
Relying on Wireless Sensor Networks

to Enhance the RC-Gaming Experience

Pablo Guerrero1, Mariano Cilia2 and Alejandro Buchmann2

1 GK Enabling Technologies for Electronic Commerce, and
2 Databases and Distributed Systems Group,

Dept. of Computer Science, TU Darmstadt, Germany

{guerrero, cilia, buchmann}@dvs1.informatik.tu-darmstadt.de

Abstract. The state of the art in pervasive computing technologies will

slowly allow turning into a world full of smart objects, and remote con-

trolled toys are no exception. Following the growing popularity of multi-

player computer games, we envision a novel application that enriches the

gaming experience by taking the digital multi-player interaction into the

physical world of remote controlled toys. We propose the development

of an infrastructure that relies on wireless sensor networks as the glue

that enables using remote controlled toys with multi-player games, and

provide a road map for its development.

1 Introduction

Advances in pervasive computing technologies are slowly allowing us to improve
different aspects of our daily activities. One of such aspects is entertainment,
which can be done either in the physical world (i.e., sports, table games, etc.) or
in the digital world (i.e., by means of computer games).

A very entertaining activity in the physical world is to play with remote
controlled (RC) toys, and nowadays many types are offered such as cars, trucks,
airplanes, boats and even robots with guns. These RC toys differ in complexity,
starting from small, ready to use toys for kids, to assemble-yourself more complex
toys, to complete hobbies for demanding enthusiasts. The toys are operated
remotely by their owners with a controller. The wireless radio connection is
unidirectional, usually split in multiple channels at several frequencies

Playing with RC toys is very exciting, however gaming mode has not changed
so far. The way they are used today consists basically of finding an appropriate
spot (race track, open space, lake, mud, etc.) and play until no energy (i.e. bat-
tery, fuel, etc.) is left. Due to the toy’s energy consumption, this is characterized
by short playing sessions that vary from a couple of minutes to a few hours.

On the other hand, in the digital world, multi-player computer games (over
a computer network) have gained increasing popularity among players since the
release of Doom in 1993 c©. Single-player gaming modes, where the player fought
against computer enemies, evolved into multi-player modes like Deathmatch or
Co-operative. Computer opponents could be replaced with human player’s char-
acters, controlled from another side of the network. Later on, new gaming modes

were conceived like Last Man Standing or Invasion. These gaming modes have
definitively leveraged the playability of existing computer games.

Our idea is to enrich the RC players’ experience by taking the digital multi-
player gaming interaction into the physical world of the RC toys. Currently, there
are many RC toys ready to be used with such games, however, no infrastructure
is available that allows this kind of interaction. In this paper we propose the
usage of wireless sensor networks (WSNs) as the gluing infrastructure that makes
possible that RC toys can be played as a multi-player game.

2 Enhancing the Game Experience with Onslaught

In order to exemplify the infrastructure functionality, we show a concrete gaming
mode called Onslaught [10], inspired by the popular game Unreal Tournament c©.
Within Onslaught, participants are divided into two opposing teams. The game-
yard contains two Power Cores that act as base stations (e.g., the Red or the
Blue Power Core). These, in turn, are linked to each other through several strate-
gic points, called Power Nodes, forming a predefined virtual network. The team
goal is to conquer the enemy’s Power Core, while defending theirs’.

The game rules are simple. A Power Node can be conquered when a toy
stays for some seconds within a certain range around it. Moreover, a player
can conquer a Power Node if and only if there is a path composed by other
conquered Power Nodes connecting it with its team’s Power Core. Power Nodes
have a strength attribute representing the intensity with which they have been
conquered, and indicated with a color light. An opponent can also neutralize
and convert a Power Node to its team’s color by taking the same action. Power
Cores can be similarly conquered, however they can not be healed back.

Players’ toys strategically advance across the gameyard towards the oppo-
nents’ Power Core by conquering virtually connected Power Nodes. When, for
instance, the Blue team has conquered a set of Power Nodes such that they form
a path starting at their Blue Power Core and ending at the Red Power Core, the
latter can be conquered. As long as this restriction is fulfilled, the Red Power
Core’s strength can be weakened. However, if a Red team member breaks the
path connection by neutralizing one of the intermediate Power Nodes, then the
Blue team must either reconquer it or use an alternative path.

Obviously, two or more RC toys could simultaneously try to conquer or de-
fend a Power Node or Power Core, so players should expect impacts on the toys,
in order to put each other out of the node’s range. The game finishes when a
Power Core is conquered, i.e., when its strength becomes zero.

Figure 1 shows a simple Onslaught map snapshot, as well as the described
entities. By applying our knowledge in WSNs and multi-player games, we can
offer new gaming modes to the participants. Our aim is to provide a gaming
framework that enables deploying a broad spectrum of team-based, goal-oriented
gameplay. Next, we describe the application requirements and provide a road
map for its development. We finalize by providing a summary of related work
and the conclusions.

Blue
Power
Nodes

Red
Power
Node

Neutral
Power
Nodes

Blue
Power
Core

Red
Power
Core

Virtual
Network

Links

Blue Link
Red Link
Neutral Link

Fig. 1. A Simple Onslaught Map

3 Multi-player Real Life Games’ Requirements

In order to allow RC toys to support gaming modes like the example shown in
the previous section, an infrastructure is required. This work proposes the devel-
opment of such an infrastructure, which binds three different domains, namely
pervasive computing, multi-player games and toys. We have called this intersec-
tion Multi-player Real Life Games, or MPRLG for short.

The small set of rules for a game like Onslaught requires sensing and com-
puting some data, as well as the ability to act on the sensory data. This is not
only true for the RC toys, but also for the set of game gadgets like the Power
Cores and Power Nodes deployed in the gameyard. Game components (i.e., both
the RC toys and the game gadgets) enable the new gaming modes by signaling
the different occurrences of the game (e.g., Red Car #7 conquered Blue Power

Node #3) and of course need some type of wireless connectivity. This is where
the infrastructure comes into play by providing:

1. a computational model to specify the game rules and assign them to the
game components;

2. the means to disseminate the information between the interested parties, like
game components or controllers; and

3. a placeholder at the game components that triggers these rules and executes
the associated actions.

The first challenge is to enable the game components to sense, compute
and communicate. We propose to attach a wireless sensor node to each game
component and controller. In this context, a node consists of a processor, some
memory, a wireless radio and a power source. This scheme presents the advantage
of keeping unchanged the proprietary unidirectional channel between controllers

and toys, used by players to manipulate them. The wireless sensor nodes use
another radio frequency to convey game-related data that coexists with the
remote controlling channel. We proceed in this section describing important non-
functional attributes and constraints that challenge the infrastructure design.

3.1 Gaming Modes Acquisition, Configuration and Deployment

The gaming mode’s logic can be expressed as a set of rules, which could be con-
tained by a Game Repository, accessible through the web. A Game Configurator

such as a PDA can be used to download a gaming mode. Normally some initial
setup and configuration is required, which occurs at two different levels. First,
given the unreliable communication nature of the WSN, participants want to
check the proper operation of the network before the game starts. Nodes must
organize themselves into an operational network, for instance, adjusting routing
tables with local neighbors. Second, gaming mode dependent attributes must
be set. The user interaction is required, for instance, to help provide unique
identities (accessible by the application) to the game components, assign them
with different roles, or setting fine-grained game parameters (e.g. overall game
duration, maximum strength, etc.).

After players agree to a gaming mode, deployment of the corresponding role
logic into the toys’ and gadgets’ nodes occurs, using the wireless protocol, al-
though this is known to consume considerable energy from the node’s power
source. Participants could join the game dynamically, as long as the gaming
mode rules are deployed into their toys’ node first.

3.2 Game-Player Runtime Interaction

The infrastructure should allow participants to visualize the game state. For
instance in the Onslaught game, participants could visualize the virtual network
of Power Nodes conquered so far and their strength. Ideally for the players’
mobility would be to embed a small size screen into the remote controllers, or
have regular PDAs. This allows each player to monitor the information of his
personal toy, such as the location or speed, and would give players within a team
the opportunity to be physically distant. Through this interface, participants can
also send strategic commands to other teammates, for instance, by indicating
a meeting point in his screen’s map with a pen. The command would be sent
through the nodes mesh.

3.3 Beyond Onslaught

In general, information generated by further sensors like acceleration, tempera-
ture, light, orientation, wind and energy (e.g., battery, nitro, gas, fuel) sensors,
signal strength indications, localization and context-aware algorithms, etc., could
feed the game rules. In addition, toys could provide an I/O interface where the
wireless node can be plugged to query its intrinsic hardware integrity. In this

way, part malfunctions, engine temperature, or any other internal readings can
also enrich the game rules.

The game logic, defined by means of rules, should clearly define which infor-
mation can be shared with others and what must be made private (i.e., visible
only by the player or its team), particularly since the transport mechanism could
convey the events through any wireless node in the mesh (i.e., a team-mate or
an opponent’s sensor node).

4 Infrastructure Design and Challenges

The infrastructure required to support the described gaming modes must face
many technical challenges. In this section we show the considerations that lead
to our layered infrastructure design. These layers are illustrated in Figure 2.

Application Layer. Several key abstractions were identified in the top layer. The
Game Manager provides an interface to handle deployment details as mentioned
in Section 3.1. This component contains an id that uniquely identifies the node
it resides in from the rest. The id can either be obtained from the operating
system or an algorithm can be used. It also stores the node’s role, which can be
given by the properties of the node itself (e.g., has particular sensors).

This layer also deals with the gaming mode logic. We argue that a MPRLG
can be modeled using an event-triggered rule language such as Event-Condition-
Action (ECA) rules. These rules clearly specify when they should be triggered
and what to do in reaction. For instance, in the Onslaught game we may have:

Event: ON [CarDetected(car)]

Condition: IF [∃ neighbor Power Node pn /

{CurrentTeamColor(pn) = TeamColor(car)}]

Action: DO [AdjustStrength(TeamColor(car)); PublishState();]

This rule exemplifies the easiness with which the Power Node’s logic can be
described using ECA rules. The Event clause indicates that the rule must be
triggered when the node detects a ‘car’ in the proximity of the Power Node.
The Condition clause states that the action must be executed only if there is
a neighbor Power Node ‘pn’ that is currently conquered by ‘car’s team color.
Finally, the Action clause contains an list of activities, in this case the adjustment
of the Power Node’s strength attribute, and the dissemination of its state. Note
that although this rule is triggered by an event sensed locally by the node, it
could also by triggered by an event received from a neighbor node.

During runtime, a rule engine triggers the rules as a result of incoming events,
checks the required conditions, and executes the associated actions. This archi-
tecture is based on an Active Functionality Service [4], which is platform inde-
pendent [2]. Roughly, the ECA Manager component administrates the ECA-rule
registration and activation, and relies on other elementary services when rules
are triggered, like the Event, Condition and Action Services. This approach is

Networked OS / VM

Publish/Subscribe Middleware

Radio

Gaming
Mode
ECA
Rules

Event

Service

Condition

Service

Action

Service

Local Game
State

ECA Manager

Game Manager

Sensor Board CPU & Memory

Antenna

Fig. 2. Infrastructure Architecture

scalable to small embedded systems. However, although it has been proposed
for WSNs [13], we are not aware of concrete implementations.

Finally, the rule engine is basically stateless, hence we provide a Local Game

State component, which stores information required by the application services.
Therefore, game ECA-rules must be adequately arranged such that only a min-
imum set of game state is kept in the sensor nodes.

Game components’ logical communication. In order to update the game state,
wireless nodes communicate with their peers, exchanging game-related events in
a many to many relationship. The asynchronous communication between nodes
can benefit from using the publish/subscribe (pub/sub) paradigm, since it natu-
rally decouples producers and consumers, makes them anonymous to each other,
and allows a dynamic number of publishers and subscribers. Generated data
might be filtered, aggregated, and eventually disseminated towards interested
consumers, like peers or controllers. Due to the spontaneity of the gaming field
settlement, an ad hoc, infrastructureless communication is needed. Using an ac-
cess point-like infrastructure would not only increase the deployment effort, but
also require more power at the nodes to transmit data over longer distances.
Instead, nodes route data to interested consumers across multiple short hops.
In addition, game components are in constant movement. This implies that a)
available neighbors at one time will likely change, and b) messages might be gen-
erated while a game component was not in reach of others. As a result, the nodes
conform a mobile ad hoc network that must include some form of disconnected
operation (e.g., buffering).

Foundation Layer. A foundation layer (e.g., OS, VM or simply embedded li-
braries) is required that provides an abstract interface to the underlying hard-
ware, timers, task scheduling and so on. Also the medium access control (MAC)

protocol is normally included in this layer. However, since WSNs MAC proto-
cols typically trade off energy consumption for latency and fairness [5], therefore
specialized protocols that consider mobility should be inspected, such as [11].

Physical Layer. An appropriate hardware platform must be identified for this
infrastructure. Sensor hardware was already discussed in Section 3.3. We foresee
that the first wave of WSN platforms (e.g., those with 8 bit processors) will
not suffice our required processing capabilities. This is already being addressed,
e.g., by [7, 12]. Finally, current WSNs’ designs use one of the 802.15.x PHY
layers, which dictate the theoretical data rates and energy consumption values.
We expect to be able to decide for one of these by adjusting all the knobs with
a top-down approach as described before.

5 Related Work

Interesting work has been done by investigators trying to bridge digital and
physical games with pervasive technologies. In [1], an outdoor multi-player game
called Unmasking Mister X is presented. Wearable computers and sensors are
used to determine who is ‘Mister X’, based only on readings from his wearable
sensors. In Can You See Me Now? [8], some players run around a real city’s
streets (tracked by GPS) while others move an avatar in an online 3D repre-
sentation of the same city. Physical players attempt to ‘catch’ online players by
chasing their (virtual) location. Treasure [6] is a game that exploits the lack of
connectivity in wireless networks. Players move outside wireless coverage to col-
lect virtual ‘coins’ and then move back into an area with high network strength
to ‘upload’ the treasure to a game server. However, these games run on equip-
ment with relatively large resources (for instance PDA’s with GPS). Trove [9],
in contrast, implements a multi-player game on a WSN, where participants try
to reach a hidden treasure. Each player is assigned with a mote which transmits
game packets to a base station. Players loose lives whenever their sensor readings
values exceed a configurable threshold. A game supervisor exists which performs
identification, sensor calibration and coordination of the game in a similar fash-
ion to our Game Configurator. Another related project, although not meant for
gaming, is CotsBots [3]. It integrates off-the-shelf motes with a commercially
available mini RC car, whose RC functionality and other original electronics are
extracted and replaced by an autonomic behavior board that controls the car’s
engine, providing an experimentation platform for distributed robot systems.

6 Conclusions

In this paper we have presented the idea of integrating the physical world of
RC toys with the virtual world of multi-player computer games, which we have
called MPRLGs. The gaming experience can be enhanced by providing goal-
based, team-oriented gameplay to the participants. This entertainment is made
possible by relying on a WSN gaming framework. Its requirements were sketched

with an exemplary gaming mode, which introduced the concept of game gadgets
and their ability to detect toys in their surroundings. This raised a pluggable
WSN ad hoc approach that allows the specification, deployment and execution
of rules at the game components, as well as the dissemination of game-related
data. And later we have discussed an architecture facing its technical challenges.

Bearing some resemblance to how advances in computer games have pushed
high-end computer graphics, we believe MPRLGs can also drive the evolution
of WSN technologies. In particular, the project provides an interesting testbed
to try, evaluate and measure different ideas and algorithms related to wireless
sensor networks, reactive systems and publish/subscribe notification services.

7 Acknowledgments

We would like to thank to Patric Kabus, Kai Sachs and Jan Steffan for their
collaboration and draft reviews. A particular thank to the members of the ESF
Scientific Programme MiNEMA, where first steps of this research were discussed.

References

1. S. Antifakos and B. Schiele. Bridging the Gap Between Virtual and Physical

Games using Wearable Sensors. In Procs. of ISWC’02, Seattle, USA, Oct. 2002.

2. J. Antollini. Implementing an Active Functionality Service on Different Platforms.

Master’s thesis, Faculty of Sciences, UNICEN, Tandil, Argentina, July 2005.

3. S. Bergbreiter and K. Pister. CotsBots: An Off-The-Shelf Platform for Distributed

Robotics. In Procs. of IROS’03, Las Vegas, USA, October 2003.

4. M. Cilia. An Active Functionality Service for Open Distributed Heterogeneous En-

vironments. Ph.D. Thesis, TU Darmstadt, Germany, August 2002.

5. T. Dam and K. Langendoen. An Adaptive Energy-Efficient MAC Protocol for

Wireless Sensor Networks. In Procs. of SenSys, pages 171–180. ACM Press, 2003.

6. M. Chalmers et al. Gaming on the Edge: Using Seams in Pervasive Games. 2nd.

Intl. Workshop on Gaming Applications at Pervasive 2005, May 2005.

7. R. Adler et al. Intel Mote 2: An Advanced Platform for Demanding Sensor Net-

work Applications. In Procs. of SenSys, pages 298–298. ACM Press, 2005.

8. S. Benford et al. Can You See Me Now? ACM CHI Transactions, 2005.

9. S. Mount et al. Trove: a Physical Game Running on an Ad-Hoc Wireless Sensor

Network. In Procs. of sOc-EUSAI, pages 235–240, Grenoble, France, Oct. 2005.

10. id Software Inc. UT 2004. www.unrealtournament.com/ut2004/modes.php, 2001.

11. H. Pham and S. Jha. An Adaptive Mobility-Aware MAC Protocol for Sensor Net-

works. In Procs. IEEE Intl. Conf. MASS’04, pages 558–560, FL, USA, 2004.

12. R. Smith, C. Cifuentes, and D. Simon. Enabling Java for Small Wireless Devices

with Squawk and SpotWorld. In Building Soft. for Pervasive Computing ’05, 2005.

13. M. Zoumboulakis, G. Roussos, and A. Poulovassilis. Active Rules for Wireless

Networks of Sensors & Actuators. In Procs. of SenSys, pages 263–264, NY, USA,

2004. ACM Press.

This article was processed using the LATEX macro package with LLNCS style

