
Structuring Sensor Networks with Scopes

Daniel Jacobi?, Pablo E. Guerrero, Ilia Petrov, and Alejandro Buchmann

Dept. of Computer Science, Technische Universität Darmstadt
D-64289 Darmstadt, Germany

{jacobi, guerrero, petrov, buchmann}@dvs.tu-darmstadt.de

Abstract. Historically, wireless sensor network architectures assume
that all nodes participate in a single global task. However, it is logical
to think that sensor networks will be exploited by multiple, concurrent
applications. In this demonstration we present the concept of Scopes, a
powerful programming abstraction that allows to dynamically partition
the set of nodes into groups according to certain criteria and to address
a group as a whole to perform operations on them.

1 Introduction

Wireless Sensor Networks (WSNs) consist of hundreds of low-power nodes that
form dynamic ad-hoc multi-hop networks. A common pattern observed across
various WSN deployments is the need to partition the set of nodes into groups.
This can be necessary to manage the network, delimit ownership boundaries,
establish nodes’ visibility, or execute specific sensing operations, among other
reasons. Once these groups have been established, furthermore, it is natural to
require traffic to and from the group members. In this paper we demonstrate an
approach called Scopes [1] that efficiently tackles these two challenges.

A scope is defined as a group of nodes that match a given membership con-
dition. As an example, we can declaratively express a scope as:
CREATE SCOPE scopeA (COMPANY = ‘XYZ’ AND

EXISTS SENSOR ‘TEMPERATURE’ AND TEMPERATURE < 20C);

In this case, COMPANY refers to a property stored on the sensor node, while
EXISTS SENSOR refers to a capability a sensor node may have, i.e., whether it
has a temperature sensor. These declarations are flattened into a pre-order byte
array, thus achieving a compact representation. Once deployed, a scope can be
used to exchange messages to and from the whole partition of nodes.

The scope membership condition is a logical expression that must be satisfied
by a node to belong to the scope. The condition contains node capabilities and
properties. A capability indicates the presence of a sensor or actuator. A property
refers to a data value stored at a node, which in turn may be static or dynamic. A
static property refers to an explicit data item such as COMPANY = ‘XYZ’, while
a dynamic property is calculated based on the present state of the node, for
? Supported by the DFG Graduiertenkolleg 1362, Cooperative, Adaptive and Respon-

sive Monitoring in Mixed Mode Environments.

2 Daniel Jacobi et al.

example TEMPERATURE < 20C. Dynamic properties are powerful but expensive,
since every change results in a re-evaluation of the membership.

Scopes can be nested, forming a hierarchy. Each scope has a superscope;
none-nested scopes have an artificial superscope called the world, which includes
all available nodes. Conceptually, nesting scopes allows for clearer definitions
and better organization. Technically, they reduce the communication overhead
thus improving the energy efficiency.

In order to create a scope, a node is chosen as scope root. Although any node
can inject a scope, in practice we observe two cases. First, a scope can be in-
jected from a gateway (sink) node, in which case the scope has typically a global
and permanent character. Second, inner nodes can inject a scope, which in most
cases refer to the node’s local neighborhood for tasks such as data aggregation.
Once a scope is created, it is automatically maintained by the Scopes infrastruc-
ture. Scopes continue to exist even as nodes fail, leave or (re)join the network.
Eventually, a scope can be removed from the network.

2 System Design

The present implementation of Scopes is built on top of the SOS operating
system [2]. SOS offers performance and memory footprint similar to those of
TinyOS. SOS, however, provides the capability of loading and unloading modules
at run-time, a feature TinyOS does not support without special additions. The
Scopes framework splits the system into three layers (see Figure 1). At the top
is the application layer, where all application modules using Scopes reside.

Fig. 1. Scopes Architecture.

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 10 20 30 40 50 60

O
ve

ra
ll

co
un

t o
f

M
es

sa
ge

s

Number of nodes in the Sensor Network

Flooding
Gradient-based Routing (5sec refresh)
Gradient-based Routing (no refresh)

Fig. 2. Total no. msgs. Exchanged.

The scopes layer performs all the management and provides API’s for the
lower and upper layer. The Scope module maintains scope information and inter-
faces to application and routing modules. The interface on the application side
provides methods to create, delete and send data via scopes and to register for
notifications about the dynamic scope membership state changes. For routing
modules, an interface provides a primitive to send data and also to signal scope

Structuring Sensor Networks with Scopes 3

membership updates. With each scope, a refresh interval can be specified. The
Scope Membership module evaluates on every node the membership condition.
If a dynamic property changes, a scope reevaluation is triggered locally.

Right on top of SOS, the routing layer is placed. Scopes handles routing
algorithms independently from the scope definition. We have implemented two
standard routing algorithms, namely flooding and an extended gradient-based
routing based on Directed Diffusion [3]. Our version adds the possibility of having
bi-directional messaging. Figure 2 shows preliminary performance results.

3 Overview of the Demonstration

In the present demonstration we consider a harbor scenario, where several lo-
gistics companies must manage containers with goods of different types. Every
container is equipped with nodes connected to sensors monitoring varying con-
ditions, thus forming an inter-container ad-hoc network.

Technical setup. We use Tmote Sky nodes equipped with light, temperature
and humidity sensors. Each node is pre-loaded with the SOS operating system
and the Scopes framework. In order to simulate the harbor scenario, two static
properties are set on every node: the company name and the container location.

Scenario 1. Creation of several scopes and nested scopes with different mem-
bership conditions, resorting to a container’s company or position properties.
This is to show the declarative character of scopes as well as the convenience of
defining and working with them at the application level.

Scenario 2. Shows root-to-scope traffic by sending a command to a scope
members, which triggers a data processing task. This occurs when a ship reaches
its destination, where statistics for the entire trip are calculated locally.

Scenario 3. Shows scope-to-root traffic by sending back irregularities de-
tected in Scenario 2. The resulting statistics and detected deviations are imme-
diately reported to the harbor authorities and taken into account while unloading
and placing containers on the dock freight slots.

Scenario 4. Injection of scopes from arbitrary nodes in the network. Pro-
vided a sharp temperature increase is detected by a container, a scope is created
over neighboring containers located within a range of 10 meters, to which a
message is sent to evaluate and report irregularities.

References

1. Steffan, J., Fiege, L., Cilia, M., Buchmann, A.P.: Scoping in Wireless Sensor Net-
works. In: 2nd MPAC Workshop, ACM Press (October 2004) 167–171

2. Han, C.C., Rengaswamy, R.K., Shea, R., Kohler, E., Srivastava, M.B.: A Dynamic
Operating System for Sensor Networks. In: 3rd Intl. Conf. on Mobile Systems,
Applications, and Services, New York, NY, USA (June 2005) 163–176

3. Intanagonwiwat, C., Govindan, R., Estrin, D., Heidemann, J., Silva, F.: Directed
Diffusion for Wireless Sensor Networking. IEEE Transactions on Networking 11(1)
(February 2003) 2–16

