
EVENTLETS - Containers for
Generic Event-driven Tasks

Stefan Appel

Contact: Stefan Appel, appel@dvs.tu-darmstadt.de | http://www.dvs.tu-darmstadt.de/

•  Eventlets are containers for generic event-driven tasks
that encapsulate application logic invoked by events

•  Tasks are generic in the sense that the same actions
can apply to multiple entities and events, e.g., the
application logic for a room temperature control can
be reused for other rooms

Reactive Applications Eventlets

Task Instance Task Instance Task Instance

Events

Entities

Sphere of Influence

Generic Task

Abstract View

Events

Entities

Sphere of Influence

Task Instance

Actions

Example

Task Instance Task Instance Task Instance

Temp

Room

Sphere of Influence

Temp Control

Temp: 16°C

Room: 42

Sphere of Influence

Temp ControlRoom42

Temp<17°: Heat

Eventlet Monitor Server1

Eventlet Instance Server1

Command Bus

Eventlet Monitor Eventlet Monitor Eventlet Monitor

Event Bus

Eventlet Instance Eventlet Instance Eventlet Instance

Server1

Eventlet Monitor Servern

Eventlet Instance Servern

Eventlet Instance Eventlet Instance Eventlet Instance

Servern

Eventlet Monitor Eventlet Monitor Eventlet Monitor

Push-based Pull-based

Events: Streams of Data Database: Persistent Data

Event-driven Architecture
Service-oriented

Architecture

Eventlets
reactive

Services
request/reply

Reactive Applications

Generic Event-driven Tasks

•  Reactive applications integrate already available data
(persistent data) with data just coming into existence
(streams of events)

•  Persistent data is accessed in a pull-based fashion:
•  Services query databases (request/reply)
•  Services are combined in service-oriented

architectures (SOA)
•  Streams of events are push-based:
•  Eventlets receive relevant events
•  Eventlets are combined in event-driven architectures

(EDA)

•  Eventlets encapsulate application logic for groups of
events that are associated with real world entities,
e.g., persons

•  Design paradigm
•  Write application logic for “An Entity” (Eventlet

Prototype)
•  Eventlet middleware applies application logic for

“Each Entity” when necessary (Eventlet Instance)

ID: 1

8

32

21

4

1

6

2

58

92

3

7

5ID: 2

ID: n

!!!"

1

54

71

3

1

4

3

65

12

2

9

2

8 59 1 3 19 7

Event Bus

!"#$%&#%'()*%*%+,#'

#$%&'(%')*"+" #$%&'(%')*"," !!!" #$%&'(%')*"&" Middleware

Developer

Eventlet Middleware
•  Distributed framework for scalability
•  Based upon Java Message Service (JMS)
•  Registration of Eventlet prototype triggers creation of

Eventlet monitor
•  Eventlet monitors are responsible to create Eventlet

instances
•  Eventlet instances follow lifecycle: application logic

upon instantiation, removal, expiration, and event
arrival

•  Asynchronous event handling for high performance

