
Towards Floating Managers in Scopes

Autonomous Scopes Maintenance

22.04.2009 | Dept. of Computer Science | Databases and Distributed Systems | Jose Ignacio Isaia Brasca | 1

Outline

Scopes

Problem Description

Proposed Solution

Implementation Details

Results - Conclusions

22.04.2009 | Dept. of Computer Science | Databases and Distributed Systems | Jose Ignacio Isaia Brasca | 2

Scopes Framework
Introduction

I The Problem
I sensornets are composed of large numbers of nodes

I What was done?
I a mechanism to declaratively split the network into logical groups

I What is it for?
I enable multitasking networks (Daniel's Diplomarbeit)
I deploy modules selectively (ongoing Diplomarbeit)
I de�ne event sources, action executants (Pablo's work�ow approach)
I delimit secure boundaries (coming,)
I ...

22.04.2009 | Dept. of Computer Science | Databases and Distributed Systems | Jose Ignacio Isaia Brasca | 3

Scopes Framework
Introduction (2)

I How does it work?
I hierarchical structure

I base scope (World)
I normal scopes
I nested scopes

22.04.2009 | Dept. of Computer Science | Databases and Distributed Systems | Jose Ignacio Isaia Brasca | 4

Scopes Framework
Introduction (2)

I How does it work?
I hierarchical structure

I base scope (World)
I normal scopes
I nested scopes

22.04.2009 | Dept. of Computer Science | Databases and Distributed Systems | Jose Ignacio Isaia Brasca | 4

Scopes Framework
Introduction (2)

I How does it work?
I hierarchical structure

I base scope (World)
I normal scopes
I nested scopes

22.04.2009 | Dept. of Computer Science | Databases and Distributed Systems | Jose Ignacio Isaia Brasca | 4

Scopes Framework
Introduction (2)

I How does it work?
I hierarchical structure

I base scope (World)
I normal scopes
I nested scopes

22.04.2009 | Dept. of Computer Science | Databases and Distributed Systems | Jose Ignacio Isaia Brasca | 4

Scopes Framework
Introduction (2)

I How does it work?
I hierarchical structure

I base scope (World)
I normal scopes
I nested scopes

22.04.2009 | Dept. of Computer Science | Databases and Distributed Systems | Jose Ignacio Isaia Brasca | 4

Scopes Features

I Declarative language for network partitioning

I bidirectional communication pattern
I root node → scope members
I scope members → root node

I automatic maintenance
I fault-tolerant against (re)joining/leaving nodes

I due to network dynamism or node failure

22.04.2009 | Dept. of Computer Science | Databases and Distributed Systems | Jose Ignacio Isaia Brasca | 5

Scopes Features

I Declarative language for network partitioning

I bidirectional communication pattern
I root node → scope members
I scope members → root node

I automatic maintenance
I fault-tolerant against (re)joining/leaving nodes

I due to network dynamism or node failure

22.04.2009 | Dept. of Computer Science | Databases and Distributed Systems | Jose Ignacio Isaia Brasca | 5

Scopes Features

I Declarative language for network partitioning

I bidirectional communication pattern
I root node → scope members
I scope members → root node

I automatic maintenance
I fault-tolerant against (re)joining/leaving nodes

I due to network dynamism or node failure

22.04.2009 | Dept. of Computer Science | Databases and Distributed Systems | Jose Ignacio Isaia Brasca | 5

Scopes Design

I Layered architecture
I routing, scopes and application layers
I de�ned interfaces across layers

I Modular system
I di�erent routing algorithms possible
I exchangeable membership evaluation
I multiple applications, OTA deployment

22.04.2009 | Dept. of Computer Science | Databases and Distributed Systems | Jose Ignacio Isaia Brasca | 6

Scopes Design

I Layered architecture
I routing, scopes and application layers
I de�ned interfaces across layers

I Modular system
I di�erent routing algorithms possible
I exchangeable membership evaluation
I multiple applications, OTA deployment

22.04.2009 | Dept. of Computer Science | Databases and Distributed Systems | Jose Ignacio Isaia Brasca | 6

Scopes Design

I Layered architecture
I routing, scopes and application layers
I de�ned interfaces across layers

I Modular system
I di�erent routing algorithms possible
I exchangeable membership evaluation
I multiple applications, OTA deployment

22.04.2009 | Dept. of Computer Science | Databases and Distributed Systems | Jose Ignacio Isaia Brasca | 6

Scopes Design

I Layered architecture
I routing, scopes and application layers
I de�ned interfaces across layers

I Modular system
I di�erent routing algorithms possible
I exchangeable membership evaluation
I multiple applications, OTA deployment

22.04.2009 | Dept. of Computer Science | Databases and Distributed Systems | Jose Ignacio Isaia Brasca | 6

Scopes Design

I Layered architecture
I routing, scopes and application layers
I de�ned interfaces across layers

I Modular system
I di�erent routing algorithms possible
I exchangeable membership evaluation
I multiple applications, OTA deployment

22.04.2009 | Dept. of Computer Science | Databases and Distributed Systems | Jose Ignacio Isaia Brasca | 6

Scopes Design

I Layered architecture
I routing, scopes and application layers
I de�ned interfaces across layers

I Modular system
I di�erent routing algorithms possible
I exchangeable membership evaluation
I multiple applications, OTA deployment

22.04.2009 | Dept. of Computer Science | Databases and Distributed Systems | Jose Ignacio Isaia Brasca | 6

Scopes Design

I Layered architecture
I routing, scopes and application layers
I de�ned interfaces across layers

I Modular system
I di�erent routing algorithms possible
I exchangeable membership evaluation
I multiple applications, OTA deployment

22.04.2009 | Dept. of Computer Science | Databases and Distributed Systems | Jose Ignacio Isaia Brasca | 6

Outline

Scopes

Problem Description

Proposed Solution

Implementation Details

Results - Conclusions

22.04.2009 | Dept. of Computer Science | Databases and Distributed Systems | Jose Ignacio Isaia Brasca | 7

Problem Description
Dependence on Root Node

I Root node plays important role:
I executes the refresh mechanism

I if root node dies, there is no point in keeping scope alive

I but...

22.04.2009 | Dept. of Computer Science | Databases and Distributed Systems | Jose Ignacio Isaia Brasca | 8

Problem Description
Dependence on Root Node

I Root node plays important role:
I executes the refresh mechanism

I if root node dies, there is no point in keeping scope alive

I but...

22.04.2009 | Dept. of Computer Science | Databases and Distributed Systems | Jose Ignacio Isaia Brasca | 8

Problem Description
Dependence on Root Node

I Root node plays important role:
I executes the refresh mechanism

I if root node dies, there is no point in keeping scope alive

I but...

22.04.2009 | Dept. of Computer Science | Databases and Distributed Systems | Jose Ignacio Isaia Brasca | 8

Problem Description
Dependence on Root Node

I Root node plays important role:
I executes the refresh mechanism

I if root node dies, there is no point in keeping scope alive

I but...

22.04.2009 | Dept. of Computer Science | Databases and Distributed Systems | Jose Ignacio Isaia Brasca | 8

Alternative Behavior
Autonomous Scope Maintenance

I In some cases, autonomous maintenance is desired
I long(er)-living scopes, e.g. building automation, railways

I deploy once somewhere, keep alive until explicit removal

22.04.2009 | Dept. of Computer Science | Databases and Distributed Systems | Jose Ignacio Isaia Brasca | 9

Alternative Behavior
Autonomous Scope Maintenance

I In some cases, autonomous maintenance is desired
I long(er)-living scopes, e.g. building automation, railways

I deploy once somewhere, keep alive until explicit removal

22.04.2009 | Dept. of Computer Science | Databases and Distributed Systems | Jose Ignacio Isaia Brasca | 9

Alternative Behavior
Autonomous Scope Maintenance

I In some cases, autonomous maintenance is desired
I long(er)-living scopes, e.g. building automation, railways

I deploy once somewhere, keep alive until explicit removal

22.04.2009 | Dept. of Computer Science | Databases and Distributed Systems | Jose Ignacio Isaia Brasca | 9

Alternative Behavior
Autonomous Scope Maintenance

I In some cases, autonomous maintenance is desired
I long(er)-living scopes, e.g. building automation, railways

I deploy once somewhere, keep alive until explicit removal

22.04.2009 | Dept. of Computer Science | Databases and Distributed Systems | Jose Ignacio Isaia Brasca | 9

Alternative Behavior
Autonomous Scope Maintenance

I In some cases, autonomous maintenance is desired
I long(er)-living scopes, e.g. building automation, railways

I deploy once somewhere, keep alive until explicit removal

22.04.2009 | Dept. of Computer Science | Databases and Distributed Systems | Jose Ignacio Isaia Brasca | 9

Approach: Floating Managers

I Decouple injecting node from root node's responsibility → �oating manager

I Under certain conditions, �oating mgr's responsibility moves to another node

I Goal is:
I enhance fault-tolerance by detecting manager's absence
I extend network lifetime by moving manager's role around

I Challenges:
I from distributed to autonomous system, where any node can contact a scope's

manager (e.g., to update/remove it)
I in/out tra�c cost monitoring to decide best placement of �oating manager

22.04.2009 | Dept. of Computer Science | Databases and Distributed Systems | Jose Ignacio Isaia Brasca | 10

Approach: Floating Managers

I Decouple injecting node from root node's responsibility → �oating manager

I Under certain conditions, �oating mgr's responsibility moves to another node

I Goal is:
I enhance fault-tolerance by detecting manager's absence
I extend network lifetime by moving manager's role around

I Challenges:
I from distributed to autonomous system, where any node can contact a

scope's manager (e.g., to update/remove it)
I in/out tra�c cost monitoring to decide best placement of �oating manager

I Focus of this work

22.04.2009 | Dept. of Computer Science | Databases and Distributed Systems | Jose Ignacio Isaia Brasca | 11

Outline

Scopes

Problem Description

Proposed Solution

Implementation Details

Results - Conclusions

22.04.2009 | Dept. of Computer Science | Databases and Distributed Systems | Jose Ignacio Isaia Brasca | 12

Proposed Solution

This problem can be solved in two steps:

1. Detection of root node failure
I Proactive → send msg's to actively detect failure
I Reactive → wait till an event happens to react

2. Selection of new root → �oating manager
I Leader Election Algorithm

I Bully algorithm
I Ring algorithm

22.04.2009 | Dept. of Computer Science | Databases and Distributed Systems | Jose Ignacio Isaia Brasca | 13

Proposed Solution

This problem can be solved in two steps:

1. Detection of root node failure
I Proactive → send msg's to actively detect failure
I Reactive → wait till an event happens to react

2. Selection of new root → �oating manager
I Leader Election Algorithm

I Bully algorithm
I Ring algorithm

22.04.2009 | Dept. of Computer Science | Databases and Distributed Systems | Jose Ignacio Isaia Brasca | 13

Proposed Solution

This problem can be solved in two steps:

1. Detection of root node failure
I Proactive → send msg's to actively detect failure
I Reactive → wait till an event happens to react

2. Selection of new root → �oating manager
I Leader Election Algorithm

I Bully algorithm
I Ring algorithm

22.04.2009 | Dept. of Computer Science | Databases and Distributed Systems | Jose Ignacio Isaia Brasca | 13

Detection of Root Node Failure

I A scope's root node sends a �scope refresh msg� every x seconds
I if there is no activity in a scope after a determined lease time, node just

removes that scope from its table

I To detect root failure, the same reactive mechanism is used
I when the lease time of a scope expires, node reacts reporting a root failure

22.04.2009 | Dept. of Computer Science | Databases and Distributed Systems | Jose Ignacio Isaia Brasca | 14

Detection of Root Node Failure

I A scope's root node sends a �scope refresh msg� every x seconds
I if there is no activity in a scope after a determined lease time, node just

removes that scope from its table

I To detect root failure, the same reactive mechanism is used
I when the lease time of a scope expires, node reacts reporting a root failure

22.04.2009 | Dept. of Computer Science | Databases and Distributed Systems | Jose Ignacio Isaia Brasca | 14

Selection of New Floating Manager
Leader Election Algorithm

I Idea: enforce toughest node to reign

I Based on The Bully Algorithm
I Election mechanism is based on Priorities

I Algorithm assumptions:
I each node has a unique priority
I nodes are strongly connected to each other
I no packet loss, every message is delivered

22.04.2009 | Dept. of Computer Science | Databases and Distributed Systems | Jose Ignacio Isaia Brasca | 15

Leader Election Algorithm
Protocol overview

I When a node ni realizes the coordinator has failed, it tries to elect itself as
new coordinator:

I Node ni sends an election message to every other node reporting its priority,
becomes a coordinator candidate and waits for time T

I When a node nj receives an election message from ni

I if (priority(nj) > priority(ni))
→ Node nj sends a new election message to every other node reporting its
priority, becomes coordinator candidate and waits for time T

I if (priority(nj) < priority(ni))
→ Node nj goes to follower state and waits for a time T

I The node that completes its election algorithm as a coordinator candidate is
elected as the new coordinator

22.04.2009 | Dept. of Computer Science | Databases and Distributed Systems | Jose Ignacio Isaia Brasca | 16

Leader Election Algorithm
Protocol overview

I When a node ni realizes the coordinator has failed, it tries to elect itself as
new coordinator:

I Node ni sends an election message to every other node reporting its priority,
becomes a coordinator candidate and waits for time T

I When a node nj receives an election message from ni

I if (priority(nj) > priority(ni))
→ Node nj sends a new election message to every other node reporting its
priority, becomes coordinator candidate and waits for time T

I if (priority(nj) < priority(ni))
→ Node nj goes to follower state and waits for a time T

I The node that completes its election algorithm as a coordinator candidate is
elected as the new coordinator

22.04.2009 | Dept. of Computer Science | Databases and Distributed Systems | Jose Ignacio Isaia Brasca | 16

Leader Election Algorithm
Protocol overview

I When a node ni realizes the coordinator has failed, it tries to elect itself as
new coordinator:

I Node ni sends an election message to every other node reporting its priority,
becomes a coordinator candidate and waits for time T

I When a node nj receives an election message from ni

I if (priority(nj) > priority(ni))
→ Node nj sends a new election message to every other node reporting its
priority, becomes coordinator candidate and waits for time T

I if (priority(nj) < priority(ni))
→ Node nj goes to follower state and waits for a time T

I The node that completes its election algorithm as a coordinator candidate is
elected as the new coordinator

22.04.2009 | Dept. of Computer Science | Databases and Distributed Systems | Jose Ignacio Isaia Brasca | 16

Leader Election Algorithm
Protocol overview

I When a node ni realizes the coordinator has failed, it tries to elect itself as
new coordinator:

I Node ni sends an election message to every other node reporting its priority,
becomes a coordinator candidate and waits for time T

I When a node nj receives an election message from ni

I if (priority(nj) > priority(ni))
→ Node nj sends a new election message to every other node reporting its
priority, becomes coordinator candidate and waits for time T

I if (priority(nj) < priority(ni))
→ Node nj goes to follower state and waits for a time T

I The node that completes its election algorithm as a coordinator candidate is
elected as the new coordinator

22.04.2009 | Dept. of Computer Science | Databases and Distributed Systems | Jose Ignacio Isaia Brasca | 16

Leader Election Algorithm
Protocol overview

I When a node ni realizes the coordinator has failed, it tries to elect itself as
new coordinator:

I Node ni sends an election message to every other node reporting its priority,
becomes a coordinator candidate and waits for time T

I When a node nj receives an election message from ni

I if (priority(nj) > priority(ni))
→ Node nj sends a new election message to every other node reporting its
priority, becomes coordinator candidate and waits for time T

I if (priority(nj) < priority(ni))
→ Node nj goes to follower state and waits for a time T

I The node that completes its election algorithm as a coordinator candidate is
elected as the new coordinator

22.04.2009 | Dept. of Computer Science | Databases and Distributed Systems | Jose Ignacio Isaia Brasca | 16

Leader Election Algorithm
Protocol overview

I When a node ni realizes the coordinator has failed, it tries to elect itself as
new coordinator:

I Node ni sends an election message to every other node reporting its priority,
becomes a coordinator candidate and waits for time T

I When a node nj receives an election message from ni

I if (priority(nj) > priority(ni))
→ Node nj sends a new election message to every other node reporting its
priority, becomes coordinator candidate and waits for time T

I if (priority(nj) < priority(ni))
→ Node nj goes to follower state and waits for a time T

I The node that completes its election algorithm as a coordinator candidate is
elected as the new coordinator

22.04.2009 | Dept. of Computer Science | Databases and Distributed Systems | Jose Ignacio Isaia Brasca | 16

Leader Election Algorithm
Node State Transition Diagram

CANDIDATE

FOLLOWER

Coordinator
 failure

detected

IDLE

LEADER

22.04.2009 | Dept. of Computer Science | Databases and Distributed Systems | Jose Ignacio Isaia Brasca | 17

Leader Election Algorithm
Node State Transition Diagram

CANDIDATE

FOLLOWER

Coordinator
 failure

detected

● Send_msg(my_priority)
● START TIMER_LEA

IDLE

LEADER

22.04.2009 | Dept. of Computer Science | Databases and Distributed Systems | Jose Ignacio Isaia Brasca | 18

Leader Election Algorithm
Node State Transition Diagram

CANDIDATE

FOLLOWER

Coordinator
 failure

detected

● Rec_msg(priority)
& priority < my_priority
● Send_msg(my_priority)

● START TIMER_LEA

● Send_msg(my_priority)
● START TIMER_LEA

IDLE

LEADER

22.04.2009 | Dept. of Computer Science | Databases and Distributed Systems | Jose Ignacio Isaia Brasca | 19

Leader Election Algorithm
Node State Transition Diagram

CANDIDATE

FOLLOWER

Coordinator
 failure

detected

● Rec_msg(priority)
& priority < my_priority
● Send_msg(my_priority)

● START TIMER_LEA

● Rec_msg(priority)
& priority > my_priority

● START TIMER_LEA

● Send_msg(my_priority)
● START TIMER_LEA

IDLE

LEADER

22.04.2009 | Dept. of Computer Science | Databases and Distributed Systems | Jose Ignacio Isaia Brasca | 20

Leader Election Algorithm
Node State Transition Diagram

CANDIDATE

FOLLOWER

Coordinator
 failure

detected

● Rec_msg(priority
) &

priority > my_priority

● Rec_msg(priority)
& priority < my_priority
● Send_msg(my_priority)

● START TIMER_LEA

● Rec_msg(priority)
& priority > my_priority

● START TIMER_LEA

● Send_msg(my_priority)
● START TIMER_LEA

IDLE

LEADER

22.04.2009 | Dept. of Computer Science | Databases and Distributed Systems | Jose Ignacio Isaia Brasca | 21

Leader Election Algorithm
Node State Transition Diagram

CANDIDATE

FOLLOWER

Coordinator
 failure

detected

● Rec_msg(priority) & priority < my_priority

● Rec_msg(priority
) &

priority > my_priority

● Rec_msg(priority)
& priority < my_priority
● Send_msg(my_priority)

● START TIMER_LEA

● Rec_msg(priority)
& priority > my_priority

● START TIMER_LEA

● Send_msg(my_priority)
● START TIMER_LEA

IDLE

LEADER

22.04.2009 | Dept. of Computer Science | Databases and Distributed Systems | Jose Ignacio Isaia Brasca | 22

Leader Election Algorithm
Node State Transition Diagram

CANDIDATE

FOLLOWER

Coordinator
 failure

detected

● Rec_msg(priority) & priority < my_priority

● Rec_msg(priority
) &

priority > my_priority

● Rec_msg(priority) & priority < my_priority
 | priority > my_priority

● Rec_msg(priority)
& priority < my_priority
● Send_msg(my_priority)

● START TIMER_LEA

● Rec_msg(priority)
& priority > my_priority

● START TIMER_LEA

● Send_msg(my_priority)
● START TIMER_LEA

IDLE

LEADER

22.04.2009 | Dept. of Computer Science | Databases and Distributed Systems | Jose Ignacio Isaia Brasca | 23

Leader Election Algorithm
Node State Transition Diagram

CANDIDATE

FOLLOWER

Coordinator
 failure

detected

● Rec_msg(priority) & priority < my_priority

● Rec_msg(priority
) &

priority > my_priority

● Rec_msg(priority) & priority < my_priority
 | priority > my_priority

● Rec_msg(priority)
& priority < my_priority
● Send_msg(my_priority)

● START TIMER_LEA

● Rec_msg(priority)
& priority > my_priority

● START TIMER_LEA

● TIMER_LEA Timeout

● TIMER_LEA Timeout

● Send_msg(my_priority)
● START TIMER_LEA

IDLE

LEADER

22.04.2009 | Dept. of Computer Science | Databases and Distributed Systems | Jose Ignacio Isaia Brasca | 24

Outline

Scopes

Problem Description

Proposed Solution

Implementation Details

Results - Conclusions

22.04.2009 | Dept. of Computer Science | Databases and Distributed Systems | Jose Ignacio Isaia Brasca | 25

Implementation Details
Leader Election Algorithm for Scopes

I There is one LEA for each scope whose root node failed

I Node ID's are used as priority

I Nodes manage an extra table:
I Scope LEA Table (dynamic) → LEAs running information

I Nodes manage at most MAX_SCOPES scopes → nodes participate in at
least MAX_SCOPES Leader Election Algorithms.

22.04.2009 | Dept. of Computer Science | Databases and Distributed Systems | Jose Ignacio Isaia Brasca | 26

Implementation Details
Leader Election Algorithm for Scopes

I There is one LEA for each scope whose root node failed

I Node ID's are used as priority

I Nodes manage an extra table:
I Scope LEA Table (dynamic) → LEAs running information

I Nodes manage at most MAX_SCOPES scopes → nodes participate in at
least MAX_SCOPES Leader Election Algorithms.

22.04.2009 | Dept. of Computer Science | Databases and Distributed Systems | Jose Ignacio Isaia Brasca | 26

Implementation Details
Leader Election Algorithm for Scopes

I There is one LEA for each scope whose root node failed

I Node ID's are used as priority

I Nodes manage an extra table:
I Scope LEA Table (dynamic) → LEAs running information

I Nodes manage at most MAX_SCOPES scopes → nodes participate in at
least MAX_SCOPES Leader Election Algorithms.

22.04.2009 | Dept. of Computer Science | Databases and Distributed Systems | Jose Ignacio Isaia Brasca | 26

guerrero
Inserted Text
 (concurrent)

guerrero
Cross-Out

guerrero
Replacement Text
As priorities, node IDs are used

guerrero
Inserted Text
:

Implementation Details
Leader Election Algorithm for Scopes

I There is one LEA for each scope whose root node failed

I Node ID's are used as priority

I Nodes manage an extra table:
I Scope LEA Table (dynamic) → LEAs running information

I Nodes manage at most MAX_SCOPES scopes → nodes participate in at
least MAX_SCOPES Leader Election Algorithms.

22.04.2009 | Dept. of Computer Science | Databases and Distributed Systems | Jose Ignacio Isaia Brasca | 26

Implementation Details
LEA Messages

I There is simply one message type: LEA msg

id seq
data

length data

HEADER PAYLOAD

priority scope_id
super

scope_id
spec

length scope specifications

I When a node sends a LEA msg, the algorithm assumes that it is delivered to all
nodes in the network.

I LEA msgs are Flooded

22.04.2009 | Dept. of Computer Science | Databases and Distributed Systems | Jose Ignacio Isaia Brasca | 27

guerrero
Cross-Out

Implementation Details
Receiving a LEA message

I Routing module

id seq data
len data

I Flooding
I msg is new
→ report Scope module
→ resend msg

I msg has been seen
→ discard

I Scope module

priority scope_id super
scope_id

spec
length

scope specifications

I Is there a LEA running for this scope ID ?
I node has already started the LEA (root failure detected)
I node has already received a LEA message for this scope

22.04.2009 | Dept. of Computer Science | Databases and Distributed Systems | Jose Ignacio Isaia Brasca | 28

Implementation Details
Receiving a LEA message

I Routing module

id seq data
len data

I Flooding
I msg is new
→ report Scope module
→ resend msg

I msg has been seen
→ discard

I Scope module

priority scope_id super
scope_id

spec
length

scope specifications

I Is there a LEA running for this scope ID ?
I node has already started the LEA (root failure detected)
I node has already received a LEA message for this scope

22.04.2009 | Dept. of Computer Science | Databases and Distributed Systems | Jose Ignacio Isaia Brasca | 28

Implementation Details
Receiving a LEA message (2)

- No LEA running for this scope ID:
I my_priority > priority(msg)

I Store scope data into Scope LEA Table
→ go to CANDIDATE state
→ Lowest non-used timer ID

I Send a LEA msg reporting my_priority
I Start Timer LEA

I my_priority < priority(msg)
I Store scope data into Scope LEA Table
→ go to FOLLOWER state
→ Lowest non-used timer ID

I Start Timer LEA

- LEA already running for this scope ID:
I my_priority < priority(msg)

I if node was in CANDIDATE state, it goes to FOLLOWER state for that LEA.

22.04.2009 | Dept. of Computer Science | Databases and Distributed Systems | Jose Ignacio Isaia Brasca | 29

Implementation Details
Receiving a LEA message (2)

- No LEA running for this scope ID:
I my_priority > priority(msg)

I Store scope data into Scope LEA Table
→ go to CANDIDATE state
→ Lowest non-used timer ID

I Send a LEA msg reporting my_priority
I Start Timer LEA

I my_priority < priority(msg)
I Store scope data into Scope LEA Table
→ go to FOLLOWER state
→ Lowest non-used timer ID

I Start Timer LEA

- LEA already running for this scope ID:
I my_priority < priority(msg)

I if node was in CANDIDATE state, it goes to FOLLOWER state for that LEA.

22.04.2009 | Dept. of Computer Science | Databases and Distributed Systems | Jose Ignacio Isaia Brasca | 29

Implementation Details
Receiving a LEA message (2)

- No LEA running for this scope ID:
I my_priority > priority(msg)

I Store scope data into Scope LEA Table
→ go to CANDIDATE state
→ Lowest non-used timer ID

I Send a LEA msg reporting my_priority
I Start Timer LEA

I my_priority < priority(msg)
I Store scope data into Scope LEA Table
→ go to FOLLOWER state
→ Lowest non-used timer ID

I Start Timer LEA

- LEA already running for this scope ID:
I my_priority < priority(msg)

I if node was in CANDIDATE state, it goes to FOLLOWER state for that LEA.

22.04.2009 | Dept. of Computer Science | Databases and Distributed Systems | Jose Ignacio Isaia Brasca | 29

Implementation Details
Receiving a LEA message (2)

- No LEA running for this scope ID:
I my_priority > priority(msg)

I Store scope data into Scope LEA Table
→ go to CANDIDATE state
→ Lowest non-used timer ID

I Send a LEA msg reporting my_priority
I Start Timer LEA

I my_priority < priority(msg)
I Store scope data into Scope LEA Table
→ go to FOLLOWER state
→ Lowest non-used timer ID

I Start Timer LEA

- LEA already running for this scope ID:
I my_priority < priority(msg)

I if node was in CANDIDATE state, it goes to FOLLOWER state for that LEA.

22.04.2009 | Dept. of Computer Science | Databases and Distributed Systems | Jose Ignacio Isaia Brasca | 29

Implementation Details
Timer LEA Timeout

.

scope_id

.

.

.

timer_id

state

LEA #1LEA #1 LEA #2LEA #2 LEA #nLEA #n

Scope LEA TableScope LEA Table

. .

22.04.2009 | Dept. of Computer Science | Databases and Distributed Systems | Jose Ignacio Isaia Brasca | 30

Implementation Details
Timer LEA Timeout

.

scope_id

.

.

.

timer_id

state

LEA #1LEA #1 LEA #2LEA #2 LEA #nLEA #n

Scope LEA TableScope LEA Table

. .

22.04.2009 | Dept. of Computer Science | Databases and Distributed Systems | Jose Ignacio Isaia Brasca | 31

Implementation Details
Timer LEA Timeout

.

scope_id

.

.

.

timer_id

state

LEA #1LEA #1 LEA #2LEA #2 LEA #nLEA #n

Scope LEA TableScope LEA Table

. .

22.04.2009 | Dept. of Computer Science | Databases and Distributed Systems | Jose Ignacio Isaia Brasca | 32

Implementation Details
Timer LEA Timeout

.

scope_id

.

.

.

timer_id

state

LEA #1LEA #1 LEA #2LEA #2 LEA #nLEA #n

Scope LEA TableScope LEA Table

.

I State:
I CANDIDATE
→ node is elected new scope

manager

→ starts sending refresh msg
I FOLLOWER
→ node �nishes LEA for that
scope

22.04.2009 | Dept. of Computer Science | Databases and Distributed Systems | Jose Ignacio Isaia Brasca | 33

Implementation Details
Timer LEA Timeout

.

scope_id

.

.

.

timer_id

state

LEA #1LEA #1 LEA #2LEA #2 LEA #nLEA #n

Scope LEA TableScope LEA Table

.

I State:
I CANDIDATE
→ node is elected new scope

manager

→ starts sending refresh msg
I FOLLOWER
→ node �nishes LEA for that
scope

22.04.2009 | Dept. of Computer Science | Databases and Distributed Systems | Jose Ignacio Isaia Brasca | 33

Implementation Details
Timer LEA Timeout

.

scope_id

.

.

.

timer_id

state

LEA #1LEA #1 LEA #2LEA #2 LEA #nLEA #n

Scope LEA TableScope LEA Table

.

I State:
I CANDIDATE
→ node is elected new scope

manager

→ starts sending refresh msg
I FOLLOWER
→ node �nishes LEA for that
scope

22.04.2009 | Dept. of Computer Science | Databases and Distributed Systems | Jose Ignacio Isaia Brasca | 33

Outline

Scopes

Problem Description

Proposed Solution

Implementation Details

Results - Conclusions

22.04.2009 | Dept. of Computer Science | Databases and Distributed Systems | Jose Ignacio Isaia Brasca | 34

Results

I Di�erent priority assignments can be used: energy, distance, tra�c, etc.

I Although the algorithm is simple, its implementation requires many lines of
code (' 600)

I Program space requirements were increased only in 1.3KB

section size addr
.text 44612 16384
.data 342 4352
.bss 5699 4694
.noinit 25 10393
.vectors 32 65504
.stab 2940 0
.stabstr 2572 0

Total 56222

section size addr
.text 45948 16384
.data 342 4352
.bss 5699 4694
.noinit 25 10393
.vectors 32 65504
.stab 2940 0
.stabstr 2572 0

Total 57558

ScopesScopes Scopes w/ floating managerScopes w/ floating manager

I Additional memory space required in runtime is:
size of scope LEA table entry × nº of LEAs running

22.04.2009 | Dept. of Computer Science | Databases and Distributed Systems | Jose Ignacio Isaia Brasca | 35

guerrero
Cross-Out

guerrero
Replacement Text
by

guerrero
Cross-Out

guerrero
Replacement Text
nr.

Conclusions

I Adding �oating manager functionality required minor modi�cations to
existing framework

I A reactive root failure detection can be easily implemented, but a pro-active
mechanism would require additional messages exchange.

22.04.2009 | Dept. of Computer Science | Databases and Distributed Systems | Jose Ignacio Isaia Brasca | 36

guerrero
Cross-Out

guerrero
Cross-Out

Future Work

I Algorithm makes strong assumptions that require a deep evaluation
I nodes are strongly connected

I no packet loss

I nodes have a unique priority → how to manage priority ties

I Floating manager re-placement under certain conditions to extend network
lifetime

22.04.2009 | Dept. of Computer Science | Databases and Distributed Systems | Jose Ignacio Isaia Brasca | 37

guerrero
Cross-Out

guerrero
Replacement Text
handle

guerrero
Cross-Out

guerrero
Replacement Text
relocation

Packet Loss Tests

22.04.2009 | Dept. of Computer Science | Databases and Distributed Systems | Jose Ignacio Isaia Brasca | 38

	Scopes
	Problem Description
	Proposed Solution
	Implementation Details
	Results - Conclusions

