TECHNISCHE UNIVERSITÄT DARMSTADT

Infrastructure for Massively Multiplayer Games

Patric Kabus

Databases and Distributed Systems Group

Introduction

- Massively Multiplayer Games (MMPGs) are becoming more and more popular
 - Final Fantasy XI 500.000+ subscribers
 - Sony's Everquest 450.000 subscribers
 - Lineage (famous Asian MMPG) claims to have 4.000.000 subscribers
- At peak times, tens of thousands of players are online
- No server can support all players simultaneously
 → Players are distributed over "shards"

Final Fantasy XI Online (Square Enix)

Motivation

- Bringing all players together in a single game instance, allowing them to share the experience
- Providing an infrastructure that puts no limits on the number of players
 - Client/Server won't do costs increase with growing number of players
 - Gamers tend to have powerful PCs

Star Wars Galaxies (Sony Online Entertainment)

Security

- Protecting players' personal data (e.g. credit card numbers)
- Disabling cheaters cheaters are a major threat to game balance and may cause players to cancel their subscriptions
- In C/S the server has authority over game state
 → good for detecting cheaters
- Performance & Scalability
 - Different types of games have different performance requirements
 - Network infrastructure must scale with number of players

Building a framework for scalable peer-to-peer MMPG infrastructures

•Imposes many challenges in a fully distributed environment, e.g.

 Utilize clients' resources by distributing load among players

Lineage (NCSoft)

- Shards are different instances of the same game world ("parallel universes")
- A shard is made of a single server or a cluster of servers to which players connect as clients
- Shards support about 5000 players simultaneously
 Usually, no interaction between players on different
- stards is possible
- In most MMPGs players cannot even migrate between shards

Everquest (Sony Online Entertainment)

Issues Involved

Data Dissemination

- Game state has to be distributed to all players
- usually based on player's location and his perception
- minimize bandwidth requirements
- Synchronization
 - Players want to have a consistent view of game state
 - network latency induces delays ("lag")
 - latency compensation techniques needed, e.g. dead reckoning
- Availability
 - Players pay a monthly fee and may play as much as they want
 - Server downtimes are a major annoyance to players

 they prevent them from getting what they paid for

Persistence

- Most games are based on developing a virtual character ("Avatar")
- All achievements and possessions of an avatar must be saved to persistent storage on a regular base
- Players loosing hours or even days of "work" because of data loss will likely cancel their subscriptions

The way to go...

 Detecting cheaters is difficult due to lack of a central game state authority

Apply group's experience to tackle some of these challenges