
Scopes Declarative Language
Pablo Guerrero, Daniel Jacobi, Ilia Petrov, Alejandro Buchmann
E-mail: {guerrero,jacobi,petrov,buchmann}@dvs.tu-darmstadt.de

Databases and
Distributed
Systems Group

1 Introduction

The goal of this document is to explain and exemplify the declarative language used to operate the Scopes framework.

2 The Language

We proceed with a top down approach to the Scopes language.

2.1 Scope Operations

There are three operations, namely, to create a scope, to remove a scope, and to send data to all of a scope’s members.

operation

scopeCreate�
�scopeRemove

�scopeSendData

�

2.2 Scope Creation

This is the most complex statement, as it is very expressive and has many keywords. The general structure of the CREATE
statement is:

scopeCreate

CREATE SCOPE AS
�� �scopeIdentifier AS

�� �scopeExpression scopeProperties

scopeIdentifier

letter �
� letter�

�digit

�

�
�

�

�

A scope can be specified as nested within another, parent scope. Both scope and parent scope are specified by a scope
identifier, however, scope identifiers are hashed to 16-bit ids, which are used within the sensor network.

scopeProperties

�
�SUBSCOPE OF

�� �scopeIdentifier

�

An (incomplete) example can thus be:

CREATE SCOPE ChildScope AS (

...) SUBSCOPE OF ParentScope;

Scopes are defined by means of logical expressions. These can be connected by logical operators AND, OR and NOT, or
be recursively defined between parenthesis.

1

scopeExpression

scopeExpressionTerm�
� (

���scopeExpression)
����NOT

�� �scopeExpression

�scopeExpression AND
�� �scopeExpression

�scopeExpression OR
�� �scopeExpression

�

At some point, logical expressions contain terms, e.g., subparts of the expression that evaluate to true or false. In
Scopes there are three types of terms. To check whether a node has a populated sensor or not, the EXISTS SENSOR term
is used (see below the array of predefined sensors). A typical term is that for comparison, which is binary. There are
four types of operands that can be used for comparison, Finally, geometrical terms check for a three-dimensional aspect,
typically using the position of the node.

scopeExpressionTerm

existsSensorTerm�
�comparisonTerm

�geometricalTerm

�

existsSensorTerm

EXISTS SENSOR
�� �sensorType

sensorType

LIGHT AMBIENT
�� ��

�LIGHT PAR
�� ��HUMIDITY
�� ��INTERNAL TEMPERATURE
�� ��ACCEL X SENSOR
�� ��ACCEL Y SENSOR
�� ��INTERNAL VOLTAGE
�� �

�

comparisonTerm

comparisonOperand comparisonOperator comparisonOperand

2

comparisonOperator

=
����

�!=
�� �� >
���� <
����>=
�� ��<=
�� �

�

comparisonOperand

sensorType�
�REPOSITORY KEY

�� �number

�NODE ID
�� ��constant

�

A compact example illustrating the first two clause types is presented next:
CREATE SCOPE ScopeExample AS (

(EXISTS SENSOR HUMIDITY AND NOT HUMIDITY <= 70) OR

NODE ID > 20 OR

REPOSITORY KEY 7 == 273);

This expression is evaluated to true by a node if:

• both the humidity sensor is populated and the humidity is greater than 70, or

• the node’s id is greater than 20, or

• the repository entry with key value 7 equals the constant value 273.

There are three geometrical operators supported currently by Scopes. The IN SPHERE clause is quite straightforward:
it takes a sphere and a point as arguments, and returns true if the point is within or at the borders of the sphere, and
false otherwise. Spheres are defined by their center and radius. The IN SEGMENT clause takes a segment and a point as
argument, and returns true if the point is within the segment, false otherwise. Segments are defined as a sequence of
points and a segment width. The IN POLYGON clause takes a polygon and a point as an argument, and returns true if
the point is inside or at the borders of the polygon. Polygons are defined as a sequence of consecutive points, the last of
which is implicitly connected to the first.

geometricalTerm

inPolygon�
� inSphere

� inSegment

�

inSphere

IN SPHERE
�� �(

���sphere ,
���point)

���
inSegment

IN SEGMENT
�� �(

���segment ,
���point)

���
3

inPolygon

IN POLYGON
�� �(

���polygon ,
���point)

���
distance

number

point

[
���number ,

���number ,
���number]

����
�NODE POSITION

�� �
�

sphere

SPHERE
�� �(

���point ,
���distance)

���
polygon

POLYGON
�� �(

���point ,
���point ,

���point�
�

�

)

���
segment

SEGMENT
�� �(

���point ,
���point�

�
�

,

���number)
���

As example of these constructs we present the following statement:
CREATE SCOPE GeomScopeExample AS (

IN SPHERE (SPHERE ([100,50,50], 30), [101,51,49]) OR

IN POLYGON (POLYGON ([0,0,0], [0,100,0], [50,50,0]), NODE POSITION) OR

IN SEGMENT (SEGMENT ([0,0,0], [50,50,0], [50,100,0], 5)

);

This scope creation evaluates to true if:

• the point [101,51,49] is located within the sphere centered at [100,50,50] and 30 meter radius (true for these
constants), or

• the node’s position is located within the specified triangle (polygon), or

• the node’s position is located up to 5 meters from the specified line segments.

3 Scope Removal

The removal of a scope is quite straightforward:

scopeRemove

REMOVE SCOPE
�� �scopeIdentifier

4 Sending Data to a Scope

Data can be declaratively sent from a scope’s root node to its members. For a connection to an SOS node, the following
parameters must be specified:

• DEST MODULE: the id of the module that should receive the message

4

• SOURCE MODULE: the module id that should be used as sender module

• TYPE: the message type, i.e., the function that should handle the message.

scopeSendData

SEND SCOPE
�� �scopeIdentifier DEST MODULE

�� �number �
�

�SOURCE MODULE
�� �number TYPE

�� �number �
�

�PAYLOAD
�� �hexSequence

The payload is specified as a sequence of hexadecimal characters with the following format.

hexSequence

hexData�
�

�

hexData

0x
�� �hexChar hexChar

5

	Introduction
	The Language
	Scope Operations
	Scope Creation

	Scope Removal
	Sending Data to a Scope

