduces installation and configuration requirements on end users.

• Further to the above, RMI is used as the basis for communication as this is part of the
standard Java Standard Edition (Java SE) platform.

• The Controller needs not be on the same machine as any of the performance-critical
workloads.

• Users should have maximum choice in how they wish to lay out their workload to achieve
optimum performance (within the bounds of the SPECjms2007 run rules [214]).

Figure 5.16 provides a simplified view of a typical test being run on four nodes. In addition
to the event handlers, it is made up of several simple components:

Controller The Controller component reads in all of the configuration and topological layout
preferences given by the user. This will include items such as the number of different types of
event handler and lists of the nodes across which they may be run. With this knowledge, the
controller instantiates the topology. It begins this by connecting to a satellite process on each
node machine identified as part of this test to give it specific instructions.

Satellite The Satellite is a simple part of the framework which knows to build the correct en-
vironment to start child Java processes for SPECjms2007. It takes the controller’s configuration
and starts the agent processes relevant to that node. Although each agent is logically discrete
from its peers, the satellite will, based upon the initial configuration, combine many agents into
a single JVM for reasons of scalability.
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Figure 5.16: Driver Framework

Agents Each logical agent represents one of the locations in the application scenario. This
means that, for example, a distribution center agent will contain a set of DC event handlers
pertaining to that location. Agents connect back to the Controller who coordinates the stages
of the test. Once all agents are connected, the event handlers (implemented as a Java thread
each) start connecting to the JMS server and the warm-up phase of messaging begins. The
controller manages the life cycle of the test by monitoring progress, coordinating phase changes
and collecting statistics from the other components. When complete, it validates and combines
the statistics into summary output files and presents the final metric for the test.

Steps of a SPECjms2007 Run

A SPECjms2007 run is a sequence of eight periodes[214], which can be grouped according three
phases:

Phase I: Benchmark Preparation

1. Starting Driver Framework

2. Starting Agents

3. Starting Event Handlers

Phase II: Benchmark Run

4. Warmup Period

5. Measurement Period

6. Drain Period

Phase III: Post Run

7. Stopping Event Handlers

8. Post-processing Results

Period 1: Starting Driver Framework The controller component reads in all of the con-
figuration and topological layout preferences given by the user. This will include items such as
the number of different types of location and lists of the nodes across which they are distributed.
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For vertical and horizontal scaling, many of these values are either fixed or are automatically
calculated based upon the scaling factor.

With this knowledge, the controller instantiates the software components of the SUT. It
begins this by starting an RMI server and connecting to a satellite process on each node machine
identified as part of this test to give it specific instructions. In all places (throughout the
benchmark) where lists are given, work is distributed equally using a round-robin algorithm.

Period 2: Starting Agents The satellite is a simple part of the framework that knows how
to build the correct environment to start the required JVM processes. It takes the controller’s
configuration and starts the agents relevant to that node. There is an architectural lower bound
of one Agent-JVM per class of location (SP, SM, DC, HQ), meaning a minumum of four Agen-
tJVMs in the SUT. Each agent connects back to the controller to signal their readiness.

Period 3. Starting Event Handlers The controller signals all agents to initialise their
event handler threads and connect to the JMS resources they will be using (this includes both
incoming and outgoing Destinations). Each event handler is implemented as a Java thread.

Period 4: Warmup Period Load-generating threads (drivers) ramp up their throughput
from zero to their configured rate over the Warmup Period. This helps ensure the SUT is not
swamped by an initial rush when many of its constituent elements may not yet be fully prepared.

The agents are the only parts of the SUT which perform JMS operations (i.e. talk directly
to the JMS middleware).

Period 5: Measurement Period The measurement period is also known as the steady-
state period. All agents are running at their configured workload and no changes are made. The
controller will periodically (thirty seconds by default) check that there are no errors and may
also collect periodic realtime performance statistics.

Period 6: Drain Period In order to make sure all produced messages have an opportunity
to be consumed, the controller signals agents to pause their load-generating threads (drivers).
This period is not expected to be long in duration as a noticeable backlog in messages would
invalidate audit requirements on throughput anyway.

Period 7: Stopping Event Handlers Agents will terminate all event handlers but remain
present themselves so that the controller can collect final statistics.

Period 8: Post-processing Results Having collected statistics from all parties, the con-
troller begins post-process including auditing and preparation of the final results.

Reporter Framework

The benchmark includes a reporter framework that prepares detailed reports about the run. For
this purpose, the reporter framework enriches collected measurement data with other informa-
tion, e.g., throughput predictions and configuration settings.

The reporter framework has two major components:

1. Final Reporter

The controller takes formal measurements at three points during the run (see Figure 5.17).
The first two, the beginning and end of the measurement period, are used to audit the
messaging throughput. The final measurement, at the end of the drain period, is used to
audit the final message counts.
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Figure 5.17: Formal Measurement Points during SPECjms2007 Run [214]

Collecting Runtime stats 1 for the last 300 sec. statistics complete in 0 seconds

=======Interaction 1 =======

- Predicted Sent/Received: 61672.71 / 61672.71

- Measured Sent/Received: 62509(+1.36 %) / 62510(+1.36 %)

=======Interaction 2 =======

- Predicted Sent/Received: 27341.57 / 31658.66

- Measured Sent/Received: 28143(+2.93 %) / 32604(+2.99 %)

=======Interaction 3 =======

- Predicted Sent/Received: 674.55 / 6745.45

- Measured Sent/Received: 703(+4.22 %) / 7030(+4.22 %)

=======Interaction 4 =======

- Predicted Sent/Received: 21877.14 / 21877.14

- Measured Sent/Received: 21899(+0.1 %) / 21896(+0.09 %)

=======Interaction 5 =======

- Predicted Sent/Received: 77869.59 / 77869.59

- Measured Sent/Received: 79321(+1.86 %) / 79323(+1.87 %)

=======Interaction 6 =======

- Predicted Sent/Received: 1919.96 / 19199.58

- Measured Sent/Received: 1860(-3.12 %) / 18599(-3.13 %)

=======Interaction 7 =======

- Predicted Sent/Received: 1383.68 / 13836.83

- Measured Sent/Received: 1414(+2.19 %) / 14139(+2.18 %)

Time to collect and process periodic runtime stats (msec): 428

Figure 5.18: Output of Run Time Reporter

The final reporter generates a set of detailed result files. These provide the data in different
granularity and allow in-depth analysis of the run.

2. Run Time Reporter
The run time reporter collects periodically measurements and statistics on the satellites
and forwards them to the controller node, where they are processed to generate run time
reports. These reports provides information on the running system and how current mes-
sage counts differ from model’s prediction (see Figure 5.18). By this, an early identification
of message backlogs at run time is possible.



5.1. SPECJMS2007 - A STANDARD BENCHMARK 99

Audit Test Scope Description

Input rate is within +-5%
of configured value

Interaction For each Interaction, the observed input rate is cal-
culated as count/time for the measurement period.
This must be within 5% of the value prescribed by
the topology.

Total message count is
within +-5% of configured
value

Interaction Using a model of the scenario, the benchmark knows
how many messages should be processed as part of
each Interaction. The observed number of messages
sent and received by all parties must be within 5% of
this value.

Input rate distribution de-
viations do not exceed
20%

Interaction The percentage of pacing misses (in driver threads)
the benchmark will allow. A miss is when the timing
code found itself behind where it thought it should
be.

90th percentile of Delivery
Times under 5000ms

Message
Destination

Messages are timestamped when sent and received.
The consequent delivery time is recorded as a his-
togram (for the measurement period only) in each
event handler and the 90th percentile of this his-
togram must be on or under 5000ms.

All messages sent were re-
ceived

Message
Destination

Fails if the final results (taken after the Drain Period)
show that not all sent messages were received. For
publish-subscribe topics this means received by all
subscribers.

Table 5.8: Audit Tests

Auditor

To validate the correctness of a benchmark run, SPECjms2007 comes with two auditor compo-
nents:

• Pre-Auditor (executed in Phase I): The pre-auditor checks the availability of JMS
message destinations (queues / topcis) and whether messages exist before starting a bench-
mark run which would invalidate a run (but might otherwise only be detected when the
test is completed). If the pre-audit fails for any reason the benchmark is not started.

• Auditor (executed in Phase III): The auditor component is responsible for making
sure that the run has been executed properly and that the results are valid. The Auditor
is automatically launched at the end of the run to validate the results. It performs an
explicit audit of the results against the specified requirements marking each audit test as
PASS or FAIL in the summary reports. A list of all audit tests in provided in Table 5.8.

Minimizing the Impact of Non-MOM-Related Components

As discussed in Section 5.1.1, the SPECjms2007 workload should be focused on measuring
the performance and scalability of a MOM server’s software and hardware components and
minimize the impact of other components that are not directly related to the MOM services.
While developing SPECjms2007 two concerns had to be addressed in order to achieve this goal.
The first one is how to avoid using a database and the second one is how to minimize the
message processing overhead on the client. Given the fact that MOM servers, in their role as
mediators in interactions, are typically less loaded than database servers or application servers,
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it was a challenge to place the focus of the workload on the MOM-related components, without
compromising the workload representativeness.

As to the first concern, the problem is that without a database it is hard to manage any
application state and this makes it difficult to emulate the interdependencies between the in-
teractions. We addressed this by building a detailed model of the business scenario, capturing
the relative rates of the different operations and the interdependencies between the interactions.
This made it possible to emulate database access operations and configure the interactions in
such a way that they behave as if a real database were used. Note that, while we are not using
a database for managing application state, it is perfectly legitimate to use a database as part of
the MOM infrastructure for persistent messaging.

As to the second concern, the major issue was how to minimize the overhead of parsing
XML messages on the client. On the one hand, we wanted to use XML for inter-company
communication in order to keep things as realistic as possible, on the other hand, using a full-
blown XML parser to parse messages would have introduced too much overhead on the client for
operations which are not directly related to the MOM services. The solution was to implement an
optimized routine that exploits the knowledge of the exact structure of received XML messages
and extracts the needed data without having to parse the whole XML documents.

Workload Configurability

An important goal of SPECjms2007 that we discussed in Section 5.1.1 was to provide a flexible
framework for performance analysis of MOM servers that allows users to configure and customize
the workload according to their requirements. To achieve this goal, the interactions have been
implemented in such a way that one could run them in different combinations depending on
the desired transaction mix. SPECjms2007 offers three different ways of structuring the work-
load: horizontal, vertical and freeform. The latter are referred to as workload topologies and
they correspond to three different modes of running the benchmark offering different levels of
configurability. The horizontal topology is meant to exercise the ability of the system to handle
an increasing number of destinations. To this end, the workload is scaled by increasing the
number of physical locations (SMs, DCs, etc.) while keeping the traffic per location constant.
The vertical topology, on the other hand, is meant to exercise the ability of the system to handle
increasing message traffic through a fixed set of destinations. Therefore, a fixed set of physical
locations is used and the workload is scaled by increasing the rate at which interactions are run.
Finally, the freeform topology allows the user to use the seven SPECjms2007 interactions as
building blocks to design his own workload scenario which can be scaled in an arbitrary manner
by increasing the number of physical locations and/or the rates at which interactions are run.
In the most general case, the following workload parameters can be configured:

• Number of physical locations (HQs, SMs, DCs, SPs) emulated

• Rates at which interactions are run

• Message size distribution for each message type

• Number of agents for each physical location

• Distribution of agents across client nodes

• Number of JVMs run on each client node

• Distribution of agents among JVMs

• Number of event handlers for each message type

• Number of driver threads for each interaction
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• Number of JMS connections shared amongst event handlers

• Acknowledgment mode for non-transactional sessions

• Optional connection sharing by multiple sessions

• Frequency of runtime statistics

While in horizontal and vertical topologies restrictions apply to the above parameters, freeform
topology leaves all parameter configurations up to the user. Most importantly, the user can
selectively turn off interactions or change the rate at which they are run to shape the workload
according to his requirements. At the same time, when running the horizontal or vertical topol-
ogy, the benchmark behaves as if the interactions were interrelated according to their dependen-
cies in the real-life application scenario. For further details on the benchmark implementation,
the reader is referred to [214].

5.2 Case Study I: SPECjms2007

In this section, we present a case study with a deployment of SPECjms2007 using the WebLogic
Server 10 JMS platform including a detailed performance analysis considering both the P2P
and pub/sub messaging domains. Our evaluation is the first one that uses a standard workload
to stress the JMS server. We demonstrate how SPECjms2007 can be exploited for in-depth
analysis of selected aspects of the MOM server performance.

SPECjms2007 Driver
Opteron 1216 2.4 GHz Dual Core CPU

4 GB, Debian Linux 2.6.18

BEA WebLogic Server 10
2 x Intel Xeon 5335 2.33 GHz

Quad-Core, 8 MB Cache
4 SAS RAID 0, 16 GB

Windows 2003 Server 64bit

SPECjms2007 Driver
IBM x3850 Server

4 x Intel Dual-Core Xeon 7150N
3.5GHz, 16 GB, 6 SAS RAID 10

Debian Linux 2.6.18
1 GBit

1 GBit

Figure 5.19: Experimental Environment

5.2.1 Experimental Setting

The experimental environment in which we conducted our case study is depicted in Figure 5.19.
WebLogic Server was deployed on a machine with two quad-core Intel Xeon 2.33 GHz CPUs and
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16 GB of main memory. The server was run in a 64-bit JRockit 1.5 JVM using 8 GByte of heap
space. A RAID 0 disk array comprised of four disk drives was used for maximum performance.
The WebLogic JMS Server was configured to keep persistent messages in a file-based store on
the disk array and to use a 3.8 GByte message buffer to store message bodies in memory. The
SPECjms2007 controller and satellite drivers were distributed across five machines, four one-way
dual-core Opteron at 2.4 GHz and one four-way dual-core Intel Xeon at 3.5 GHz. All machines
were connected to a 1 Gbit network. To further increase the network capacity, a separate Gbit
link was installed between the server and the four-way driver machine. The latter was configured
to always use this link when accessing the server. The satellite drivers were distributed across
the machines in such a way that the network traffic was load-balanced between the two networks.

5.2.2 Horizontal and Vertical Scaling

We first ran some experiments in the horizontal and vertical topologies in order to show the
behavior of the server when scaling the workload in the two alternative ways4. Figure 5.20
shows the server CPU utilization and the CPU processing time per message (counting both sent
and received messages) for the horizontal topology. Figure 5.21 shows the same data for the
vertical topology. In both cases, there is a clear linear correlation between the scaling factor
(i.e., the BASE) and the server utilization. However, the server utilization grows much faster
in the horizontal mode. For a given value of the scaling factor, the CPU consumption of the
horizontal topology is between 2.2 and 2.3 times higher than the CPU consumption of the
vertical topology. This is expected given that the number of messages injected per second in
the horizontal topology is about two times higher than in the vertical topology (see the message
traffic analysis in Sections 5.1.4). It is interesting to compare the average CPU time per message
(counting both sent and received messages). The latter is about 10% lower for the horizontal
topology. The reasons for this will become clear in the next section.

 0

 20

 40

 60

 80

 100

C
P

U
 U

til
iz

at
io

n

BASE (horizontal)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

C
P

U
 T

im
e 

P
er

 M
es

sa
ge

 (
m

s)

BASE (horizontal)

Figure 5.20: Measurement Results for Horizontal Experiments

5.2.3 Customized Vertical Workloads

We now consider two customized workloads based on the vertical topology. The goal is to break
down the workload into its P2P and pub/sub components and analyze the server performance
when running them in isolation. To this end, the first workload runs only P2P interactions (i.e.,

4SPECjms2007 is a trademark of the Standard Performance Evaluation Corporation (SPEC). The results or
findings in this chapter have not been reviewed or accepted by SPEC, therefore no comparison nor performance
inference can be made against any published SPEC result. The official web site for SPECjms2007 is located at
http://www.spec.org/osg/jms2007.
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Figure 5.21: Measurement Results for Vertical Experiments
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Figure 5.22: Measurement Results for Customized Vertical Experiments with P2P Messaging

1, 4 and 5), whereas the second one runs only pub/sub interactions (i.e., 3, 6 and 7)5. In both
cases, the relative interaction mix for the considered interactions is the same as for the standard
vertical topology. Figures 5.22 and 5.23 show the measurement results. We can see that, as
expected, the pub/sub portion of the workload is by far much more light-weight than the P2P
portion. This is due to two reasons. On the one hand, for a given value of the BASE, the P2P
message traffic injected is much larger than the pub/sub traffic according to the definition of
the vertical topology presented in Section 5.1.4. On the other hand, the server overhead per

5Note that Interaction 2 is not part of these workloads since it contains a mix of both P2P and pub/sub
messaging.
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Figure 5.23: Measurement Results for Customized Vertical Experiments with Pub/Sub Messag-
ing

delivered message is significantly lower in the pub/sub case. Looking at the CPU time per
message (counting both sent and received messages) in the two workloads, we can see that for
both workloads the latter does not change much as we increase the BASE. For P2P messaging
it stabilizes at around 0.28ms, whereas for pub/sub messaging it stabilizes at 0.13ms. From this
we can conclude that the overhead per P2P message sent/received in the vertical topology is
over two times higher than the overhead per pub/sub message sent/received.

This explains why the CPU time per message sent/received in the horizontal topology com-
pared to the vertical topology was measured to be lower in the previous section. This is expected
given that the horizontal topology has much less P2P messaging as a proportion of the overall
workload than the vertical topology (see Table 5.6).

5.2.4 Publish/Subscribe Messaging

We now study the performance of the server when running only pub/sub messaging. We use
the freeform topology and specifically Interactions 3 and 7 to exercise persistent transactional
durable (PTD) messaging and non-persistent non-transactional non-durable (NPNTND) mes-
saging, respectively. Table 5.9 shows the configuration for five of the scenarios we analyzed. For
each scenario, the emulated number of producers and consumers are shown. Multiple produc-
ers and consumers are configured by setting the number of interaction driver threads and the
number of emulated SMs, respectively. The producers were run on the 8-core IBM x3850 server,
whereas the consumers were distributed among the four one-way Opteron-based servers. In both
of the considered interactions, each SM acts as a message consumer and therefore the number
of consumers is equal to the number of SMs. In all scenarios there is a single HQ instance and
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Scen. Int. # Prod. # Cons. Injection Rate Msg. Size Msg. Group Fig.

1 7 30 variable 1000 msg/sec variable a 5.24

2 7 30 10 1000 msg/sec variable a 5.25

3 7 variable variable unlimited 0.24 KByte a 5.26

4 3 1 variable unlimited 0.24 KByte b 5.27

5 3 & 7 1 variable unlimited 0.24 KByte b 5.28

Table 5.9: Configuration for Pub/Sub Scenarios
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Figure 5.24: Scenario 1: NPNTND Pub/Sub Messaging with Increasing Number of Consumers

a different number of SMs depending on the specified number of consumers. For each scenario,
Table 5.9 also shows the message injection rate, the message size and the message type accord-
ing to the classification in Table 5.3. Given that in both Interaction 3 and 7, each interaction
execution results in sending a single message, the specified message injection rate is configured
by setting the respective interaction rate. In the cases where ‘unlimited’ message injection rate
is specified, each producer is configured to inject messages at full speed (i.e., with zero delay
between successive messages). The results from the experiments are presented in Figures 5.24
to 5.28.

We now take a closer look at the measurement results. We start with NPNTND pub/sub
messaging. In the first scenario, we consider the effect of increasing the number of consumers on
the server CPU consumption. As expected, the overall CPU utilization and the CPU processing
time per message increase linearly with the number of consumers and the rate of increase depends
on the message size (Figure 5.24). The larger the message size, the greater the effect the number
of consumers has on the overall CPU consumption.

The goal of the second scenario is to evaluate the effect of increasing the message size on
the CPU consumption per message and KByte of payload sent. The CPU processing time per
message is directly proportional to the message size, however, this does not hold for the CPU
time per KByte of payload (Figure 5.25). The latter drops exponentially for message sizes up to
10 KByte and stabilizes around 0.2ms for larger messages. This is due to the fact that for every
message there is a constant overhead around 0.4ms (independent of the message size) for parsing
the JMS message header. For small messages this overhead dominates the overall processing
time, however, as the size of the message grows, the overhead becomes negligible compared to
the time needed to deliver the message payload. Thus, for messages larger than 20 KByte, we
can estimate the message processing time as MsgSize ∗ 0.2ms.

In the third scenario, we analyze the effect of varying the number of producers and consumers
(Figure 5.26). Each producer is configured to publish messages at full speed. Given that the
number of emulated producers (up to 5) does not exceed the number of available CPU cores on
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Figure 5.25: Scenario 2: NPNTND Pub/Sub Messaging with Increasing Message Size

the machine hosting the producers, the latter can inject messages in parallel without competing
for CPU time on the client side. We consider the server CPU utilization, the throughput in terms
of messages sent per second and the CPU processing time per message sent. It is important
to note that, in all considered scenarios, the machines hosting the producers and consumers
were far from saturated, so that the effect of the client side of the benchmark on the observed
system performance was insignificant. From the results we see that increasing the number of
message producers and consumers both lead to higher server CPU utilization, however, the
number of producers has by far much higher effect on the CPU consumption than the number
of consumers. The reason is that whereas the message throughput increases with increasing
number of producers, it decreases with increasing number of consumers even if the server is
only lightly loaded. The results show that the effect of the decreasing throughput on the CPU
consumption cancels out the effect of the increasing number of consumers resulting in stagnation
in the server utilization. This is due to synchronization effects. The server has to ensure that
successive messages sent by individual producers are delivered in the order in which they are
sent. Thus, the more consumers, the higher the synchronization overhead for each producer.
Messages sent by different producers, on the other hand, are not affected by this because the
server is not required to deliver them in the order in which they were sent. The results also show
that the number of producers does not have a significant effect on the average CPU processing
time per message. On the other hand, as already shown in the first scenario, the CPU processing
time per message is directly proportional to the number of consumers.

In the fourth and fifth scenarios, we evaluate the performance of PTD pub/sub messaging.
We first look at the effect of increasing the number of consumers on the server CPU consumption,
the mean message delivery latency and the number of messages sent/received per second. The
results are shown in Figure 5.27. The server CPU utilization goes up to almost 80% for 150
consumers and stabilizes at this level together with the total number of received messages per
second for higher number of consumers. Message processing in this case includes disk I/O
operations for persisting the messages. The message delivery latency remains below 15ms for
up to 150 consumers. There is a good linear correlation between the received messages/sec and
the server CPU utilization. Finally, the rate of sending messages drops by almost a factor of 20
as the number of consumers is increased up to the saturation point.

The fifth scenario compares NPNTND messaging with PTD messaging in terms of the server
CPU utilization, the message throughput (number of messages sent per second) and the CPU
processing time per message sent. As we increase the number of consumers, the server CPU
utilization increases steadily at a decreasing rate. The CPU processing time per message sent
increases linearly with the number of consumers and the rate of increase is much higher for
PTD messaging than for NPNTND messaging. For 150 consumers, the overhead is over 6 times
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Figure 5.26: Scenario 3: NPNTND Pub/Sub Messaging with Varying Number of Producers and
Consumers

higher for PTD messaging than for NPNTND messaging. This is explained by the fact that PTD
messaging includes additional overhead not just for persisting messages but also for managing
transactions which is directly dependent on the number of consumers.

5.2.5 P2P Messaging

We now study the performance of the server when running only P2P messaging. We use
the freeform topology and specifically Interactions 5 and 4 to exercise non-persistent non-
transactional (NPNT) and persistent transactional (PT) messaging, respectively. Table 5.10
shows the configuration for three scenarios we analyzed. For each scenario, the number of SMs
and HQs are shown as well as the message injection rate, the message size and the message
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Figure 5.27: Scenario 4: PTD Pub/Sub Messaging with Increasing Number of Consumers

Scen. Int. # SMs # HQs Injection Rate Msg. Size Msg. Group Figure

1 5 variable variable unlimited 2 KByte c 5.29
2 4 variable na unlimited 2 KByte d 5.29
3 4 5 na unlimited variable d 5.30

Table 5.10: Configuration for P2P Scenarios

type according to the classification in Table 5.3. Given that in both Interaction 4 and 5, each
interaction execution results in sending a single message, the specified message injection rate
is configured by setting the respective interaction rate. The interaction rate is specified on a
per location basis. The analysis results for the three scenarios are presented in Figures 5.29
and 5.30.

We now take a closer look at the results. The first two scenarios compare the performance of
NPNT and PT P2P messaging (Figure 5.29). In both scenarios, the number of queues used is
varied and the goal is to measure the maximum message traffic per second that can be processed.
The first scenario uses Interaction 5 with multiple HQ instances each having its own queue for
incoming statInfoSM messages sent by the SMs. In each test, both the number of HQ instances
and the number of SMs are set to the desired number of queues. Thus, every SM has a HQ
instance and a respective queue that receives its messages. SM agents have 5 producer (driver)
threads each. HQ agents have 5 consumer threads each. In order to ensure that the number
of producer and consumer threads remains constant, the number of agents per SM/HQ is set
in such a way that the number of agents of each type does not change (Section 5.1.5). For
example, in the test with 1 queue (1 SM and 1 HQ), there are 20 agents per SM/HQ, in the
test with 2 queues, there are 10 agents per SM/HQ and so forth, in all cases leading to 20
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Figure 5.28: Scenario 5: NPNTND vs. PTD Pub/Sub Messaging

agents in total. The second scenario is setup in exactly the same way with exception that it
uses Interaction 4 and therefore only SM agents are involved. Each SM agent has 5 producer
and 5 consumer threads. The two interactions are configured to use the same message size so
that we can compare the results.

As we can see in Figure 5.29, when moving from 1 queue to 2 queues, the message throughtput
increases by about 5% for NPNT messaging and about 10% for PT messaging. Increasing the
number of queues beyond 2, does not affect the message throughput, the server utilization or
the CPU time per message/Kbyte. The server CPU utilization is slightly lower (6-10%) for
PT messaging. The latter is expected given that persistent messaging involves disk I/O. The
message throughput is about 2.5 times higher for NPNT messaging given that the CPU time
used per message/KByte processed is over 2 times lower compared to PT messaging. Overall,
the results show that using more than two queues does not lead to any noticable change in the
system performance of our configuration.

In the third scenario, we study the performance of PT P2P messaging with variable message
size. We use Interaction 4 with a fixed number of SMs and 5 producer and 5 consumer threads
per SM. The results are shown in Figure 5.30. As we can see, the CPU processing time per
message increases linerarly with the message size whereas the CPU time per KByte quickly
drops and stabilizes around 0.1ms per KByte. As we discussed earlier when evaluating pub/sub
messaging, the reason for the drop in the overhead per KByte is that there is a constant overhead
for parsing the message header which for small messages dominates the overall processing time.
The mean delivery latency seems to increase quadratically with the message size.
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Figure 5.29: Scenarios 1 and 2: NPNT vs. PT P2P Messaging with Increasing Number of
Queues

5.2.6 Conclusions of the SPECjms2007 Case Study

In this section, we presented a case study of a leading JMS platform, the WebLogic server, con-
ducting an in-depth performance analysis of the platform under a number of different workload
and configuration scenarios. We evaluated the server performance for both the point-to-point
and publish/subscribe messaging domains studying the effect of individual workload charac-
teristics on the server CPU utilization, the message throughput, the CPU processing time per
message/KByte payload, the message delivery latency, etc. Two groups of scenarios were tested.
The first group uses complex workloads based on the standard horizontal and vertical topologies
provided by the benchmark. The second group includes scenarios that focus on specific aspects
and features of MOM, e.g the overhead of persisting messages, the influence of the message size,
the effect of increasing the number of message producers/consumers and the maximum through-
put that can be processed through a given number of queues. In most cases, the system scaled
in a linear fashion and did not exhibit any unexpected behavior. Interesting observations are the
relation between the number of the producer threads and message throughput, the number of
topic consumers and CPU load, and the influence of pub/sub and P2P messaging in the vertical
scenario.

5.3 jms2009-PS - A Publish /Subscribe Benchmark

While SPECjms2007 includes some limited publish/subscribe communication as part of the
workload, the focus of the benchmark is on point-to-point communication via queues which
dominate the overall system workload. Moreover, the SPECjms2007 workload implementation
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Intr. Message Location T P D Q TD ST Description

order DC X X X X X - Order sent from SM to DC.
orderConf SM X X X X X - Order confirmation sent from

DC to SM.
shipDep DC X X X X X - Shipment registered by RFID

readers upon leaving DC.
1

statInfo-
OrderDC

HQ X X X X X - Sales statistics sent from DC to
HQ.

shipInfo SM X X X X X - Shipment from DC registered by
RFID readers upon arrival at
SM.

shipConf DC X X X X X - Shipment confirmation sent from
SM to DC.

callForOffers HQ X X X - X X Call for offers sent from DC to
SPs (XML).

offer DC X X X X X - Offer sent from SP to DC
(XML).

pOrder SP X X X X X - Order sent from DC to SP
(XML).

pOrderConf DC X X X X X - Order confirmation sent from SP
to DC (XML).

2
invoice HQ X X X X X - Order invoice sent from SP to

HQ (XML).
pShipInfo DC X X X X X - Shipment from SP registered by

RFID readers upon arrival at
DC.

pShipConf SP X X X X X - Shipment confirmation sent from
DC to SP (XML).

statInfo-
ShipDC

HQ X X X X X - Purchase statistics sent from DC
to HQ.

3 priceUpdate HQ X X X - X - Price update sent from HQ to
SMs.

4 inventoryInfo SM X X X X X - Item movement registered by
RFID readers in the warehouse
of SM.

5 statInfoSM HQ X X X X X - Sales statistics sent from SM to
HQ.

6 product-
Announcement

HQ X X X - X - New product announcements
sent from HQ to SMs.

7 creditCardHL HQ X X X - X - Credit card hotlist sent from HQ
to SMs.

Table 5.11: Configuration parameters supported for each message type.
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Figure 5.30: Scenario 3: PT P2P Messaging with Increasing Message Size

does not exercise message filtering through JMS selectors, which is an important feature of
publish/subscribe messaging that typically causes most performance and scalability issues. To
show how to apply this workload on another plattform and to address the need for a workload
focused on publish/subscribe messaging, we developed the new jms2009-PS benchmark which is
based on the SPECjms2007 workload [197, 199]. In this section, we introduce the benchmark and
discuss its configuration parameters showing how the workload can be customized to evaluate
different aspects of publish/subscribe communication. Overall, we added more than 80 new
configuration parameters allowing the user to adjust the workload to his needs. All configurations
are identical in terms of the number of subscriptions and the message throughput generated for
a given scaling factor. However, they differ in six important points:

1. Number of topics and queues used
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2. Number of transactional vs. non-transactional messages

3. Number of persistent vs. non-persistent messages

4. Total traffic per topic and queue

5. Complexity of selectors used (filter statements)

6. Number of subscribers per topic

While the benchmark is targeted at pub/sub workloads, it allows us to use queue-based P2P
messaging in cases where messages are sent to a single consumer. This allows the comparison of
the costs of queue-based vs. topic-based communication for different message delivery modes.
In the case of topic-based communication, several implementations for each interaction are
supported. In the first implementation, all types of messages are exchanged using one common
topic per interaction. Each message consumer (e.g., orders department in DC 1) subscribes to
this topic using a selector specifying two filters, which specify the messages he is interested in:
message type (e.g., orders) and location ID (e.g., DC 1). The message type and location ID are
assigned as properties of each message published as part of the respective interaction.

In the second implementation, a separate topic is used for each type of message (e.g., one
topic for orders, one for invoices). Consequently, message consumers do not have to specify the
message type at subscription time, but only their location ID. It is easy to see that the number
of subscribers per topic is lower and the filtering is simpler (only one property to check) in the
second implementation compared to the first one. In the first implementation, more traffic is
generated per topic, while in the second implementation the traffic per topic is less but the system
has to handle more topics in parallel. Therefore, the two implementations stress the system in
different ways and allow us to evaluate different performance aspects. In addition to these two
implementations, the benchmark supports several further implementations which allow to stress
additional aspects of topic-based communication. The user can select an implementation by
means of the Target Destination (TD) parameter discussed in the next section.

5.3.1 Configuration Parameters

In this section, we describe in detail the new configuration parameters introduced in jms2009-PS.
The parameters can be configured on a per message type basis. Table 5.11 shows the parameters
supported for each message type. In the following, we briefly describe each parameter.

Transactional [true|false] (T)

Specifies whether messages should be sent as part of a transaction.

Persistent [true|false] (P)

Specifies whether messages should be sent in persistent mode.

Durable [true|false] (D)

Specifies whether a durable subscription should be used by message consumers.

Queue [true|false] (Q)

Specifies whether a queue or a topic should be used in cases where there is a single message
consumer.
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Setting Description Selector

LocationID-
MessageType

A separate topic for each combination of location
instance and message type is used, e.g., a topic
per DC for order messages: DC1_OrderT for DC 1,
DC2_OrderT for DC 2, etc.

• No selectors are needed.

MessageType A single topic per message type is used, e.g., a
topic DC_OrderT for order messages of all DCs.

• TargetLocationID=
’locationID ’

Interaction A single topic per interaction is used, e.g., a topic
Interaction1_T for all messages involved in In-
teraction 1.

• TargetLocationID=
’locationID ’

• MessageType=
’messageType’

LocationType A single topic per location type is used, e.g., a
topic SM_T for all messages sent to SMs.

• TargetLocationID=
’locationID ’

• MessageType=
’messageType’

LocationID A separate topic for each location instance is used,
e.g., a topic SM1_T for all messages sent to SM 1.

• MessageType=
’messageType’

Central One central topic for all messages is used, e.g., one
topic T for all messages that are part of the seven
interactions.

• LocationType=
’locationType’

• TargetLocationID=
’locationID ’

• MessageType=
’messageType’

Table 5.12: Target destination options.

Target Destination (TD)

Specifies for each message type the set of topics and respective selectors that should be used
to distribute messages to the target consumers. The benchmark supports six different target
destination options. Depending on the selected configuration, it automatically takes care of
configuring message properties (set by producers) and selectors (set by consumers at subscription
time) to guarantee that messages are delivered to the correct consumers. The target destination
options supported by jms2009-PS are shown in Table 5.12. For each option, the set of topics
and the required selectors are described.

Subscription Type [IN |OR|SET ] (ST)

In Interaction 2, a distribution center (DC) sends a CallForOffers to suppliers (SP). Each
SP offers a subset of all product families and is only interested in the CallForOffers mes-
sages targeted at the respective product families. There are multiple ways to implement this
communication pattern and jms2009-PS supports the following options:

• Use a separate topic for each product family: The SP has to subscribe to all topics
corresponding to the product families he is interested in and no selector is needed.

• Use one topic for all product families: The SP has to subscribe to this topic using a
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selector to specify the product families he is interested in. jms2009-PS offers three ways
to define the respective subscription:

– Using multiple OR operators: The SP places a single subscription using the
following selector: ProductFamily=“PF1” OR ProductFamily=“PF2” OR ... OR Pro-
ductFamily=“PFn”

– Using a single IN operator: The SP places a single subscription using the following
selector: ProductFamily IN (“PF1”,“PF2”,...,“PFn”)

– Using a set of subscriptions: The SP subscribes for each product family he is
interested in separately:
ProductFamily=“PF1” [· · · ] ProductFamily=“PFn”

5.4 Case Study II: jms2009-PS

5.4.1 Introduction

We now present a case study illustrating how jms2009-PS can be used for performance analysis
of messaging servers. The environment in which we conducted our case study is depicted in
Figure 5.31. ActiveMQ server was used as a JMS server installed on a machine with two quad-
core CPUs and 16 GB of main memory. The server was run in a 64-bit JRockit 1.6 JVM with
8 GB of heap space. A RAID 0 disk array comprised of four disk drives was used for maximum
performance. ActiveMQ was configured to use a file-based store for persistent messages with
a 3.8 GB message buffer. The jms2009-PS drivers were distributed across three machines. To
further increase the network capacity, a separate GBit link was installed between the JMS server
and the third driver machine. The latter was configured to always use this link when accessing
the server. The drivers were distributed across the machines in such a way that the network
traffic was load-balanced between the two networks.

ActiveMQ 4.1.2
2 x 4-Core  Intel Xeon 2.33 GHz
16 GB RAM, 4 SAS RAID 0
Windows 2003 Server 64bit

1GBit1GBit

jms2009-PS Driver
IBM x3850 Server
4 x 2-Core Intel Xeon 3.5 GHz
16 GB, 6 SAS RAID 10
Debian Linux 2.6.26

jms2009-PS Driver
Sun Fire X4440 x64 Server
4 x 4-Core Opteron 8356 2.3 GHz
64 GB RAM, 8x146 GB RAID 10
Debian Linux 2.6.26

jms2009-PS Driver
Sun Sparc Enterprise T5120
8-Core T2 1.2 GHz
32 GB RAM, 2x146 GB RAID 0
Solaris 10 10/08  SPARC

Figure 5.31: Experimental Environment

5.4.2 Test Scenarios

We studied three different scenarios which were identical in terms of the total number of messages
sent and received for a given scaling factor (BASE). Transactions and persistent message delivery
were configured as defined in the SPECjms2007 workload description[201]. The scenarios differ in
the number of message destinations and destination types used for communication. Figure 5.32
illustrates the configurations used in the three scenarios for two of the message types: order

messages sent from SMs to DCs and orderConf messages sent from DCs to SMs (cf. Table 5.11).

• Scenario I (SPECjms2007-like Workload): The workload is configured similar to
the SPECjms2007 workload, i.e., it uses mainly queues for communication. Each location
instance has its own queue for each message type and therefore there is no need for selectors.
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Figure 5.32: Considered Scenarios

• Scenario II (Pub/Sub with Multiple Topics): For each message type, a separate
topic is used, i.e., the TD configuration parameter is set to MessageType (cf. Table 5.12).

• Scenario III (Pub/Sub with Message Bus): One topic is used for all messages, i.e.,
the TD configuration parameter is set to Central (cf. Table 5.12).

The three scenarios differ mainly in terms of the flexibility they provide. While Scenario I is
easy to implement given that no properties or selectors are necessary, it requires a reconfiguration
of the MOM server for each new location or message type since new queues have to be set up.
In contrast, Scenarios II and III, which only use topics, provide more flexibility. In Scenario II,
a reconfiguration of the MOM server is necessary only when introducing new message types.
Scenario III doesn’t require reconfiguration at all since a single topic (message bus) is used for
communication. In addition, Scenarios II and III support one-to-many communication while the
queue-based interactions in Scenario I are limited to one-to-one communication. One-to-many
communication based on pub/sub allows to easily add additional message consumers, e.g., to
maintain statistics about orders. On the other hand, the use of a limited number of topics in
Scenarios II and III degrades the system scalability. As shown in the next section, the jms2009-
PS benchmark allows to evaluate the trade-offs that different configurations provide in terms of
flexibility, performance and scalability.
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Figure 5.33: Experimental Results

5.4.3 Experimental Results

Figure 5.33 presents the experimental results for the three scenarios described above. It shows
the CPU utilization for increasing workload intensities (BASE), the maximum load that can be
sustained by each scenario, the CPU time per unit of the BASE parameter and the average
message delivery latency. The results show the scalability and performance of the three con-
figurations as well as their costs in terms of CPU consumption. Scenario I scales up to BASE
720 and exhibits the lowest message delivery latency (123ms). The flexibility provided by Sce-
nario II and III comes at the cost of much worse scalability and performance. The maximum
load that can be sustained in Scenario II and Scenario III is respectively 6 and 12 times lower
than that in Scenario I. Similarly, the average message delivery latency is about 13 times higher
for Scenario II compared to Scenario I and about 26 times higher for Scenario III. Thus, the
flexibility provided by Scenario II and III comes at a high price. This is due to two reasons:

1. The use of selectors leads to roughly two times higher CPU processing time per message
(see Figure 5.33).

2. The use of topics for communication leads to synchronization delays.

Comparing Scenarios II and III reveals that the selector complexity in this case does not have
a significant impact on the CPU processing time per message. What is much more significant
is the number of topics used for communication. The single topic in Scenario III clearly leads
to a scalability bottleneck and explosion of the message delivery latency. In the third scenario,
the throughput was limited by the performance of a single CPU core.

Overall, the results show that topic-based communication using selectors is much more ex-
pensive than queue-based communication and, depending on the number of topics used, it limits
the scalability of the system. We demonstrated how, by using jms2009-PS, the performance and
scalability of different messaging workloads and configuration scenarios can be quantified. The
high configurability of the benchmark allows us to tailor the workload to the user’s requirements
by customizing it to resemble a given application scenario. The user can then evaluate alter-
native ways to implement message communication in terms of their overhead, performance and
scalability.
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5.5 Concluding Remarks

In this chapter, we introduced SPECjms2007, the first industry standard benchmark for MOM,
and discussed its goals, the business scenario it models and its internal component architec-
ture. We presented a detailed workload characterization with the goal to help users understand
the internal components of the workload and the way they are scaled. We proposed a novel
methodology for performance evaluation of MOM platforms using standard benchmarks and
discussed how the workload can be customized to exercise and evaluate selected aspects of
MOM performance. Our workload analysis not only helps to better understand and interpret
official benchmark results, but also provides an example of how to define a scalable workload
configuration for evaluating selected performance and scalability aspects of MOM.

In addition, we presented a case study of a leading JMS platform, the WebLogic server,
conducting an in-depth performance analysis of the platform under a number of different work-
load and configuration scenarios. Our analysis covered various workload aspects including P2P
vs. pub/sub communication, persistent vs. non-persistent messaging, varying message sizes,
number of message consumers, number of message producer threads, etc.

Finally, we illustrated how to adjust the SPECjms2007 standard workload to target dif-
ferent aspects of pub/sub communication and introduced jms2009-PS, a new benchmark for
pub/sub-based messaging systems built on top of the SPECjms2007 standard workload. Over-
all, jms2009-PS allows the user to adjust the workload in terms of the number of topics, sub-
scriptions, the number and type of selectors, and message delivery modes. In a case study of
an open source middleware we analyzed alternative ways of implementing publish/subscribe
communication in terms of their overhead, performance and scalability. The case study showed
that the flexibility provided by topic-based publish-subscribe communication comes at a high
price. The most critical factor affecting the system performance however was the number of
topics used for communication. Having a low number of topics provides maximum flexibility,
however, it introduces a scalability bottleneck due to the synchronization delays.



Chapter 6

Performance Modeling of EBS -
Case Studies

In this chapter we present two case studies in which we apply our approach for workload charac-
terization and performance modeling of event-based systems introduced in Chapter 4. In the first
case study we use the SIENA [40] publish/subscribe system with a basic workload comprising a
single message type. In the second more complex case study we model a realistic state-of-the-art
event-driven system on a leading commercial middleware platform including all system layers.
A detailed system model is built in a step-by-step fashion and then used to predict the system
performance under various workload and configuration scenarios. In both case studies, we show
how QPN models can be exploited for performance analysis and capacity planning in the soft-
ware engineering process. The results demonstrate the effectiveness, practicality and accuracy
of the proposed modeling and prediction approach, which provides a powerful tool for ensuring
that systems are designed and sized to meet their QoS requirements. Furthermore, we apply
our performance modeling patterns (Section 4.2) and make use of QPN extensions (Section 4.3)
in the second case study.

6.1 DEBS Case Study

6.1.1 Scenario

We consider a scenario in which DEBS is used to manage the interactions among participants
in a supermarket supply chain [202]. The participants involved are the supermarket company,
its stores, its distribution centers and its suppliers. Since most of the interactions in the supply
chain are asynchronous in nature, they can be implemented using DEBS. Some examples of
services that can be handled by the system are supermarket order and shipment handling,
inventory management in supermarkets and distribution centers, automated tracking of goods
as they move through the supply chain and dissemination of new product announcements,
price updates, special offers and discount information from the company headquarters to the
supermarkets. Here we consider a simplified version of the SPECjms2007 scenario (see Section
5.1), in which the dissemination of requests for quotes are sent when goods in a distribution center
are depleted and an order has to be placed to refill stock. A request for quote is published as
an event in the system and it is automatically delivered to all suppliers that offer the respective
types of goods. It is assumed that suppliers have subscribed to all events belonging to the
product groups/categories they sell.

119
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Figure 6.1: Broker Topology

6.1.2 Setup

We have implemented the dissemination of requests for quotes using the SIENA publish/subscribe
system [40] enhanced with self-monitoring functionality. We instrumented the system to mon-
itor and collect the event publication rates and routing probabilities needed for characterizing
the workload. We implemented an interaction based on the SPECjms2007 scenario and used
one of its message schemas (see Appendix ??).

We used a hierarchical topology with 15 brokers, 8 publishers and 16 subscribers. Brokers
were communicating via a Gigabit LAN. The deployment topology is depicted in Figure 6.1.

6.1.3 Experimental Results

Following our methodology presented in the Section 4.1, we first characterized the workload
and then built a QPN model of the system and used it to predict the system performance
under load. Given that the network utilization was very low, it was omitted from the model,
assuming that the network service times did not have any significant impact on the overall
system performance. We employed the QPME tool (Queueing Petrinet Modeling Environment)
to build and analyze the model. We considered a number of workload and configuration scenarios
varying the publication rates and the system topology. Tables 6.1 and 6.2 show the results for
two of the scenarios we analyzed. The broker throughput and the event delivery latency for a
randomly selected subscriber are shown. As we can see, the predictions are pretty accurate and
reflect the real system behavior. The results for the rest of the subscribers as well as for the
other scenarios we considered were of similar accuracy to the ones presented here. The model
analysis was conducted using SimQPN [127] and took less than two minutes on standard PC
hardware.
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Scenario 1 Scenario 2
Broker Model Measured Model Measured

1 94.66 93.46 61.88 62.11
2 94.65 96.15 61.88 62.11
3 89.93 89.29 59.28 59.17
4 90.40 89.29 58.27 57.80
5 83.42 84.03 56.42 56.18
6 85.24 84.75 56.35 56.18
7 71.90 71.94 48.63 48.54
8 78.91 79.37 51.12 51.28
9 67.15 68.03 43.49 43.48

10 67.14 67.11 47.01 46.95
11 59.54 59.88 41.72 41.67
12 58.26 58.82 40.01 40.16
13 73.09 72.46 48.23 48.08
14 56.35 57.47 38.49 38.46
15 63.11 63.29 42.97 42.92

Table 6.1: Broker Throughput (msg. / sec)

Scenario 1 Scenario 2
Publisher Model Measured Model Measured

1 9.48 8.98 24.60 26.71
2 19.01 18.56 24.79 25.93
3 28.82 27.27 7.90 9.05
4 29.03 27.79 16.39 17.59
5 38.34 37.01 32.61 35.20
6 38.00 37.77 32.63 35.52
7 39.06 38.12 33.27 36.25
8 38.71 37.87 33.28 35.47

Table 6.2: Delivery Latency (ms)

6.1.4 Conclusions

Our case study demonstrated the effectiveness and practicality of our methodology presented
in Section 4.1 in the context of a simple scenario. We developed a workload model for this
scenario and used operational analysis techniques to characterize the system traffic and derive
an approximation for the mean event delivery latency. Our model reflected the behavior of a
SIENA publish/subscribe system with 15 brokers, 8 publishers and 16 subscribers and predicted
the runtime behavior very well. We showed that our approach can be exploited for performance
evaluation of DEBS.

6.2 Modeling SPECjms2007

6.2.1 Introduction

In this section, we present a case study of a state-of-the-art event-driven application deployed
on a leading commercial MOM platform - the Oracle WebLogic Server Enterprise Edition. The
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application we study is the SPECjms2007 standard benchmark (see Section 5.1). In this case
study, we use the benchmark as a representative application in order to evaluate the effectiveness
of our performance modeling technique when applied to a realistic system under different types
of event-driven workloads typically used in practice.

First, a detailed model of the benchmark based on queueing Petri nets is built in a step-
by-step fashion. QPNs allow to accurately model the dissemination of messages in the system
which involves forking of asynchronous tasks. The developed model is used to predict the
benchmark performance for a number of different workload and configuration scenarios. To
validate the approach, model forecasts are compared to measurements on the real system. The
results are used to evaluate the effectiveness, practicality and accuracy of the proposed modeling
and prediction approach.

By means of the proposed models we were able to predict the performance of the application
accurately for scenarios under load conditions with up to 30,000 messages exchanged per second
(up 4,500 transactions per sec.). To the best of our knowledge, no models of realistic systems
of the size and complexity of the one considered here exist in the literature. The modeling
technique can be exploited as a powerful tool for performance prediction and capacity planning
during the software engineering lifecycle of event-driven applications.

Both analytical and simulation techniques for solving QPN models exist including product-
form solution techniques and approximation techniques (see Section2.3). For the scenarios in
the paper, we used simulation since we considered very large scenarios. For smaller scenarios
analytical techniques can be used. The research value of the proposed modeling approach is that
it presents a set of adequate abstractions for messaging applications that have been validated
and shown to provide a good balance between modeling effort, analysis overhead and accuracy.

6.2.2 Modeling SPECjms2007

We now develop step-by-step a detailed performance model of SPECjms2007 and show how the
model can be used to predict the benchmark performance for a given workload and configuration
scenario. The model we develop is based on queueing Petri nets (see Section 2.3).

Modeling Interaction Drivers

We start by building a model of the interaction drivers. For illustration, we assume that the
vertical topology is used. The QPN model we propose is shown in Figure 6.2. The number of
tokens configured in the initial marking of place BASE is used to initialize the BASE param-
eter of the vertical topology (see Section 5.1.4). Transition Init fires a single time for each
token in place BASE destroying the token and creating a respective number of tokens 10’SMs,
1’HQ and 2’DCs in place Locations. This results in the creation of the expected number of
location drivers specified by the vertical topology. The location tokens are used to initialize
the interaction drivers by means of transitions Init_SMs, Init_HQ and Init_DCs. For each
driver, a single token is created in the respective queueing place Ix_Driver of the considered
interaction. Places Ix_Driver, x=1..7 each contain a G/M/∞/IS queue which models the
triggering of the respective interaction by the drivers. When a driver token leaves the queue of
place Ix_Driver, transition Ix_Start fires. This triggers the respective interaction by creating
a token representing the first message in the interaction flow. The message token is deposited
in one of the subnet places SMs, HQ or DCs depending on the type of location at which the
interaction is started. Each subnet place contains a nested QPN which may contain multiple
queueing places modeling the physical resources at the individual location instances. When an
interaction is triggered, the driver token is returned to the queue of the respective Ix_Driver

place where it is delayed for the time between two successive triggerings of the interaction. The
mean service time of each G/M/∞/IS queue is set to the reciprocal of the respective target
interaction rate as specified by the vertical topology. Customizing the model for the Horizontal
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Figure 6.2: Model of Interaction Drivers

or Freeform topology is straightforward. The number of location driver tokens generated by the
Init transition and the service time distributions of the G/M/∞/IS queues have to be adjusted
accordingly.

For the sake of compactness, the models we present here have a single token color for each
message type. In reality, we used three separate token colors for each message type representing
the three different message sizes (small, medium and large) modeled by the benchmark, i.e.,
instead of InventoryInfo we have InventoryInfo_S, InventoryInfo_M and InventoryInfo_L.
The only exception is for the PriceUpdate messages of Interaction 3 which have a fixed message
size. With exception of I3_Start, each transition Ix_Start on Figure 6.2 has three firing modes
corresponding to the three message sizes. The transition firing weights reflect the target message
size distribution.

Modeling Interaction Workflows

We now model the interaction workflows. We start with Interactions 3 to 7 since they are
simpler to model. Figure 6.3 shows the respective QPN models. For each destination (queue or
topic) a subnet place containing a nested QPN (e.g., SM_InvMovementQ, HQ_PriceUpdateT) is
used to model the MOM server hosting the destination. The nested QPN may contain multiple
queueing places modeling resources available to the MOM server, e.g., network links, CPUs and
I/O subsystems. We briefly discuss the way Interaction 3 is modeled. It starts by sending a
PriceUpdate message (transition I3_1) to the MOM server. This enables transition I3_2 which
takes the PriceUpdate message as input and creates n PriceUpdateN messages representing the
notification messages delivered to the subscribed SMs (where n = 10 for the vertical topology).
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Figure 6.3: Models of Interactions 3, 4, 5, 6 and 7

Each of these messages is forwarded by transition I3_3 to place SMs representing the machine
hosting the SMs. Interactions 4 to 7 are modeled similarly.

We now look at Interactions 1 and 2 whose models are shown in Figures 6.4 and 6.5, re-
spectively. The workflow of the interactions can be traced by following the transitions in the
order of their suffixes, i.e., I1_1, I1_2, I1_3, etc. In Interaction 2, the CallForOffers message
is sent to a HQ_ProductFamily<n>T topic where n represents the respective product family.
The CallForOffers message is then transformed to x CallForOffersN messages representing
the respective notification messages forwarded to the SPs (transition I2_2_FindSubscribers).
Each SP sends an offer (Offer message) to the DC and one of the offers is selected by transi-
tion I2_6 which takes the x offers as input and generates a purchase order (POrder message)
sent to the SP_POrderQ queue. The rest of the workflow is similar to Interaction 1.

Mapping of Logical to Physical Resources

The case study presented exploits the ability to share queues in multiple queueing places by
decoupling the logical (software) and physical (hardware) layers of the modeled system. There-
fore, the same logical model of the benchmark interactions can be easily customized to different
deployment environments. The results presented in this case study can be seen as a validation
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Figure 6.4: Model of Interaction 1

of the QPN extensions introduced in Section 4.3 to our modeling tools and analysis techniques.
By using subnet places to represent the MOM server(s) hosting the individual destinations

and the clients (HQ, SMs, DCs and SPs), which exchange messages through the MOM infras-
tructure, we provide additional flexibility in choosing the level of detail at which the system
components are modeled.

6.2.3 Experimental Evaluation

Experimental Environment

To evaluate the accuracy of the proposed modeling approach, we conducted an experimental
analysis of the application in the environment depicted in Figure 5.19. Oracle WebLogic server
was used as a JMS server installed on a machine with two quad-core Intel Xeon 2.33 GHz CPUs
and 16 GB of main memory. The server was run in a 64-bit JRockit 1.5 JVM with 8GB of heap
space. A RAID 0 disk array comprised of four disk drives was used for maximum performance.
The WebLogic Server was configured to use a file-based store for persistent messages with a
3.8 GB message buffer. The SPECjms2007 drivers were distributed across three machines:
i) one Sun Fire X4440 x64 server with four quad-core Opteron 2.3 GHz CPUs and 64 GB of
main memory, ii) one Sun Sparc Enterprise T5120 server with one 8-core T2 1.2 GHz CPU and
32 GB of main memory and iii) one IBM x3850 server with four dual-core Intel Xeon 3.5 GHz
CPUs and 16 GB of main memory. All machines were connected to a 1 GBit network.

Model Adjustments

The first step was to customize the model to our deployment environment. The subnet place
corresponding to each destination was mapped to a nested QPN containing three queueing places
connected in tandem. The latter represent the network link of the MOM server, the MOM server
CPUs and the MOM server I/O subsystem. Given that all destinations are deployed on a single
physical server, the three queueing places for each destination were mapped to three central
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Figure 6.5: Model of Interaction 2

queues representing the respective physical resources of the Oracle WebLogic server. The CPUs
were modeled using a G/M/n/PS queue where n is the number of CPU cores (in our case
n = 8). The network and I/O subsystem were modeled using G/M/1/FCFS queues. The
mean message service times at the queues were set according to the message resource demands.
The latter were estimated by running the interactions in isolation and measuring the utilization
of the respective resources. As to the subnet places corresponding to the client locations (SMs,
HQ, DCs and SPs), they were each mapped to a nested QPN containing a single queueing
place whose queue represents the CPU of the respective client machine. Since all instances
of a given location type were deployed on the same client machine, they were all mapped to
the same physical queue. Note that this represents the most typical deployment scenario for
SPECjms2007. We used the QPME tool to build and analyze the model [128].

Considered Workload Scenarios

We consider several different scenarios that represent different types of messaging workloads.
These scenarios stress different aspects of the MOM infrastructure including both workloads
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Sc. 1 Sc. 2 Sc. 3
In Out Overall

No. of Msg.
P2P
- P/T 49.2% 40.7% 44.6% 21.0% -
- NP/NT 47.2% 39.0% 42.8% 79.0% -

Pub/Sub
- PT 1.8% 6.0% 4.1% - 17.0%
- NP/NT 1.7% 14.2% 8.5% - 83.0%

Overall
- PT 51.1% 46.7% 48.7% 21.0% 17.0%
- NT/NP 48.9% 53.3% 51.3% 79.0% 83.0%

Traffic
P2P
- P/T 32.2% 29.5% 30.8% 11.0% -
- NP/NT 66.6 % 61.0% 63.5% 89.0% -
Pub/Sub
- PT 0.5% 2.3% 1.6% - 3.0%
- NP/NT 0.8% 7.2% 4.1% - 97.0%

Overall
- PT 32.7% 31.8% 32.4% 11.0% 3.0%
- NT/NP 67.3% 68.2% 67.6% 89.0% 97.0%

Avg. Size (in KBytes)
P2P
- P/T 2.13 2.31 -
- NP/NT 4.59 5.27 -

Pub/Sub
- PT 1.11 - 0.24
- NP/NT 1.49 - 1.49

Overall
- PT 2.00 2.31 0.24
- NT/NP 3.76 5.27 1.49

For Scenario 2 &3: In = Out.

Table 6.3: Scenario Transaction Mix
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Figure 6.6: Experimental Environment

focused on point-to-point messaging as well as workloads focused on publish/subscribe. In
each case, the model was analyzed using SimQPN [127] which took less than 5 minutes. We
have intentionally slightly deviated from the standard vertical topology to avoid presenting
performance results that may be compared against standard SPECjms2007 results. The latter is
prohibited by the SPECjms2007 run and reporting rules. To this end, we use freeform topologies
based on the vertical topology with the number of DCs and HQ instances each set to 10. We
study the following specific workload scenarios:

• Scenario 1: A mix of all seven interactions exercising both P2P and pub/sub messaging.

• Scenario 2: A mix of Interactions 4 and 5 focused on P2P messaging.

• Scenario 3: A mix of Interactions 3, 6 and 7 focused on pub/sub messaging.

In Table 6.3 and Figure 6.7, we provide a detailed workload characterization of the three
scenarios to illustrate the differences in terms of transaction mix and message size distribution.

Experimental Results

Figure 6.8 shows the predicted and measured CPU utilization of the MOM server for the con-
sidered customized vertical topology when varying the BASE between 100 and 700. The total
number of messages sent and received per second is shown. As we can see, the model predicts the
server CPU utilization very accurately as the workload is scaled. To gain a better understand-
ing of the system behavior, we used the model to breakdown the overall utilization among the
seven interactions as shown in Table 6.5. The bulk of the load both in terms of message traffic
and resulting CPU utilization is produced by Interactions 1 and 5 followed by Interactions 2
and 4. Interactions 3, 6 and 7 which exercise only publish/subscribe messaging produce much
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Figure 6.7: Distribution of the Message Size
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(a) Scenario 1

Input
BASE

Inter- Rate Avg. Completion T (ms)
action p. sec Model Meas. (95% c.i.) Deviation

1 228.57 10.24 10.17 +/- 0.68 0.7%
2 64 13.28 15.10 +/- 0.71 12.0%
3 15 3.16 3.49 +/- 0.41 9.4%

300 4 486.49 2.64 2.76 +/- 0.31 4.3%
med. load 5 1731.60 1.79 1.97 +/- 0.27 9.1%

6 42.69 0.97 1.96 +/- 0.29 50.0%
7 30.77 1.02 2.10 +/- 0.24 51.0%

1 419.05 20.41 25.19 +/- 2.56 19.0%
2 117.33 30.73 28.27 +/- 2.05 8.7%
3 27.50 7.12 7.20 +/- 0.67 1.1%

550 4 891.89 7.33 7.35 +/- 0.89 0.3%
high load 5 3174.60 4.95 6.52 +/- 1.13 24.0%

6 78.27 4.01 3.26 +/- 0.26 23.0%
7 56.41 4.05 3.67 +/- 0.34 10.3%

(b) Scenario 2

Input
BASE

Inter- Rate Avg. Completion T (ms)
action p. sec Model Meas. (95% c.i.) Deviation

600 4 972.97 2.65 2.66 +/- 0.04 1.0%
med. load 5 3463.20 1.81 1.54 +/- 0.10 17.5%

800 4 1297.30 3.49 3.75 +/- 0.17 6.9%
high load 5 4617.60 2.77 2.62 +/- 0.20 5.7%

(c) Scenario 3

Input
BASE

Inter- Rate Avg. Completion T (ms)
action p. sec Model Meas. (95% c.i.) Deviation

6000 3 300 3.74 3.22 +/- 0.09 16.1%
med. load 6 853.89 0.81 0.95 +/- 0.23 14.7%

7 615.38 1.02 1.31 +/- 0.35 22.0%

10000 3 500 4.65 6.75 +/- 0.30 31.1%
high load 6 1423.15 1.42 1.44 +/- 0.07 1.4%

7 1025.64 1.70 2.22 +/- 0.10 23.4%

Table 6.4: Detailed Results for Scenarios 1, 2 and 3

Inter- Relative No of msgs. Traffic in KByte
action CPU load in out in out

1 31.82% 32.00% 26.48% 17.08% 15.74%
2 15.69% 14.19% 13.60% 9.05% 9.55%
3 2.53% 0.35% 2.90% 0.02% 0.23%
4 17.98% 11.35% 9.39% 8.01% 7.38%
5 30.36% 40.40% 33.44% 65.04% 59.91%
6 0.86% 1.00% 8.25% 0.39% 3.55%
7 0.76% 0.72% 5.94% 0.40% 3.65%

Table 6.5: Relative Server CPU Load of Interactions
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Figure 6.8: Server CPU Utilization and Message Traffic for Customized Vertical Topology

less traffic. This can be expected since the standard vertical topology that we used as a basis
places the emphasis on point-to-point messaging (see Section 5.1.4). In the following, we study
the three scenarios under different load intensities considering further performance metrics such
as the interaction throughput and completion time.

The detailed results for the scenarios are presented in Table 6.4. Additionally, the interaction
rates and the average interaction completion times are shown. For each scenario, we consider
two workload intensities corresponding to medium and high load conditions configured using
the BASE parameter. The interaction completion time is defined as the interval between the
beginning of the interaction and the time that the last message in the interaction has been
processed. The difference between the predicted and measured interaction rates was negligible
(with error below 1%) and therefore we only show the predicted interaction rates. For completion
times, we show both the predicted and measured mean values where for the latter we provide
a 95% confidence interval from 5 repetitions of each experiment. Given that the measured
mean values were computed from a large number of observations, their respective confidence
intervals were quite narrow. The modeling error does not exceed 20% except for cases where the
interaction completion times are below 3 ms, e.g., for Interactions 6 and 7 in the first scenario. In
such cases, a small absolute difference of 1 ms between the measured and predicted values (e.g.,
due to some synchronization aspects not captured by the model) appears high when considered
as a percentage of the respective mean value given that the latter is very low. However, when
considered as an absolute value, the error is still quite small.

Figure 6.9 depicts the predicted and measured interaction completion times for the three
scenarios as well as detailed information on how the total message traffic of each interaction
is broken down into sent vs. received messages, on the one hand, and transactional (T) per-
sistent (P) vs. non-transactional (NT) non-persistent (NP) messages, on the other hand. In
addition, aggregate data for all of the seven interactions is shown. For example, in Scenario
3, we see that the total number of received messages per second is about 10 times higher than
the number of messages sent. This is due to the fact that each message sent in Interactions 3,
6 and 7 is delivered to 10 subscribers - one for each SM. The results in Figure 6.9 reveal the
accuracy of the model when considering different types of messaging. For point-to-point mes-
saging, the modeling error is independent of whether (P T) or (NP NT) messages are sent. For
the publish/subscribe case under high load (Scenario 3), the modeling error is much higher for
the case of (P T) than for the case of (NP NT). In Scenario 1 where all interactions are running
at the same time, Interactions 1 and 2 exhibited the highest modeling error (with exception of
the interactions with very low completion times). This can be attributed to the fact that these
interactions each comprise a complex chain of multiple messages of different types and sizes.
Finally, looking at the mean completion time over all interactions, we see that in the most cases



132 CHAPTER 6. PERFORMANCE MODELING OF EBS - CASE STUDIES

 0

 2000

 4000

 6000

 8000

 10000

1 2 3 4 5 6 7 Total 1 2 3 4 5 6 7 Total

M
es

sa
ge

s p
er

 S
ec

on
d

Interactions (Medium Load) Interactions (High Load)

P / T sent
P / T received
NP / NT sent

NP / NT received

 0

 5

 10

 15

 20

 25

 30

1 2 3 4 5 6 7 Avg. 1 2 3 4 5 6 7 Avg.

A
vg

. C
om

pl
et

io
n 

Ti
m

e 
(m

s)

Interactions (Medium Load) Interactions (High Load)

Model
Measured

(a) Scenario 1

 0

 1000

 2000

 3000

 4000

 5000

 6000

4 5 Total 4 5 Total

M
es

sa
ge

s P
er

 S
ec

on
d

Interactions (Medium Load) Interactions (High Load)

P / T sent
P / T received
NP / NT sent

NP / NT received

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

4 5 Avg. 4 5 Avg.

A
vg

. C
om

pl
et

io
n 

Ti
m

e 
(m

s)

Interactions (Medium Load) Interactions (High Load)

Model
Measured

(b) Scenario 2

 0

 5000

 10000

 15000

 20000

 25000

3 6 7 Total 3 6 7 Total

M
es

sa
ge

s 
Pe

r S
ec

on
d

Medium Load High Load

P / T sent
P / T received
NP / NT sent

NP / NT received

 0

 1

 2

 3

 4

 5

 6

 7

3 6 7 Avg. 3 6 7 Avg.

Av
g.

 C
om

pl
et

io
n 

Ti
m

e 
(m

s)

Medium Load High Load

Model
Measured

(c) Scenario 3

Figure 6.9: Model Predictions Compared to Measurements for Scenarios 1, 2 and 3
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the model is optimistic in that the predicted completion times are lower than the measured ones.
This behavior is typical for performance models in general since no matter how representative
they are, they normally cannot capture all factors causing delays in the system.

6.2.4 Conclusion

In summary, the model proved to be very accurate in predicting the system performance, espe-
cially considering the size and complexity of the system that was modeled. The proposed model
can be used as a powerful tool in the software engineering lifecycle of event-driven systems. For
example at system design time, predictive performance models can be exploited for comparing
alternative system designs with different communication and messaging patterns. At system de-
ployment time, models help to detect system bottlenecks and to ensure that sufficient resources
are allocated to meet performance and QoS requirements.

6.3 Concluding Remarks

In this chapter, we presented two novel case studies of representative state-of-the-art event-based
systems showing how our proposed methodology can be exploited for workload characterization,
performance modeling and prediction.

In the first case study, we applied our performance methodology to the SIENA publish/subscribe
system and validated our approach by providing a workload characterization and performance
model for a basic workload. In the second case study, we studied the SPECjms2007 standard
benchmark deployed on a leading commercial middleware platform. A detailed model was de-
veloped in a step-by-step fashion and ways to customize the model for a particular deployment
scenario were demonstrated. The model contains a total of 59 queueing places, 76 token colors
and 68 transitions with a total of 285 firing modes. To validate our modeling technique we con-
sidered a real-life deployment in a representative environment comparing the model predictions
against measurements on the real system. A number of different scenarios with varying workload
intensity and interaction mixes were considered and the accuracy of the developed models was
evaluated.

The results demonstrated the effectiveness and practicality of the proposed modeling and pre-
diction approach. The technique can be exploited as a powerful tool for performance prediction
and capacity planning during the software engineering lifecycle of message-oriented event-driven
systems.
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Chapter 7

Conclusions and Outlook

With the growing popularity of EBS and their gradual adoption in mission critical areas, the
need for novel techniques for benchmarking and performance modeling of EBS is increasing.
Since their reliability is crucial for the whole IT infrastructure, a certain QoS level has to be
ensured. The motivation for this thesis was to support the development and maintenance of
EBS that meet certain QoS requirements. Given that EBS differ from traditional software in
fundamental aspects such as their underlying communications paradigm, specific solutions and
concepts are needed. System architects and deployers need tools and methodologies, which
allow us to evaluate and forecast system performance and behavior in certain situations to iden-
tify potential performance problems and bottlenecks. Benchmarks and performance modeling
techniques are usually the means of choice to answer these questions. However, no general per-
formance modeling methodologies focusing on EBS have been published yet. Furthermore, there
was a lack of test harnesses and benchmarks using representative workloads for EBS. Conse-
quently, we focused on the development of a performance modeling methodology of EBS as well
as on approaches to benchmark them. We summarize now our main contributions and proposed
approaches.

To comprehend our contributions, an understanding of the fundamental ideas of EBS is es-
sential. Therefore, we discussed our understanding of events in detail and introduced definitions
for different kinds of events and related concepts. Generally spoken, EBS are software systems
in which an observed event triggers a reaction. We evaluated the variety of underlying tech-
nologies with a focus on DEBS and MOMs and provided a survey of existing DEBS and MOM
products and standards. In our review of existing work, we identified a lack of benchmarks and
performance modeling approaches for EBS. To support a structural evaluation of benchmarks,
we introduced five categories of requirements: (i) Representativeness: the benchmark has to be
based on a representative workload. (ii) Comprehensiveness: exercise all platform features typi-
cally used in applications. (iii)Focus: place the emphasis on the technology server and minimize
the impact of other services, e.g., databases. (iv) Configurability: provide a configurable tool for
performance analysis. (v) Scalability: provide ways to scale the workload in a flexible manner.

None of the existing benchmarks met all our requirements. Therefore, we saw a strong need
for independent and standardized benchmarks for EBS fulfilling the requirements. We launched
a project inside the SPEC with the goal to develop the first industry standard benchmark for
EBS. As underlying technology plattform we chose JMS. This was motivated by the fact that
MOMs are widely used in industry and the quasi-standard for MOMs is JMS. Under the lead
of TU Darmstadt a team with members from organizations such as IBM, Sun and BEA was
formed. Our efforts resulted in the SPECjms2007 standard benchmark. Its main contributions
were twofold:

Standard Workload : Based on the feedback of our industrial partners, we specified a comprehen-
sive workload with different scaling options that fullfils all our requirements. It contains
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several configuration parameters for evaluating selected performance and scalability as-
pects of MOM.

Benchmarking Framework: The benchmark was implemented using a newly developed complex
framework. The framework offers many additional features, is highly configurable and
easy to extend. Examples of its features are a comprehensive reporter and the availability
of statistics at run time.

We introduced a methodology for the performance evaluation of MOMs using the SPECjms2007
standard benchmark. We showed how the workload can be customized to exercise and evaluate
selected aspects of MOM performance to reflect a given target customer workload. Additionally,
we demonstrated our methodology in a case study of a leading JMS platform, the WebLogic
server, and conducted in-depth performance analyses of the platform for a number of different
workload and configuration scenarios.

The SPECjms2007 business scenario was specified independently from the underlying tech-
nology. Therefore, its usage is not limited to a specific type of EBS. We illustrated how the stan-
dardized workload can be applied to other EBS using the example of jms2009-PS, a benchmark
for publish/subscribe-based communication. This benchmark provides a flexible framework for
performance analysis with a strong focus on research. Both benchmarks, SPECjms2007 and
jms2009-PS, are used in several projects by industry and academia and, since they exercise
MOM in a realistic way, they are also used as reference applications.

To the best of our knowledge, no work introducing a general methodology for modeling
EBS has been published yet. As a consequence, we investigated whether and how traditional
performance modeling approaches are suitable to model the specifica of EBS. We introduced a
formal definition of EBS and their performance aspects, which allows us, among other things,
to describe workload properties and routing behavior in a structured way. Resulting from our
analysis of existing modeling techniques, we proposed a novel approach to characterize the work-
load and to model the performance aspects of EBS. We used operational analysis techniques to
describe the system traffic and derived an approximation for the mean event delivery latency.
We then showed how more detailed performance models based on QPNs could be built and used
to provide more accurate performance prediction. We chose queueing Petri nets as performance
modeling technique because of their modeling power and expressiveness. Our approach allows
evaluating and predicting the performance of an EBS and provides detailed system models. It
can be used for an in-depth performance analysis and to identify potential bottlenecks. A fur-
ther contribution was a novel terminology for performance modeling patterns that we used to
introduce eleven patterns targeting common aspects of event-based applications. These perfor-
mance modeling patterns were the first ones published, which a) target EBS applications and
b) use QPNs.

To additionally improve the modeling power of QPNs, we suggested several extensions of the
standard QPNs, which allow building models in a more flexible and general way and address
several limitations of QPNs. By introducing a level of abstraction, it is possible to distinguish
between logical and physical layers in our models. This enables to flexibly map logical to
physical resources and thus makes it easy to customize the model to a specific deployment. The
different layers allow us to reuse one logical model in several physical models or to map several
logical models to one physical model. Further, we addressed two limiting aspects of standard
QPNs: constant cardinalities and the lack of transition priorities. By introducing non-constant
cardinalities of transitions we increased the modeling flexibility and minimized the number of
transition modes. The missing support of transition priorities in standard QPNs limits the
control of the transition firing order. We addressed this restriction by incorporating priorities
for transitions into QPNs and discussed several ways to implement them. Our extensions were
integrated in the QPME / SimQPN software tools or are planned for the upcoming release.

Finally, we validated the approach in two case studies. We applied our methodology to model
EBS and predicted their performance and system behavior under load successfully. As part of the



7.1. ONGOING AND FUTURE WORK 137

!"#$%&'()#*+,-)%#.)+

/0.12#3+!"#$%+4506#))7$8+

4#5905.($6#++

!$87$##57$8+

'#$6:.(5;+

!$87$##57$8+

<05;20(*+/:(5(6%#57=(>0$+?++

'#$6:.(5;7$8+09+!',++
@A$>.#+B0$7%057$8+C+

45#*76>0$+

D0%(>0$)E+F11276(>0$)+($*++

G$*#52-7$8+H#6:$02087#)+

D#I+H5#$*)+

!"#$%&'!$$%()"(!$$%&'*'

'#$6:.(5;7$8+

B#%:0*0208-+

JA(27%-+09+,#5"76#+

Figure 7.1: Open Research Issues

first case study we extended SIENA, a well-known DEBS, with a runtime measurement frame-
work. We evaluated a system with 15 brokers, 8 publishers and 16 subscribers and predicted the
runtime behavior including delivery latency for a basic workload with a single event type. In the
second case study, we developed a comprehensive model of the complete SPECjms2007 workload
including the persistent layer, point-to-point and publish/subscribe communication. We applied
several of our performance modeling patterns. Furthermore, the workload was modeled using
the proposed QPN extensions.

We evaluated its accuracy in a commercial middleware environment. To validate our mod-
eling technique we investigated deployments of the benchmark in representative environments
comparing the model predictions against measurements on the real systems. A number of dif-
ferent scenarios with varying workload intensity (up to 30,000 messages / 4,500 transaction per
second) and interaction mixes were taken into account. By means of the proposed models we
were able to predict the performance accurately. To the best of our knowledge, no models of
realistic systems of the size and complexity of the one considered in this thesis exist in the
literature.

The results of both case studies demonstrated the effectiveness and practicality of the pro-
posed modeling and prediction methodology in the context of a real-world scenario. The ad-
vantage of the proposed approach is that it is both practical and general, and it can be readily
applied for performance evaluation of DEBS and MOM. The technique can be exploited as a
powerful tool for performance prediction and capacity planning during the software engineering
lifecycle of message-oriented event-driven systems.

7.1 Ongoing and Future Work

Based on our experience and the findings of this work, we identified three interesting areas for
future research:

• Benchmark engineering

• Workload characterization and benchmarking of event-based systems
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Figure 7.2: Benchmark Aspects

• Self-adaptive QoS management in event-based systems

Benchmark Engineering While developing SPECjms2007, we faced a lack of methodology
that describes how to develop good and meaningful benchmarks. Since benchmark development
has turned into a complex team effort, there is a need for a development methodology. Com-
pared to traditional software, the development process has different goals and challenges. While
historical benchmarks were only some hundreds lines long, modern benchmarks are composed
of millions of lines of code. Therefore, new concepts and processes are needed which address
the whole development and life-cycle management of benchmarks. We refer to them including
benchmark methodology and measurement techniques with the term benchmark engineering.
Furthermore, large scale, highly distributed systems are increasingly used in mainstream ap-
plications. However, for these systems traditional benchmarking approaches fail: how can we
benchmark a system with 500,000 nodes? What does a typical workload look like and how
does it scale? Future research should address these questions. As sample scenarios we propose
peer-to-peer systems and highly distributed EBS.

Since it is not feasible to run benchmarks in a realistic environment with thousands of
nodes, new methods are needed which allow us to benchmark large scale systems in a realistic
way on limited resources. As a consequence, we see a need for research in the area of simulated
benchmarks.

Workload Characterization and Benchmarking of Event-based Systems For the
evaluation and analysis of event-based systems, standardized workloads and benchmarks are
required. For MOMs we have contributed SPECjms2007 and jms2009-PS, but for EBS in
general only a few benchmarks have been published to date. Standard workloads are not yet
available for most domains. Therefore, we see a strong need to continue our efforts in the area
of EBS workload characterization and benchmarking. We did a first step by demonstrating a
prototype of a benchmark supporting AMQP in [12].

The next logical step is to develop a novel research benchmark for DEBS including a com-
prehensive workload specification. This poses several new unsolved challenges, on the one hand
related to benchmarking methodology of highly distributed systems and workload characteriza-
tion, and on the other related to the lack of standards. Given that generally accepted standards
are missing, comprehensive and exact workload specification (including a description of QoS
levels) are needed.

Self-Adaptive QoS Management in Event-based Systems We introduced a performance
modeling methodology, which allows the characterization of the workload and to create models
for a certain system state in time. However, many EBS are highly dynamic and their topology
and workload are constantly changing. These changes have to be reflected in the models to keep
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them accurate. Therefore, we propose to work on self-adaptive EBS based on the presented
modeling methodology. Such systems should dynamically adjust their configuration to ensure
that QoS requirements are continuously met. They should generate performance models at
run-time based on monitoring data and, using these models, predict the system performance
under the expected workload and adapt itself to guarantee specified QoS levels. Since perfor-
mance analysis should be carried out on-the-fly, it is essential that the process of generating
and analyzing the models is completely automated and efficient. Such a self-adaptive EBS re-
quires novel techniques for system behavior prediction, monitoring and runtime measurements
to supervise its own QoS status, to identify possible problems such as bottlenecks and to react
to them autonomously, e.g., by automatically allocating resources. Another research challenge
is to integrate all QoS attributes in the models and to optimize these models, e.g., regarding
resource usage of the system given a certain QoS level.



140 CHAPTER 7. CONCLUSIONS AND OUTLOOK



Bibliography

[1] J. Abbott, K. B. Manrodt, and P. Moore. From Visibility to Action: Year 2004. Report
on Trends and Issues in Logistics and Transportation. Technical report, March 2005.
http://www.ca.capgemini.com/DownloadLibrary/req-uestfile.asp?ID=432.

[2] E. Aitenbichler, J. Kangasharju, and M. Mühlhäuser. MundoCore: A light-weight infras-
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[55] M. Cilia, M. Antollini, C. Bornhövd, and A. Buchmann. Dealing with heterogeneous data
in pub/sub systems: The Concept-Based approach. In Proceedings of the International
Workshop on Distributed Event-Based Systems (DEBS’04), Edinburgh, 2004.

[56] P. S. Corporation. Open Source FUSE Message Broker. http://fusesource.com/

products/enterprise-activemq/.

[57] A. Corsaro, L. Querzoni, S. Scipioni, T. S. Piergiovanni, and A. Virgillito. Quality of
Service in Publish/Subscribe Middleware. 8, July 2006.

[58] Crimson Consulting Group. High-Performance JMS Messaging - A Benchmark Compari-
son of Sun Java System Message Queue and IBM WebSphere MQ, 2003. White Paper.

[59] G. Cugola and J. E. M. de Cote. On introducing location awareness in publish-subscribe
middleware. In Proceedings of 25th IEEE Intl. Conf. on Distributed Computing Systems
Workshops(ICDCSW’05), pages 377–382. IEEE, 2005.

[60] G. Cugola, E. D. Nitto, and A. Fuggetta. The JEDI Event-Based Infrastructure and Its
Application to the Development of the OPSS WFMS. IEEE Transactions on Software
Engineering, 27:827–850, 2001.

http://fusesource.com/products/enterprise-activemq/
http://fusesource.com/products/enterprise-activemq/


BIBLIOGRAPHY 145

[61] G. Cugola and G. P. Picco. REDS: a reconfigurable dispatching system. In Proceedings
of the 6th International Workshop on Software Engineering and Middleware (SEM’06).
ACM, 2006.

[62] P. J. Denning and J. P. Buzen. The Operational Analysis of Queueing Network Models.
ACM Computing Surveys, 10(3):225–261, 1978.

[63] Y. Diao, S. Rizvi, and M. J. Franklin. Towards an internet-scale xml dissemination ser-
vice. In Proceedings of the Thirtieth International Conference on Very Large Data Bases
(VLDB’04). Morgan Kaufmann, 2004.

[64] T. Dunn and R. Branagan. Websphere MQ Integrator for Windows NT and Windows
2000 V2.1. Performance Report. IBM U.K. Hursley Park Laboratories, 2002.

[65] G. Eisenhauer, K. Schwan, and F. Bustamante. Publish-Subscribe for High-Performance
Computing. IEEE Internet Computing, 10(1):40–47, 2006.

[66] P. T. Eugster. Type-based publish/subscribe: Concepts and experiences. ACM Transac-
tions on Programming Languages and Systems (TOPLAS), 29(1), 2007.

[67] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec. The Many Faces of
Publish/Subscribe. ACM Computing Surveys, 35(2):114–131, June 2003.

[68] F. Fabret, H. A. Jacobsen, F. Llirbat, J. Pereira, K. A. Ross, and D. Shasha. Filtering algo-
rithms and implementation for very fast publish/subscribe systems. In Proceedings of the
2001 ACM SIGMOD International Conference on Management of Data (SIGMOD’01).
ACM, 2001.

[69] Fedora Project. AMQP Infrastructure. http://fedoraproject.org/wiki/Features/

AMQP_Infrastructure.

[70] Fiorano. FioranoMQ. http://www.fiorano.com/products/fmq/products_fioranofmq.
php.

[71] Fiorano Software Inc. JMS Performance Benchmarks - Illustrating the FioranoMQ
2007 Performance Advantage against SonicMQ 7.0, Tibco EMS 4.4 and ActiveMQ
4.1.0. white paper, http://fiorano.best.vwh.net/whitepapers/jms_performance_

comparison.htm, 2007.

[72] Fiorano Software Inc. JMS Performance Comparison - Performance Comparison for Pub-
lish Subscribe Messaging . white paper, http://www.fiorano.com/whitepapers/fmq/

jms_performance_comparison.php?src=pr_mailblast_edm, 2010.

[73] T. Fox. HornetQ Technical FAQ. http://community.jboss.org/wiki/

HornetQTechnicalFAQ.

[74] T. Fromm. Ahkera. http://t-lo.github.com/ahkera/.

[75] Gallium. InterCOM DDS - product home page. http://www.gallium.com/products/

intercom.htm.

[76] E. Gamma, R. Helm, R. E. Johnson, and J. M. Vlissides. Design patterns: Abstraction
and reuse of object-oriented design. In Proceedings of the 7th European Conference on
Object-Oriented Programming (ECOOP’93), volume 707 of Lecture Notes in Computer
Science. Springer, 1993.

[77] H. J. Genrich and K. Lautenbach. System Modelling with High-Level Petri Nets. Theo-
retical Computer Science, 13:109–136, 1981.

http://fedoraproject.org/wiki/Features/AMQP_Infrastructure
http://fedoraproject.org/wiki/Features/AMQP_Infrastructure
http://www.fiorano.com/products/fmq/products_fioranofmq.php
http://www.fiorano.com/products/fmq/products_fioranofmq.php
http://fiorano.best.vwh.net/whitepapers/jms_performance_comparison.htm
http://fiorano.best.vwh.net/whitepapers/jms_performance_comparison.htm
http://www.fiorano.com/whitepapers/fmq/jms_performance_comparison.php?src=pr_mailblast_edm
http://www.fiorano.com/whitepapers/fmq/jms_performance_comparison.php?src=pr_mailblast_edm
http://community.jboss.org/wiki/HornetQTechnicalFAQ
http://community.jboss.org/wiki/HornetQTechnicalFAQ
http://t-lo.github.com/ahkera/
http://www.gallium.com/products/intercom.htm
http://www.gallium.com/products/intercom.htm


146 BIBLIOGRAPHY

[78] A. Geppert, M. Berndtsson, D. Lieuwen, and J. Zimmermann. Performance Evaluation of
Active Database Management Systems Using the BEAST Benchmark. Technical report,
University of Zurich, 1996.

[79] A. Geppert, S. Gatziu, and K. R. Dittrich. A Designer’s Benchmark for Active Database
Management Systems: oo7 Meets the BEAST. In Proceedings of the Second Interna-
tional Workshop on Rules in Database Systems (RIDS’95), volume 985 of Lecture Notes
in Computer Science. Springer, 1995.

[80] J. Gray, editor. The Benchmark Handbook for Database and Transaction Systems (2nd
Edition). Morgan Kaufmann, 1993.

[81] R. Gruber, B. Krishnamurthy, and E. Panagos. The Architecture of the READY Event
Notification Service. In Proceedings of the 19th International Conference on Distributed
Computing Systems Middleware Workshop. IEEE Computer Society, 1999.

[82] R. E. Gruber, B. Krishnamurthy, and E. Panagos. READY: A High Performance Event
Notification Service. In Proceedings of the 16th International Conference on Data Engi-
neering (ICDE’00). IEEE Computer Society, 2000.

[83] P. Guerrero, K. Sachs, M. Cilia, C. Bornhövd, and A. Buchmann. Pushing Business Data
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[154] G. Mühl. Large-Scale Content-Based Publish/Subscribe Systems. PhD thesis, TU Darm-
stadt, 2002. http://elib.tu-darmstadt.de/diss/000274/.
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