
EVENTLETS - Containers for 
Generic Event-driven Tasks 

Stefan Appel 

Contact: Stefan Appel, appel@dvs.tu-darmstadt.de  |  http://www.dvs.tu-darmstadt.de/  

•  Eventlets are containers for generic event-driven tasks 
that encapsulate application logic invoked by events 

•  Tasks are generic in the sense that the same actions 
can apply to multiple entities and events, e.g., the 
application logic for a room temperature control can 
be reused for other rooms 
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Reactive Applications 

Generic Event-driven Tasks 

•  Reactive applications integrate already available data 
(persistent data) with data just coming into existence 
(streams of events) 

•  Persistent data is accessed in a pull-based fashion: 
•  Services query databases (request/reply) 
•  Services are combined in service-oriented 

architectures (SOA) 
•  Streams of events are push-based: 
•  Eventlets receive relevant events 
•  Eventlets are combined in event-driven architectures 

(EDA) 

•  Eventlets encapsulate application logic for groups of 
events that are associated with real world entities, 
e.g., persons 

•  Design paradigm 
•  Write application logic for “An Entity” (Eventlet 

Prototype) 
•  Eventlet middleware applies application logic for 

“Each Entity” when necessary (Eventlet Instance) 
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Developer 

Eventlet Middleware 
•  Distributed framework for scalability 
•  Based upon Java Message Service (JMS) 
•  Registration of Eventlet prototype triggers creation of 

Eventlet monitor 
•  Eventlet monitors are responsible to create Eventlet 

instances 
•  Eventlet instances follow lifecycle: application logic 

upon instantiation, removal, expiration, and event 
arrival 

•  Asynchronous event handling for high performance 


