
Wireless Sensor Networks in the Wild:
Three Practical Issues after a Middleware Deployment

Christian Seeger
∗

, Alejandro Buchmann
DVS Group, TU Darmstadt, Germany

{cseeger,buchmann}@dvs.tu-darmstadt.de

Kristof Van Laerhoven
ESS Group, TU Darmstadt, Germany

kristof@ess.tu-darmstadt.de

ABSTRACT
This paper reflects on experiences in deploying middleware
for a body sensor network, using commercial biosensors.
Three types of issues are highlighted that arose during the
deployment, which impact middleware design in particular:
1) How can the architecture cope with different levels of
data fidelity and propagate those levels to the applications?
2) What is the optimal way to handle temporary discon-
nections from sensors? and 3) How should the middleware
implement sensor-specific peculiarities? Although these is-
sues are described using a specific and demanding health
care scenario, we argue that the underlying causes tend to
be archetypal for a generic set of sensor network middleware.
Awareness of these problem categories and possible solutions
are therefore generally relevant for other researchers working
on middleware designs for all kinds of sensor networks.

1. INTRODUCTION
Improvements and new developments of sensor nodes have

opened many new opportunities in wireless sensor networks.
As new sensor types arise, and as existing sensors become
more powerful, more accurate and more energy efficient,
those advancements enrich the sensing capabilities and widen
the range of possible applications. New and additional sen-
sors empower the network’s opportunities but they also in-
crease the overall complexity of the system. A middleware
for sensor networks decouples the application from the un-
derlying sensing and communication tasks. This abstraction
from the sensor network reduces the complexity for develop-
ers which accelerates the application development and, thus,
the deployment of the system. Furthermore, a layered mid-
dleware architecture increases the system’s flexibility and,
hence, the adaptability to new sensors and circumstances.
Hardware and protocols can be changed without touching

∗supported by the German Research Foundation (DFG)
within the research training group 1362 Cooperative, Adap-
tive, and Responsive Monitoring in Mixed Mode Environ-
ments

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MidSens’2011, December 12th, 2011, Lisbon, Portugal.
Copyright 2011 ACM 978-1-4503-1069-7/11/12 ...$10.00.

the application itself. In addition to this, using a common
middleware in a network allows running multiple applica-
tions using the same nodes.

An emerging area for sensor networks, especially body
sensor networks, is the area of health care [2, 5] and pre-
ventive health care applications. The World Health Organi-
zation predicts that chronic diseases will become the most
expensive problem faced by current health care systems and
sees the integration of prevention into health care as the
main solution for this problem [9]. A paradigm shift towards
integrated, preventive health care as well as equipping pa-
tients with information, motivation, and skills in prevention
and self-management are described as essential elements for
solving this problem. As body sensor network (BSN) sys-
tems are capable of continuously monitoring a person’s phys-
iological and physical state, they form a promising tool that
equips patients with the required information and motiva-
tion.

Motivated by the need for BSN-based preventive health
care applications, we developed an event-based middleware
for such sensor networks. It is straightforward to deploy,
capable of serving multiple applications, and is able to cope
with interchanging sets of sensors. Hosted by a smartphone,
the middleware allows day-long user monitoring with chang-
ing sensor configurations, as well as the integration of sta-
tionary physiological devices. The applications running on
top of the middleware perform activity recognition and mon-
itoring of physiological parameters. The activity recognition
is based on up to three customized accelerometers. For the
monitoring of physiological parameters, we use off-the-shelf
sensors for measuring heart rate, blood pressure, and body
weight.

This paper presents the experiences we made by integrat-
ing and deploying commercial biosensors to our middleware.
Based on those experiences, three problem classes are distin-
guished, to be handled by the middleware: 1) data fidelity,
2) temporary sensor disconnections, and 3) sensor-specific
peculiarities. Since our experiences are certainly applicable
for other researchers working on middleware for sensor net-
works, we present the general problem for each class and the
specific issue we observed with our implementation. Some
general solutions as well as specific approaches for solving
our problems are presented and discussed.

This paper is structured as follows: after presenting re-
lated work, an overview of our body sensor network sys-
tem including middleware, sensors, and a preventive health
care application is given. Section 4 presents the experi-
ences we made by deploying the whole system. Based on

this, three categories of problems are distinguished and their
application-specific as well as generic solutions are discussed
in Section 5. This paper concludes with a short summary.

2. RELATED WORK
Reporting of practical issues arising during deployments

can help other research in design decisions and raise aware-
ness of the emerged issues, in this paper’s instance in de-
signing middleware for sensor networks. The authors of [8]
reflect on their experiences of deploying ubiquitous comput-
ing systems in public areas. They rely on three deployments:
a digital signage solution for conference environments, an
exhibition system consisting of large public displays and a
video diary application for visitors, and a system for provid-
ing information and interactive content to people waiting in
an underground bus station on campus. As a result, six-
teen lessons that help researchers in deploying ubiquitous
computing systems were made.

In [1], experiences in a wireless sensor network for clini-
cal monitoring in a hospital unit are presented. The system
collects pulse and blood oxygen saturation readings from
up to 41 patients and sends them to a base station which
stores the readings in a local database. The authors stud-
ied different aspects of the system, analyzed problems that
occurred and drew suggestions for improvement based on
their experiences. One of the work’s results is that the sens-
ing reliability of the biosensors is the bottleneck of the whole
system’s reliability and not the sensor network itself.

The authors of [3] present the experiences they made while
deploying a wireless sensor network of about 100 nodes for
precision agriculture. Goal of their project was the protec-
tion of a potato crop against a fungal disease. Their work
presents a list of hardware and software problems and mis-
understandings that occurred during that project. Those
problems made them rethink their development process de-
scribed in their paper and led to a list of lessons learned that
can avoid the repetition of mistakes in future projects.

In contrast to the work mentioned above, this paper high-
lights the experience made in developing and deploying a
middleware for (body) sensor networks. A distinction be-
tween three problem classes is made and each class is dis-
cussed generically as well as specifically for our middleware.

3. SYSTEM SETUP
This section describes the hardware and software setup we

used for this paper. It consists of our middleware for body
sensor networks, a preventive health care application and
the hardware used for it. After the middleware architecture
is described, we give a brief overview of the application and
biosensors using the middleware.

3.1 Layered, Event-driven Middleware
We developed an event-driven middleware for body sensor

networks [7] that is designed to seamlessly handle changing
sensor configurations which we argue is a significant feature
for many BSN applications. For instance, the preventive
health care application we describe in the next section uses
a blood pressure device and a scale which are only available
when the user is in its proximity. The event-driven archi-
tecture inherently supports such ad-hoc connections. Fur-
thermore, having sensor- and application-specific modules as
well as a layered structure in our middleware increases ex-

GUI

Event
Handler

SQLite

Pulse Monitor

S1 S2 S3

M1 M2 M3

S4

M4

S0

M0

SM
AR

TP
HO

N
E

SENSORS

Activity
Recognition
daily gym

Middleware

GUI

Application

Event
Reasoner

Figure 1: Event-driven middleware for body sensor
networks including a preventive health care applica-
tion with pulse monitoring and activity recognition.
Sensor modules simplify adapting to new sensors.

tendibility and adaptability. Due to the event-driven design,
parts of the middleware and the application are only trig-
gered if data becomes available and does not require those
parts to request for data. This saves CPU cycles and, hence,
saves energy which is an important resource in BSNs. In or-
der to use our middleware, applications need to subscribe
to events they are interested in. In addition to this, appli-
cations can forward events to the middleware which allows
adjusting sensors, storing data in the database, and informa-
tion exchange among different applications using our mid-
dleware.

The middleware shown in Figure 1 basically consists of
four parts: 1) sensor modules (Mx), 2) an EventHandler,
3) middleware services (EventReasoner, SQLite) and 4) a
graphical user interface (GUI) for configuration, visualiza-
tion and user interaction. The sensor modules at the bottom
layer are connected to the sensors using the sensor-specific
network protocol. They translate raw sensor data to com-
monly known events which allows abstracting from individ-
ual sensors. Sensor events are then forwarded to the Even-
tHandler at the service layer. The EventHandler acts like a
broker that consumes events sent from the sensor modules
and other middleware services. Upon receiving an event, it
modifies the event, enriches it or simply forwards it to an in-
terested event consumers like the application running on top
of the middleware (e.g., PulseMonitor, ActivityRecognition).
The EventReasoner evaluates events and provides alarms,
for instance if a sensor’s battery level is too low. Those
alarms are also events forwarded to the EventHandler. The
SQLite database is used for logging and provides user infor-
mation to the applications. Middleware services can be used
for extending the middleware’s functionality.

In order to connect an application to the middleware,
it needs to connect to the EventHandler and subscribe to
events the application is interested in. The application shown
in the figure consumes events from accelerometers for activ-
ity recognition and from a heart rate sensor for pulse mon-
itoring. Pulse monitoring does not only rely on the heart
rate but also on the current activity. Therefore, the ap-
plication subscribes to activity events sent from the Activi-
tyRecognition service via the middleware’s EventHandler to
the PulseMonitor.

3.2 Preventive Health Care Application
Our preventive health care application [6] focuses on mon-

itoring a user throughout a day. It captures the user’s ac-
tivities by using up to three accelerometers, monitors the
user’s heart rate with respect to the current activity, and it
takes blood pressure and weight measurements. In addition
to this, the user’s calorie expenditure is calculated based
on the heart rate and an alarm reminds the user on taking
the next measurement. Reminders are important because
the scale and the blood pressure sensor are stationary and,
thus, measurements cannot be automatically triggered.

3.3 Hardware
Our middleware and the application built upon it are

based on Android OS (www.android.com). Android is an
open source mobile operating system for smartphones and
tablet PCs that uses a modified version of the Linux kernel.
Software can be written in Java and executed in a special-
ized virtual machine. The number and functionality of An-
droid devices grow rapidly and fit very well to the area of
BSNs. A smartphone is unobtrusive and, hence, it can be
used for daily (patient) monitoring whereas a tablet PC at
the doctor’s office can be used for better visualization of the
patient’s health parameters. The Motorola Milestone phone
serves as an Android 2.1 device for our application.

Bluetooth is used for the communication among the sen-
sors and the smartphone. It is well integrated in current
smartphones and supported by most Android devices. In
addition, there are already various Bluetooth-enabled off-
the-shelf health care sensors. The runtime of approximately
12 hours for the entire system, consisting of a wireless heart
rate sensor, wireless custom-built accelerometers, and the
Android smartphone, largely depends on the phone itself.

Besides the accelerometers for detecting the user’s ac-
tivities, three off-the-shelf sensors for monitoring a user’s
physiological parameters are used. The accelerometers are
custom-built for our purposes, and therefore might not re-
flect general problems with BSN deployments. Therefore,
the focus in this paper is put primarily on the three off-the-
shelf wireless sensor units.

Heart Rate Sensor. The Zephyr HxM Bluetooth sen-
sor1 serves as our heart rate sensor. It monitors heart spe-
cific parameters including heart rate, calories burned, and
R-R intervals as well as the wearer’s step counts, speed, and
distance. The sensor operates for 24 hours with a full charge.

Blood Pressure Sensor. For blood pressure readings,
we use the Corscience Boso-Medicus Prestige + BT device2

which is an upper arm blood pressure meter equipped with
a Bluetooth interface. It automatically measures the blood
pressure and afterwards transmits the results to a Bluetooth
device.

Scale. The IEM Libro-O-Graph3 serves as a body weight
scale which features four-point weight sensors. It can be
used like a usual scale and transmits the current weight to
a Bluetooth device after the reading is taken.

1http://www.zephyr-technology.com/consumer-hxm
2http://www.corscience.de/en/medical-engineering/
products/blood-pressure/
3http://www.iem.de/libr o graph

0

50

100

150

200

11:30 11:45 12:00 12:15 12:30

pulse value

Figure 2: Pulse values from a chest heart rate strap
including sensing artifacts.

4. EXPERIENCES FROM THE WILD
In a real-world deployment, a middleware for sensor net-

works has to cope with different issues such reception of
faulty sensor readings, sensors becoming unavailable, and
sensor-specific protocol demands. This section presents is-
sues experienced during the deployment of our body sensor
network for a preventive health care application. The sensor
network consists of a heart rate sensor, a scale, a blood pres-
sure sensor, and up to three accelerometers, all connected to
an Android phone hosting our middleware for wireless sensor
networks. The following subsections describe three groups
of problems that arose: data fidelity, temporary unavailable
sensors, and sensor-specific peculiarities.

4.1 Data Fidelity
The fidelity of sensor data is a common problem of sen-

sor networks. Sensor nodes are usually designed for being
inexpensive, energy efficient, and compact in size which of-
ten contradicts to having accurate sensor data. In addi-
tion to this, the sensor’s environment and circumstances
have strong influence on the sensors and sensor readings.
For instance, a temperature sensor which is exposed to di-
rect sunlight might not measure the desired air temperature.
The following three paragraphs depict the issues we observed
with our off-the-shelf sensors.

Contact-based Fluctuations.
The authors in [1] experienced a high impact of move-

ments on the heart rate sensing from a pulse oximeter at-
tached at the patient’s index finger. Movements caused er-
roneous drops of the measured heart rate. The heart rate
sensor we use is chest strap based and more robust against
movements, but this one has problems with a too dry contact
between the user’s skin and the sensor’s electrodes. In order
to get the sensor started, the user has to moisten the strap
before attaching it. This usually works well for a couple of
hours and for sport applications when the user is typically
sweating. In the case of daily heart rate monitoring, the
electrode-skin contact tends to dry out after a while, which
results in incorrect readings as shown in Figure 2. We ob-
served that this caused four types of phenomena: 1) extreme
outliers, 2) steady heart rate values, 3) a heart rate of zero,
and 4) the sensor switching off. Moistening the electrode
restores the desired functionality.

Incorrect Sensing Context.
The blood pressure device is a stationary device which

measures the systemic arterial pressure at the upper arm.
The National Heart Lung and Blood Institute lists several
tips for getting precise measurement results [4]. One ad-

http://www.zephyr-technology.com/consumer-hxm
http://www.corscience.de/en/medical-engineering/products/blood-pressure/
http://www.corscience.de/en/medical-engineering/products/blood-pressure/
http://www.iem.de/libr_o_graph

40

60

80

100

120

140

blood pressure range (in mmHg)

Figure 3: High variations in blood pressure readings
taken from the upper arm but with different arm
positions: correctly at heart level, at shoulder level,
and at head level.

vice is to sit for at least five minutes before doing a test
as well as measuring the blood pressure at the level of the
heart. Figure 3 shows the ranges between systolic and di-
astolic blood pressure values taken from a subject within a
period of five minutes. The subject had the sensor correctly
attached at the upper arm and sat for 10 minutes before
the measurements were taken. The first measurement was
taken as advised with the sensor in correct position at heart
level whereas the second was taken at shoulder level and the
third was taken at head level. This procedure was repeated
two more times. As shown in Figure 3 the sensor’s position
has an enormous impact on the measured values and has
to be taken into account. Especially when blood pressure
sensors become unobtrusive and when they will be worn all
the time.

Mapping Environmental Sensors.
Sensors placed in the environment do not necessarily be-

long to a specific person. They can be shared by many
users and their readings can be transmitted to a user’s de-
vice although the readings do not belong to this user. In
our scenario, the scale and the blood pressure sensor could
be shared by multiple users. The device itself does not pro-
vide user information, which makes it hard to distinguish
between valid readings and readings from another person in
proximity. This is a general problem in sensor networks that
monitor individual subjects/objects. If the sensor readings
do not provide information about its subject/object that
was sensed, the data fidelity cannot be determined.

4.2 Temporary Unavailable Sensors
Temporary disconnections are a common issue of sensor

networks. As a result, sensor readings cannot be transmit-
ted to the sink/aggregator device and, thus, they might be
lost for the application. For body sensor networks with en-
vironmental sensors, disconnections from stationary sensors
are very common and occur every time the user leaves the
sensor’s proximity.

For our scale for instance, it takes 15 seconds from taking
the weight until the value is transmitted to the phone. The
transmission time of 22 seconds for blood pressure readings
is even worse. Fifteen seconds are enough time to leave the
room and be out of transmission range before the transmis-
sion is completed.

4.3 Sensor-specific Peculiarities
Off-the-shelf sensors are developed for a specific purpose

and they are often not arbitrary customizable. Therefore,
the sensor’s counterpart which collects their sensor readings
has to adapt to sensor-specific peculiarities. The following
lists the experiences we made with our sensors.

Heart Rate Sensor. The heart rate sensor is easy to
use. As soon as it measures a heart rate, it switches on
the Bluetooth module and provides a Bluetooth Serial Port
Profile (SPP). Once the middleware discovers the sensor, it
connects to it and collects heart rate readings sent every
second.

As mentioned previously, the skin-electrode contact is im-
portant for a proper functionality. Figure 4 shows the heart
rate readings of two days from the same subject. The upper
graph shows a day with the strap moistened with water and
the lower one shows the results of using a contact gel. The
moistening with water was first done with a spray at 7am,
but then re-moistened with water from a tap at 8am since
the sensor stopped working very soon. Afterwards it wasn’t
moistened anymore. The gel was used only in the morning.
Both graphs show different sensor behaviors; both instances
need to be handled by the middleware. Gel performed very
well during the day, but at the end of the day the sensor
stopped working. User interaction could have solved the
problem, but it needs to be decided when user interaction is
necessary in order to disturb the user as less as possible.

Scale. The scale provides an active and passive trans-
mission mode. In active mode, the scale itself initiates the
Bluetooth connection and transmits the data upon a mea-
surement was taken. In passive mode, the requesting device
has to connect to the scale as long as it is switched on. We
decided for the active mode since the middleware does not
need to search for the scale all the time nor does the user
have to tell the system that a measurement was taken. For
the active mode it is required that the paired counter-device
provides a special Bluetooth profile with ID 1234. SPP is
mentioned as a valid profile but it does not work. Therefore,
our middleware needs to provide this additional profile. The
information sent by the scale is encoded as an SMS message
which needs to be parsed in order to convert ASCI charac-
ters to hexadecimal numbers.

Blood Pressure Sensor. The blood pressure device we
use also provides an active and a passive communication
mode. Again we decided for the active mode that listens for
SPP and opens a connection upon new sensor readings be-
coming available. Unfortunately, the device only connects to
the phone if Bluetooth visibility is switched on, even though
the devices are already paired.

5. SOLUTIONS IN MIDDLEWARE
This section discusses potential solutions for the problems

we discovered and presented in the previous section. First
the general problem and a general approach for resolving
them are given, and then we describe the way it was han-
dled in our event-based middleware and further ideas. This
section reflects the structure of the previous one.

5.1 Data Fidelity Levels
Having the application to decide on the data fidelity is

one way of handling data of low quality and for some appli-
cations it is even necessary to work on the raw sensor data.
In those applications the middleware should directly deliver

0

100

200

07:00 08:03 09:05 10:07 11:09 12:12 13:13 14:16 15:20 16:22 17:23 18:31

pulse value using water for moistening

0

100

200

07:00 08:03 09:05 10:07 11:09 12:12 13:13 14:16 15:20 16:22 17:23 18:31

pulse value using contact gel

Figure 4: Heart rate readings from a chest strapped unit using (top plot) water for moistening and (bottom
plot) contact gel. Water moistening shows more outliers and steady values whereas gel performed well during
the day but stopped working at the end. Both reading behaviors needs to be handled by the middleware.

unfiltered sensor data. In many other applications, however,
inaccurate or invalid sensor data are not valuable for the ap-
plication and can be discarded. Therefore, the middleware
should detect inaccurate sensor data and mark it as such.
The application can decide on how accurate the information
has to be for its purposes and discard sensor readings of a
lower fidelity. Nevertheless, detecting the level of data fi-
delity usually requires some processing which causes a time
delay. For some applications this delay might be too high
which points to the need of having both, the fast raw sensor
data as well as sensor data with additional fidelity informa-
tion.

In order to cope with both classes of application, we de-
cided for providing two different types of sensor readings
for the same sensor: raw sensor events and weighted sen-
sor events. Raw sensor events contain the sensor data as
it is sent directly from the sensor itself whereas weighted
sensor events consist of the original sensor data plus an ad-
ditional fidelity level. This allows an application to discard
sensor readings which might be inaccurate. As already men-
tioned, calculating a reading’s fidelity level requires time and
might depend on other readings. This makes weighed sen-
sor events not suitable for time critical applications which
justifies keeping raw sensor events in the middleware. The
following three examples illustrate how the confidence mea-
sures can be implemented.

Contact-based Fluctuations.
For heart rate events we defined three fidelity levels: high,

moderate, and low. High fidelity levels are indicated when
no artifacts in the heart rate curve was detected. As soon as
a peak is detected or if the heart rate drops to zero within a
short period of time (cp. Figure 2), the corresponding heart
rate event is classified as low since it is usually caused by a
too dry skin-electrode contact. If no peaks are detected but
the heart rate stays at a constant value for several seconds,
the fidelity level decreases from high to moderate. Having
a steady heart rate values does not necessarily mean that
the heart rate is not detected correctly, but it might be
an indicator since the heart rate usually fluctuates within
limited range. If it still remains at a steady value, the fi-
delity level is finally decreased to low until the heart rate
value changes again. In our middleware implementation,
an additional middleware service consumes the raw sensor
events produced by sensor modules. For heart rate events,

it computes the fidelity level based on the last 20 heart rate
readings and produces weighted heart rate events for every
incoming raw event.

Incorrect Sensing Context.
There are several factors that influence blood pressure

readings [4]. Two of them are physical exertion just be-
fore a reading is taken and a wrong sensor position with
respect to the heart. Since our preventive health care appli-
cation requires heart rate and activity monitoring, both a
heart rate sensor and an accelerometer are connected to the
middleware. Both sensors deliver indicators for physical ac-
tivity which can be used for calculating the fidelity level of a
blood pressure reading with respect to the physical exertion
before the reading. For detecting a wrong sensor position,
an additional gyroscope or accelerometer attached at a fixed
position of the blood pressure cuff would give information
about the cuff’s orientation. Having the arm in another po-
sition than the required one changes the orientation and,
therefore, decreases the reading’s fidelity level.

Mapping Environmental Sensors.
Sensor readings of environmental sensors that monitor

more than one subject/object need to be assigned to the
specific subject/object the readings belong to. If the sen-
sor itself does not provide this information, an additional
information source is needed. There are several approaches
for identifying subjects/objects in the proximity of a sen-
sor (e.g., radio signal strength, video information, tagging,
and context extraction). For our purposes, RFID tags at-
tached at the person and the phone might be a good solution.
RFID tag readers that are able to read a user’s tag while the
user is in the proximity of the scale or blood pressure sen-
sor would send the tag information to our middleware which
than checks whether this tag belongs to the person that is
monitored.

5.2 Buffering Sensor Data
Many sensors provide enough storage capabilities for buffer-

ing readings if they cannot be transmitted due to a leaking
network connection. As soon as the network connection is
re-established, the missing readings are transmitted. In or-
der to ease the development of sensor network applications,
the underlying middleware can handle the transmission of
buffered sensor readings and deliver them to the applica-

tion if they are still of interest for the application. Some
applications might not rely on old sensor readings.

In many health care applications, the history of biosignals
is important and makes buffered sensor data still valuable.
Therefore, our middleware collects old sensor readings, de-
livers them as events to the application and stores them in
the database. Since the time of measurement of an old read-
ing does not correspond to the timestamp of its event, we
introduced a time of measurement field in addition to the
usual timestamp which allows identifying old sensor read-
ings. In our scenario both devices, the scale and the blood
pressure sensor provide buffering of old readings and add
time information to the old readings. The scale transmits
the time difference to the current reading, the blood pressure
sensor transmits a timestamp which requires synchronized
clocks or at least an offset calculation.

5.3 Adapting to Sensor-specific Peculiarities
A middleware for sensor networks often has to cope with

a variety of different sensors. Although there are standards
for identifying and communicating with sensors, usually it
takes some effort to achieve a smooth sensor discovery and
communication. Since sensors can change over time but ap-
plications might remain, it is the middleware’s task to handle
the sensor communication and to deliver sensor data to the
application despite changes in the sensor-aggregator com-
munication. Those changes could be a new communication
technology/protocol or a new type of information sent by
the sensor.

Sensor Modules. The sensor modules described in Sec-
tion 3.1 simplify adapting to new communication protocols.
They act like drivers for each individual sensor and translate
the raw sensor readings to sensor events. The other parts
of the middleware as well as the application are working on
sensor events. This abstracts from the individual sensor and
allows changing sensors without the need of changing the ap-
plication. Only the corresponding sensor module needs to
be changed. Therefore, changing the Bluetooth profile from
SPP to the scale-specific profile with ID 1234 was easy to
do and had not influenced the other devices or other parts
of the middleware.

System’s State. Having a modular architecture for eas-
ily adapting to a sensor’s characteristics does not solve every
sensor communication problem. Our blood pressure device
for instance requires a visible Bluetooth counter-part for es-
tablishing a connection. One solution would be to have the
phone’s Bluetooth visibility always enabled but this sim-
plifies tracking the user and should be avoided. Another
solution is to switch on visibility before the connection will
be established, but for this solution the middleware needs
to know when the user is taking a blood pressure measure-
ment. In other words, for blood pressure readings the sys-
tem’s state needs to be known and has to be changed (visi-
bility switched on). Since our application reminds the user
to take a measurement, it knows the state and automati-
cally asks for switching on the visibility when the user is
reminded.

User Interaction. Another problem is the heart rate
strap that loses skin-electrode contact (cp. Figure 4). De-
pending on the application, re-moistening the electrode in
order to get the contact re-established might be desired. One
solution would be to implement a reminder on application
level that fires when re-moistening is needed. A drawback

of this solution is that the application is then limited to a
specific sensor or sensor type. If a sensor with different pe-
culiarities is used, this reminder might not work anymore.
Therefore, we propose a middleware-oriented solution that
allows the application to request instructions for user inter-
action when it is desired (for instance, if the fidelity level is
too low). Then, changing a sensor means just changing the
middleware’s sensor module including user interaction in-
formation. This solution also applies for the blood pressure
cuff.

6. CONCLUSIONS
In this paper we presented our experiences in developing

a middleware for body area networks using off-the-shelf sen-
sors. We defined three classes of problems that a middleware
has to cope with in order to simplify and support the devel-
opment of applications built on top of it. A distinction was
made between the problems of handling data fidelity, tem-
porary unavailable sensors, and sensor-specific peculiarities.
Each class of problems was discussed and possible solutions
presented. We believe that the awareness of those problems
helps researchers in designing middleware not only for body
sensor networks, but for all kinds of sensor networks.

7. REFERENCES
[1] O. Chipara, C. Lu, T. Bailey, and G. Roman. Reliable

clinical monitoring using wireless sensor networks:
experiences in a step-down hospital unit. In Proceedings
of the 8th ACM Conference on Embedded Networked
Sensor Systems. ACM, 2010.

[2] P. Khan, A. Hussain, and K. S. Kwak. Medical
Applications of Wireless Body Area Networks.
International Journal of Digital Content Technology
and its Applications, 3(3):185–193, 2009.

[3] K. Langendoen, A. Baggio, and O. Visser. Murphy
loves potatoes: Experiences from a pilot sensor network
deployment in precision agriculture. In IPDPS. IEEE,
2006.

[4] National Heart Lung and Blood Institue. Tips for
Having Your Blood Pressure Taken.
http://www.nhlbi.nih.gov/hbp/detect/tips.htm,
2011. [Online; accessed 08-August-2011].

[5] P. Neves, M. Stachyra, and J. Rodrigues. Application
of wireless sensor networks to healthcare promotion.
Journal of Communications Software and Systems
(JCOMSS), 4(3):181–190, 2008.

[6] C. Seeger, A. Buchmann, and K. Van Laerhoven.
myHealthAssistant: A Phone-based Body Sensor
Network that Captures the Wearer’s Exercises
throughout the Day. In Bodynets, 2011.

[7] C. Seeger, A. Buchmann, and K. Van Laerhoven. An
Event-based BSN Middleware that supports Seamless
Switching between Sensor Configurations. In ACM
International Health Informatics Symposium, 2012.

[8] O. Storz, A. Friday, N. Davies, J. Finney, C. Sas, and
J. Sheridan. Public Ubiquitous Computing Systems:
Lessons from the e-Campus Display Deployments.
IEEE Pervasive Computing, 5(3):40–47, July 2006.

[9] World Health Organization. Integrating prevention into
health care. http://www.who.int/mediacentre/
factsheets/fs172/en/index.html, 2011. [Online;
accessed 01-April-2011].

http://www.nhlbi.nih.gov/hbp/detect/tips.htm
http://www.who.int/mediacentre/factsheets/fs172/en/index.html
http://www.who.int/mediacentre/factsheets/fs172/en/index.html

	Introduction
	Related Work
	System Setup
	Layered, Event-driven Middleware
	Preventive Health Care Application
	Hardware

	Experiences from the Wild
	Data Fidelity
	Temporary Unavailable Sensors
	Sensor-specific Peculiarities

	Solutions in Middleware
	Data Fidelity Levels
	Buffering Sensor Data
	Adapting to Sensor-specific Peculiarities

	Conclusions
	References

