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a b s t r a c t

Message-oriented middleware (MOM) is at the core of a vast number of financial
services and telco applications, and is gaining increasing traction in other industries,
such as manufacturing, transportation, health-care and supply chain management.
Novel messaging applications, however, pose some serious performance and scalability
challenges. In this paper, we present a methodology for performance evaluation of
MOM platforms using the SPECjms2007 standard benchmark. SPECjms2007 is based on
a novel application in the supply chain management domain, designed to stress MOM
infrastructures in a manner representative of real-world applications. In addition to
providing a standardworkload andmetrics forMOMperformance, the benchmark provides
a flexible performance analysis framework that allows users to tailor the workload to
their requirements. The contributions of this paper are: (i) we present a detailed workload
characterization of SPECjms2007 with the goal to help users understand the internal
components of the workload and the way they are scaled, (ii) we show how the workload
can be customized to exercise and evaluate selected aspects of MOM performance, (iii) we
present a case study of a leading JMS platform, the BEA WebLogic server, conducting an
in-depth performance analysis of the platform under a number of different workload and
configuration scenarios. The methodology we propose is the first one that uses a standard
benchmark, providing both a representative workload as well as the ability to customize it
to evaluate the features of MOM platforms selectively.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Message-oriented middleware (MOM) is increasingly adopted as an enabling technology for modern event-driven
applications like stock trading, event-based supply chain management, air traffic control and online auctions, to name
just a few. Moreover, the publish-subscribe paradigm is now used as a building block in major new software architectures
and technology domains such as Enterprise Service Bus (ESB), Enterprise Application Integration (EAI), Service-Oriented
Architecture (SOA) and Event-Driven Architecture (EDA) [1]. Novel messaging applications, however, pose some serious
performance and scalability challenges. For example, the next generation of event-driven supply chain management based
on RFID technology [2] (for instance SAP’s AutoID infrastructure [3]) will be highly reliant on scalable and efficient backend
systems to support the processing of acquired real-time data and its integration with enterprise applications and business
processes [4]. Large retailers, like Wal-Mart, Metro or Tesco, are expected to have throughput rates of about 60 billion
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messages per annum [5]. The performance and scalability of the underlyingMOM platforms used to process these messages
will be of crucial importance for the successful adoption of such applications in the industry.
To guarantee that applications meet their Quality of Service (QoS) requirements, it is essential that the platforms on

which they are built are tested using benchmarks to measure and validate their performance and scalability. However,
if a benchmark is to be useful and reliable, it must fulfill several fundamental requirements [6]. First of all, it must be
designed to stress platforms in a manner representative of real-world messaging applications. It must exercise all critical
services provided by platforms and must provide a level playing field for performance comparisons. Finally, to be reliable,
a benchmark must generate reproducible results and must not have any inherent scalability limitations. While a number of
proprietary benchmarks forMOMservers (e.g., [7–10]) have beendeveloped andused in the industry for performance testing
and product comparisons (e.g., [11–13]), these benchmarks do not meet the above requirements. The reason is that most of
themuse artificialworkloads that do not reflect any real-world application scenario. Furthermore, they typically concentrate
on stressing individual MOM features in isolation and do not provide a comprehensive and representative workload for
evaluating the overall MOM server performance. Finally, these benchmarks do not provide enough flexibility allowing users
to design their own customworkloads aimed at stressing and evaluating selected aspects of MOM performance. To address
these concerns, in September 2005 we launched a project at the Standard Performance Evaluation Corporation (SPEC)
with the goal to develop a standard benchmark for evaluating the performance and scalability of MOM products. The
new benchmark was called SPECjms2007 and it was developed at SPEC’s OSG-Java Subcommittee with the participation
of TU-Darmstadt, IBM, Sun, BEA, Sybase, Apache, Oracle and JBoss. SPECjms2007 exercises messaging products through the
JMS (Java Message Service) [14] standard interface which is supported by all major MOM vendors [15].
In this paper, we present a methodology for performance evaluation of MOM platforms using the SPECjms2007

benchmark. SPECjms2007 is based on a novel application in the supply chain management domain that comprises a set of
supply chain interactions between a supermarket company, its stores, its distribution centers and its suppliers. We describe
these interactions and explain the way they are interrelated. An important advantage of SPECjms2007 is that it allows users
to customize the workload to their needs by configuring it to stress selected features of the MOM infrastructure in a way
that resembles a given target customer workload. Thus, the benchmark provides a flexible and robust tool that can be used
for in-depth performance evaluation of MOM servers. However, in order to exploit this, users need to understand the way
the workload is decomposed into components, and which performance aspects are exercised by these components. To this
end, after discussing the benchmark scenario and its implementation, we present a detailed workload characterization of
SPECjms2007 with the goal to help users understand the internal components of the workload and the way they are scaled.
We showhow theworkload can be customized to exercise and evaluate selected aspects ofMOMperformance. In the second
half of the paper, we present a case study of a leading JMS platform, the BEA WebLogic server, conducting an in-depth
performance analysis of the platform under a number of different workload and configuration scenarios. We evaluate the
server performance for both the point-to-point and publish/subscribe messaging domains, studying the effect of individual
workload characteristics on the server CPU utilization, themessage throughput, the CPU processing time permessage/KByte
payload, the message delivery latency, etc. The methodology we propose is the first one that uses a standard benchmark,
providing both a representative workload as well as the ability to customize it to evaluate the features of MOM platforms
selectively.
The rest of the paper is organized as follows. In Section 3, we introduce the SPECjms2007 benchmark. Following this,

in Section 4, we present an in-depth characterization of the SPECjms2007 workload. We show how the workload can be
customized to stress selected performance aspects and discuss two standard strategies for scaling theworkload. In Section 5,
we present our in-depth case study of BEA WebLogic JMS server. In Section 6, we survey related work in the area of MOM
performance analysis. Finally, the paper is wrapped up with some concluding remarks in Section 7.

2. Background

Message-oriented middleware (MOM) is a specific class of middleware that supports loosely coupled communication
among distributed software components by means of asynchronous message-passing, as opposed to a request/response
metaphor. In a nutshell, the idea behind MOM is that a middleman is introduced, sitting between communicating parties.
Themiddleman receivesmessages fromone ormoremessage producers and broadcasts thosemessages, possibly tomultiple
message consumers. This allows a producer to send a message and then continue working while the message is being
delivered and processed. The decoupling of communicating parties has several important advantages: (i)message producers
and consumers do not need to know about each other, (ii) they do not need to be active at the same time to exchange
information, (iii) they are not blocked when sending or receiving messages [16].
The Java Message Service (JMS) [14] is a standard Java-based interface for accessing the facilities of enterprise MOM

servers. In the terminology of JMS, a MOM server that supports the JMS API is referred to as JMS provider (or JMS server) and
applications that use the JMS provider to exchange messages are referred to as JMS clients. A client that sends a message is
called a message producer, and a client that receives a message is called a message consumer. JMS supports two messaging
models: point-to-point (P2P) and publish/subscribe (pub/sub). P2P messaging is built around the concept of a message queue
which forms a virtual communication channel. Each message is sent to a specific queue and is retrieved and processed by
a single consumer. Pub/sub messaging, on the other hand, is built around the concept of a topic. Each message is sent to a
specific topic and it may be delivered to multiple consumers interested in the topic. Consumers are required to register by
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Fig. 1. Point-to-point messaging.

Fig. 2. Pub/sub messaging.

subscribing to the topic before they can start receiving messages. In the pub/sub domain, message producers are referred
to as publishers and message consumers as subscribers. JMS queues and topics are commonly referred to as destinations. The
two messaging models are depicted in Figs. 1 and 2. The JMS specification defines several modes of message delivery with
different QoS attributes:

Non-Persistent/Persistent: In non-persistent mode, pending messages are kept in main memory buffers while they are
waiting to be delivered and are not logged to stable storage. This provides low messaging overhead at the cost
of losing undelivered messages in case of a server crash. In persistent mode, the JMS provider takes extra care to
ensure that nomessages are lost in case of a server crash. This is achieved by loggingmessages to persistent storage
such as a database or a file system. In case of a server crash, undeliveredmessages are recovered from stable storage
on system restart. In non-persistent mode, each message is guaranteed to be delivered at-most-once, whereas in
persistent mode it is guaranteed to be delivered once-and-only-once.

Non-Durable/Durable: JMS supports two types of subscriptions, durable and non-durable. Non-durable subscriptions last
for the lifetime of their subscriber, i.e., a subscriber will only receive messages that are published while it is
active. Messages published while the subscriber is inactive will be missed by the latter. In contrast to this, durable
subscriptions ensure that a subscriber does not miss any messages during periods of inactivity.

Non-Transactional/Transactional: A JMS messaging session can be transactional or non-transactional. A transaction is a set
of messaging operations that are executed as an atomic unit of work. JMS supports two types of transactions:
local and distributed. Local transactions are limited to messaging operations executed on a JMS server. Distributed
transactions allow other transactional operations such as database updates to be executed with JMS messaging
operations as part of a single atomic transaction.

For a more detailed introduction to MOM and JMS the reader is referred to [17,14].

3. The SPECjms2007 benchmark

3.1. Requirements and goals

The aim of the SPECjms2007 benchmark is to provide a standard workload andmetrics for measuring and evaluating the
performance and scalability of MOM platforms. To achieve this, the SPECjms2007 workload must fulfill several important
requirements. First of all, it must be based on a representative workload scenario that reflects the way platform services
are exercised in real-life systems. The goal is to allow users to relate the observed behavior to their own applications and
environments. Second, the workload should be comprehensive in that it should exercise all platform features typically
used inMOM applications including both point-to-point (P2P) and publish/subscribe (pub/sub)messaging. The features and
services stressed should beweighted according to their usage in real-life systems. The third requirement is that theworkload
should be focused on measuring the performance and scalability of the MOM server’s software and hardware components.



K. Sachs et al. / Performance Evaluation 66 (2009) 410–434 413

It should minimize the impact of other components and services that are typically used in the chosen application scenario.
For example, if a database would be used to store business data and manage the application state, it could easily become
the limiting factor of the benchmark, as experience with other benchmarks shows [18]. Finally, the SPECjms2007 workload
must not have any inherent scalability limitations. The user should be able to scale the workload both by increasing the
number of destinations (queues and topics) as well as the message traffic pushed through a destination.
Producing and publishing standard results for marketing purposes will be just one usage scenario for SPECjms2007.

Many users will be interested in using the benchmark to tune and optimize their platforms or to analyze the performance
of certain specific MOM features. Others could use the benchmark for research purposes in academic environments where,
for example, one might be interested in evaluating the performance and scalability of novel methods and techniques for
building high-performance MOM servers. All these usage scenarios require that the benchmark framework allows the user
to precisely configure the workload and transaction mix to be generated. Providing this configurability is a great challenge
because it requires that interactions are designed and implemented in such a way that one could run them in different
combinations depending on the desired transaction mix.

3.2. Workload scenario

The workload scenario chosen for SPECjms2007 models the supply chain of a supermarket company. The participants
involved are the supermarket company, its stores, its distribution centers and its suppliers. The scenario offers an excellent
basis for defining interactions that stress different subsets of the functionality offered by MOM servers. Moreover, it offers
a natural way to scale the workload. The participants involved in the scenario can be grouped into the following four roles:

3.2.1. Company headquarters (HQ)
The company’s corporate headquarters are responsible for managing the accounting of the company, managing

information about the goods and products offered in the supermarket stores, managing selling prices and monitoring the
flow of goods and money in the supply chain.

3.2.2. Distribution centers (DCs)
The distribution centers supply the supermarket stores. Every distribution center is responsible for a set of stores in a

given area. The distribution centers in turn are supplied by external suppliers. The distribution centers are involved in the
following activities: taking orders from supermarkets, ordering goods from suppliers, delivering goods to supermarkets and
providing sales statistics to the HQ (e.g. for data mining).

3.2.3. Supermarkets (SMs)
The supermarkets sell goods to end customers. The scenario focuses on themanagement of the inventory of supermarkets

including their warehouses. Some supermarkets are smaller than others, so that they do not have enough room for
all products, and others may be specialized for some product groups like certain types of food. We assume that every
supermarket is supplied by exactly one of the distribution centers.

3.2.4. Suppliers (SPs)
The suppliers deliver goods to the distribution centers of the supermarket company. Different suppliers are specialized for

different sets of products and they deliver goods on demand, i.e. theymust receive an order from the supermarket company
to send a shipment.

3.3. Modeled interactions

SPECjms2007 implements seven interactions between the participants in the supermarket supply chain.
Interaction 1: Order/Shipment Handling between SM and DC
This interaction exercises persistent P2P messaging between the SMs and DCs. The interaction is triggered when goods

in the warehouse of a SM are depleted and the SM has to order from its DC to refill stock. The following steps are followed,
as illustrated in Fig. 3:
(1) A SM sends an order to its DC.
(2) The DC sends a confirmation to the SM and ships the ordered goods.
(3) Goods are registered by RFID readers upon leaving the DC warehouse.
(4) The DC sends information about the transaction to the HQ (sales statistics).
(5) The shipment arrives at the SM and is registered by RFID readers upon entering the SM warehouse.
(6) A confirmation is sent to the DC.

Interaction 2: Order/shipment handling between DC and SP
This interaction exercises persistent P2P and pub/sub (durable) messaging between the DCs and SPs. The interaction is

triggered when goods in a DC are depleted and the DC has to order from a SP to refill stock. The following steps are followed,
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Fig. 3. Interaction 1 — Communication between SM and DC.

Fig. 4. Interaction 2 — Communication between SP and DC.

as illustrated in Fig. 4:

(1) A DC sends a call for offers to all SPs that supply the types of goods that need to be ordered.
(2) SPs that can deliver the goods send offers to the DC.
(3) Based on the offers, the DC selects a SP and sends a purchase order to it.
(4) The SP sends a confirmation to the DC and an invoice to the HQ. It then ships the ordered goods.
(5) The shipment arrives at the DC and is registered by RFID readers upon entering the DC’s warehouse.
(6) The DC sends a delivery confirmation to the SP.
(7) The DC sends transaction statistics to the HQ.

Interaction 3: Price updates
This interaction exercises persistent, durable pub/sub messaging between the HQ and the SMs. The interaction is

triggered when selling prices are changed by the company administration. To communicate this, the company HQ sends
messages with pricing information to the SMs.

Interaction 4: SM inventory management
This interaction exercises persistent P2P messaging inside the SMs. The interaction is triggered when goods leave the

warehouse of a SM (to refill a shelf). Goods are registered by RFID readers and the local warehouse application is notified so
that inventory can be updated.

Interaction 5: Sales statistics collection
This interaction exercises non-persistent P2P messaging between the SMs and the HQ. The interaction is triggered when

a SM sends sales statistics to the HQ. HQ can use this data as a basis for data mining in order to study customer behavior and
provide useful information to marketing.

Interaction 6: New product announcements
This interaction exercises non-persistent, non-durable pub/sub messaging between the HQ and the SMs. The interaction

is triggered when new products are announced by the company administration. To communicate this, the HQ sends
messages with product information to the SMs selling the respective product types.

Interaction 7: Credit card hot lists
This interaction exercises non-persistent, non-durable pub/sub messaging between the HQ and the SMs. The interaction

is triggered when the HQ sends credit card hot lists to the SMs (complete list once every hour and incremental updates as
required).
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Fig. 5. Driver framework.

3.4. Benchmark implementation

3.4.1. Event handlers and agents
SPECjms2007 is implemented as a Java application, comprising multiple JVMs and threads distributed across a set of

client nodes. For every destination (queue or topic), there is a separate Java class called Event Handler (EH) that encapsulates
the application logic executed to process messages sent to that destination. Event handlers register as listeners for the
queue/topic and receive call backs from the messaging infrastructure as new messages arrive. For maximal performance
and scalability, multiple instances of each event handler executed in separate threads can exist and they can be distributed
over multiple physical nodes. Event handlers can be grouped according to the physical location (e.g. HQ, SM, DC or SP) they
pertain to in the business scenario. In addition to the event handlers, for every physical location, a set of threads is launched
to drive the benchmark interactions that are logically started at that location. These are called driver threads. The set of all
event handlers and driver threads pertaining to a given physical location is referred to as agent. For example, each DC agent
is comprised of a set of event handlers for the various destinations inside the DC and a set of driver threads used to drive
Interaction 2, which is the only interaction with logical starting point at DCs.

3.4.2. Driver framework
The SPECjms2007 scenario includesmany locations represented bymany event handlers. In order to drive the JMS server

to its capacity, event handlers may well be distributed across many physical machines. The reusable control framework
designed for SPECjms2007 aims to coordinate these distributed activities without any inherent scalability limitations. Key
design decisions were that
• It should be written as far as possible in plain Java. Since Java is the natural prerequisite of a JMS application, this reduces
installation and configuration requirements on end users.
• Further to the above, RMI is used as the basis for communication as this is part of the standard J2SE platform.
• The controller needs not be on the same machine as any of the performance-critical workloads.
• Users should havemaximum choice in how theywish to lay out their workload to achieve optimumperformance (within
the bounds of the SPECjms2007 run rules).

Fig. 5 provides a simplified view of a typical test being run on four nodes. In addition to the event handlers, it is made up
of several simple components:

3.4.2.1. Controller. The controller component reads in all of the configuration and topological layout preferences given by
the user. This will include items such as the number of different types of event handler and lists of the nodes across which
they may be run. With this knowledge, the controller instantiates the topology. It begins this by connecting to a satellite
process on each node machine identified as part of this test to give it specific instructions.

3.4.2.2. Satellite. The satellite is a simple part of the framework (another Java application) which knows to build the correct
environment to start child Java processes for SPECjms2007. It takes the controller’s configuration and starts the agent
processes relevant to that node. Although each agent is logically discrete from its peers, the satellite will, based upon the
initial configuration, combine many agents into a single JVM for reasons of scalability.

3.4.2.3. Agents. Each logical agent represents one of the locations in the application scenario. This means that, for example,
a distribution center agent will contain a set of DC event handlers pertaining to that location. Agents connect back to the
controller who co-ordinates the stages of the test. Once all agents are connected, the event handlers (implemented as a Java
thread each) start connecting to the JMS server and thewarm-up phase of messaging begins. The controller manages the life
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cycle of the test by monitoring progress, coordinating phase changes and collecting statistics from the other components.
When complete, it validates and combines the statistics into summary output files and presents the final metric for the test.

3.4.3. Workload configurability
An important goal of SPECjms2007 that we discussed in Section 3.1 was to provide a flexible framework for performance

analysis of MOM servers that allows users to configure and customize the workload according to their requirements. To
achieve this goal, the interactions have been implemented in such a way that one could run them in different combinations
depending on the desired transactionmix. SPECjms2007 offers three different ways of structuring the workload: horizontal,
vertical and freeform. The latter are referred to as workload topologies and they correspond to three different modes of
running the benchmark, offering different level of configurability. The horizontal topology is meant to exercise the ability
of the system to handle an increasing number of destinations. To this end, the workload is scaled by increasing the number
of physical locations (SMs, DCs, etc.) while keeping the traffic per location constant. The vertical topology, on the other
hand, is meant to exercise the ability of the system to handle increasing message traffic through a fixed set of destinations.
Therefore, a fixed set of physical locations is used and the workload is scaled by increasing the rate at which interactions are
run. Finally, the freeform topology allows the user to use the seven SPECjms2007 interactions as building blocks to design his
own workload scenario, which can be scaled in an arbitrary manner by increasing the number of physical locations and/or
the rates at which interactions are run. In the most general case, the following workload parameters can be configured:
• # physical locations (HQs, SMs, DCs, SPs) emulated
• Rates at which interactions are run
• Message size distribution for each message type
• # agents for each physical location
• Distribution of agents across client nodes
• # JVMs run on each client node
• Distribution of agents among JVMs
• # event handlers for each message type
• # driver threads for each interaction
• # JMS Connections shared amongst event handlers
• Acknowledgment mode for non-transactional sessions
• Optional connection sharing by multiple sessions

While in the horizontal and vertical topologies there are some restrictions as to which of the above parameters can
be set, no restrictions apply to the freeform topology. Most importantly, the user can selectively turn off interactions or
change the rate at which they are run, to shape the workload according to his requirements. At the same time, when
running the horizontal or vertical topology, the benchmark behaves as if the interactions were interrelated according to
their dependencies in the real-life application scenario. For further details on the benchmark implementation, the reader is
referred to [19].

4. SPECjms2007 workload characterization

4.1. Message traffic analysis

We start with a detailed analysis of themessage traffic produced by the benchmarkworkload in terms of the number and
type ofmessages generated and their sizes.We consider theworkload parameters that can be configured in themost general
freeform topology and show how they affect the resulting message traffic. The different types of messages and destinations
used in the various interactions are detailed in Table 1.

4.1.1. Messages sizes
The sizes of the messages generated as part of each interaction can be configured by setting an interaction-specific

message sizing parameter (for example, ‘‘number of order lines sent to DC’’ for Interaction 1). Each sizing parameter
can be assigned three possible values with respective probabilities (discrete probability distribution). The message sizing
parameters used for the different interactions are listed in Table 2, along with some data that can be used to compute the
resulting message sizes in KBytes. This data is based on measurements we took using a deployment of SPECjms2007 on a
major JMS server platform.1 The exact message sizes may be slightly different on different platforms, as MOM servers add
their own platform-specific message headers. The measurements provided here were compared against measurements on
a second popular JMS server and the differences were negligible. Based on the data in Table 2, the message sizes in KBytes
for Interactions 1, 2, 4, 6 and 7 can be computed as ϑ = m1 · x+ bwhere x is the interaction’s message sizing parameter and
m1 and b are set to their respective values from Table 2. The priceUpdate messages of Interaction 3 have constant size
that cannot be changed by the user. The size of the statInfoSM messages used in Interaction 5 is configured using two
sizing parameters, as follows ϑ = x · (m1 + m2 · y) + b where x and y are the two sizing parameters (i.e. ‘‘number of SM
cash desks’’ and ‘‘number of sales lines’’) andm1,m2 and b are set to their respective values from Table 2. Based on the above

1 Due to product license restrictions, the specific configuration used cannot be disclosed.
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Table 1
Message types used in the interactions — (N)P = (Non-)Persistent; (N)T= (Non-)Transactional; (N)D= (Non-)Durable.

Intr. Message Destination Type Prop. Description

1 Order Queue (DC) ObjectMsg P, T Order sent from SM to DC.
OrderConf Queue (SM) ObjectMsg P, T Order confirmation sent from DC to SM.
ShipDep Queue (DC) TextMsg P, T Shipment registered by RFID readers upon leaving DC.
StatInfo-OrderDC Queue (HQ) StreamMsg NP, NT Sales statistics sent from DC to HQ.
ShipInfo Queue (SM) TextMsg P, T Shipment from DC registered by RFID readers upon arrival at SM.
ShipConf Queue (DC) ObjectMsg P, T Shipment confirmation sent from SM to DC.

2 CallForOffers Topic (HQ) TextMsg P, T, D Call for offers sent from DC to SPs (XML).
Offer Queue (DC) TextMsg P, T Offer sent from SP to DC (XML).
pOrder Queue (SP) TextMsg P, T Order sent from DC to SP (XML).
pOrderConf Queue (DC) TextMsg P, T Order confirmation sent from SP to DC (XML).
Invoice Queue (HQ) TextMsg P, T Order invoice sent from SP to HQ (XML).
pShipInfo Queue (DC) TextMsg P, T Shipment from SP registered by RFID readers upon arrival at DC.
pShipConf Queue (SP) TextMsg P, T Shipment confirmation sent from DC to SP (XML).
StatInfo-ShipDC Queue (HQ) StreamMsg NP, NT Purchase statistics sent from DC to HQ.

3 PriceUpdate Topic (HQ) MapMsg P, T, D Price update sent from HQ to SMs.

4 InventoryInfo Queue (SM) TextMsg P, T Item movement registered by RFID readers in the warehouse of SM.

5 StatInfoSM Queue (HQ) ObjectMsg NP, NT Sales statistics sent from SM to HQ.

6 Product-Announcement Topic (HQ) StreamMsg NP, NT, ND New product announcements sent from HQ to SMs.

7 CreditCardHL Topic (HQ) StreamMsg NP, NT, ND Credit card hotlist sent from HQ to SMs.

Table 2
Parameters for message size calculation.

Intr. Message sizing parameters Message m1 m2 b

1 No of order lines sent to DC OrderConf 0.0565 na 1.7374
StatInfoOrderDC 0.0153 na 0.1463
ShipInfo 0.0787 na 0.8912
shipDep 0.0787 na 0.7222
Order 0.0565 na 1.4534
ShipConf 0.0202 na 0.7140

2 No of purchase order lines sent to SP CallForOffers 0.1785 na 0.8094
Offer 0.2489 na 0.9414
pOrder 0.2498 na 1.1076
pShipConf 0.0827 na 0.7612
statInfoShipDC 0.0831 na 0.7681
pOrderConf 0.2410 na 1.3494
Invoice 0.1942 na 1.1211
pShipInfo 0.0827 na 0.7279

3 Message has fixed size priceUpdate na na 0.2310

4 No of registered items leaving warehouse inventoryInfo 0.0970 na 0.5137

5 No of cash desks & sales lines statInfoSM 0.0139 0.3650 0.9813

6 No of new products announced productAnnouncement 0.0103 na 0.1754

7 No of credit cards in hot list creditCardHL 0.0166 na 0.1846

two formulas and the data in Table 2, the user can configure the benchmark to use message sizes that match the user’s own
target workload.

4.1.2. Message throughput
We now characterize the message throughput, first on a per interaction basis, and then on a per location basis. The two

most important sets of workload parameters that determine the message throughput are the number of locations of each
type and the interaction rates. We denote the sets of physical locations as follows:

ΨSM = {SM1, SM2, . . . , SM|ΨSM |} ΨDC = {DC1,DC2, . . . ,DC|ΨDC |}

ΨSP = {SP1, SP2, . . . , SP|ΨSP |} ΨHQ = {HQ1,HQ2, . . . ,HQ|ΨHQ |}.

Note that although the modeled scenario has a single physical HQ location, the benchmark allows multiple HQ instances
to exist, eachwith its own set of queues. The goal is to avoid the HQ queues becoming a bottleneckwhen scaling the number
of SMs, DCs and SPs. It is assumed that messages sent to the HQ are distributed evenly among the HQ instances. Multiple
HQ instances are considered as separate servers within the same physical location.
For each interaction, the interaction rate specifies the rate at which the interaction is initiated by every physical instance

of its initiating location, SM for Interaction 1, DC for Interaction 2, etc. We denote the interaction rates as λi, 1 ≤ i ≤ 7.
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Table 3
Message groups.

Group a b c d

Type Pub/Sub Pub/Sub P2P P2P
Properties NP NT ND P T D NP NT P T

Since multiple HQ instances are not considered as separate physical locations, it follows that the rates of Interactions
3, 6 and 7 which are initiated by the HQ are interpreted as rates over all HQ instances as opposed to rates per HQ
instance. Interaction 2 uses a set of topics representing the different product families offered by suppliers. These topics
help to distribute the callForOffersmessages sent by DCs. Suppliers subscribe to all topics corresponding to groups of
products they offer so that they receive all relevant callForOffers messages. We denote the set of product families as
Π = {PF1, PF2, PF3, . . . , PF|Π |}.
The probability that a SP offers products from a given product family PFi ∈ Π is a configurable workload parameter and

will be denoted as ρ. Every SP subscribes to ρ · |Π | product families and thus |ΨSP | · ρ · |Π | subscriptions exist overall. The
number of subscribers that subscribe to a given product family is denoted as ζ = |ΨSP | · ρ.
In the following, we showhow themessage throughput, in terms of the number ofmessages sent and received per unit of

time, can be broken down according to the type of messaging (P2P vs. pub/sub) and the message delivery mode (persistent
vs. non-persistent, transactional vs. non-transactional, durable vs. non-durable). To this end, we group messages as shown
in Table 3. Further, we define the following sets:
Γ = {a, b, c, d}: Message groups as defined in Table 3.
Ω = {se, re}: Messages sent vs. messages received.
Λ = {SM, SP,DC,HQ }: Types of physical locations.

4.1.2.1. Message throughput per interaction. We first analyze themessage throughput on a per interaction basis. Wewill use
the following notation:

ξ
j
i,k for j ∈ Ω, 1 ≤ i ≤ 7 and k ∈ Γ .

No of messages of group k sent/received per sec as part of Interaction i.

ξ
j
i =

∑
k∈Γ

ξ
j
i,k for 1 ≤ i ≤ 7, j ∈ Ω.

Total no of messages sent/received per sec as part of Interaction i.

ξ j =

7∑
i=1

ξ
j
i for j ∈ Ω.

Total no of messages sent/received per sec over all interactions.
Based on the information provided in the previous sections and analysis of the benchmark design, the following equations

are derived, characterizing the message throughput of each interaction:
Interaction 1: ξ se1,c = ξ

re
1,c = λ1 · |ΨSM | ξ se1,d = ξ

re
1,d = 5 · λ1 · |ΨSM |

ξ
j
1,k = 0, ∀k ∈ {a, b} ∧ j ∈ Ω

Interaction 2: ξ
j
2,a = 0, ∀j ∈ Ω ξ se2,c = ξ

re
2,c = λ2 · |ΨDC |

ξ se2,b = λ2 · |ΨDC | ξ se2,d = ξ
re
2,d = (ζ + 5) · λ2 · |ΨDC |

ξ re2,b = ζ · λ2 · |ΨDC |

Interaction 3: ξ se3,b = λ3 ξ
j
3,k = 0, ∀k ∈ Γ , k 6= b ∧ j ∈ Ω

ξ re3,b = λ3 · |ΨSM |

Interaction 4: ξ se4,d = ξ
re
4,d = λ4 · |ΨSM | ξ

j
4,k = 0, ∀k ∈ Γ , k 6= d ∧ j ∈ Ω

Interaction 5: ξ se5,d = ξ
re
5,d = λ5 · |ΨSM | ξ

j
5,k = 0, ∀k ∈ Γ , k 6= d ∧ j ∈ Ω

Interaction 6: ξ se6,a = λ6 ξ
j
6,k = 0, ∀k ∈ Γ , k 6= a ∧ j ∈ Ω

ξ re6,a = λ6 · |ΨSM |

Interaction 7: ξ se7,a = λ7 ξ
j
7,k = 0, ∀k ∈ Γ , k 6= a ∧ j ∈ Ω

ξ re7,a = λ7 · |ΨSM |

4.1.2.2. Message throughput per location. We now analyze the message throughput on a per location basis. The following
notation will be used:

χ
j
l,k for j ∈ Ω, l ∈ Λ, k ∈ Γ .

No of messages of group k sent/received per sec by a location of type l.
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χ
j
l =

∑
k∈Γ

ξ
j
l,k for j ∈ Ω, l ∈ Λ.

Total no of messages sent/received per sec by a location of type l.
SMs participate in all interactions apart from Interaction 2. The following equations characterize themessage throughput

of each SM:

χ seSM,a = χ
se
SM,b = χ

re
SM,c = 0 χ seSM,c = λ5

χ reSM,a = λ6 + λ7 χ seSM,d = 2λ1 + λ4
χ reSM,b = λ3 χ reSM,d = 2λ1 + λ4

SPs participate only in Interaction 2. Overall λ2 · |ΨDC | callForOffers messages are sent by the DCs per sec. Therefore,
every SP receives ρ · λ2 · |ΨDC |messages and for each of them it sends an offer to the respective DC. The probability that an
offer is accepted is 1

ζ
and hence the number of SP offers accepted per sec is given by:

ρ · λ2 · |ΨDC |

ζ
=
λ2 · |ΨDC |

|ΨSP |
.

The following equations characterize the message throughput of each SP:

χ seSP,a = χ
re
SP,a = χ

se
SP,b = χ

se
SP,c = χ

re
SP,c = 0

χ reSP,b = ρ · λ2 · |ΨDC |

χ seSP,d = ρ · λ2 · |ΨDC | +
3λ2 · |ΨDC |
|ΨSP |

χ reSP,d =
2λ2 · |ΨDC |
|ΨSP |

DCs participate in Interactions 1 and 2, both as producers and consumers of messages. The number of SMs supplied by
each DC is given by δ = |ΨSM |

|ΨDC |
.

The following equations characterize the message throughput of each DC:

χ seDC,a = χ
re
DC,a = χ

re
DC,b = χ

re
DC,c = 0

χ seDC,b = λ2

χ seDC,c = δ · λ1 + λ2

χ seDC,d = 3λ1 · δ + 2λ2
χ reDC,d = 3λ1 · δ + λ2(ζ + 2).

The HQ participate in Interactions 1, 2, and 5 as message consumer and in Interactions 3, 6, and 7 as message producer. The
following equations characterize the message throughput of the HQ:

χ reHQ ,a = χ
re
HQ ,b = χ

se
HQ ,c = χ

se
HQ ,d = 0

χ seHQ ,a = λ6 + λ7

χ seHQ ,b = λ3

χ reHQ ,c = λ1 · |ΨSM | + λ2 · |ΨDC | + λ5 · |ΨSM |

χ reHQ ,d = λ2 · |ΨDC |.

The detailedmessage throughput analysis presented above serves twomain purposes. First, using the throughput equations,
the user can assemble a workload configuration (in terms of number of locations and interaction rates) that stresses specific
types of messaging under given scaling conditions. As a very basic example, the user might be interested in evaluating
the performance and scalability of non-persistent pub/sub messaging under an increasing number of subscribers. In this
case, a mix of Interactions 6 and 7 can be used with an increasing number of SMs. Second, the characterization of the
message traffic on a per location basis can help users to find optimal deployment topology of the agents representing the
different locations, such that the load is evenly distributed among client nodes and there are no client-side bottlenecks. This
is especially important for amessaging benchmarkwhere the server acts asmediator in interactions, and significant amount
of processing is executed on the client side.

4.2. Horizontal topology

As mentioned earlier, the goal of the horizontal topology is to exercise the ability of the system to handle an increasing
number of destinations. To achieve this, theworkload is scaled by increasing the number of physical locations (SMs, DCs, etc)
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Fig. 6. # Locations for horiz. topology.

Fig. 7. Horiz. topology message mix.

Table 4
Interaction rates for the horizontal topology.

λ1 λ2 λ3 λ4 λ5 λ6 λ7

1.53920154 2.13333333 6.00000000 3.37837837 11.54401154 11.38519924 9.23076923

while keeping the traffic per location constant. A scaling parameter BASE is introduced and the following rules are enforced:

(1) |ΨSM | = BASE (5) |Π | = |ΨSM |

(2) |ΨDC | =
⌈
|ΨSM |

5

⌉
(6) ρ =

5
|Π |

(3) |ΨSP | = [0.4 · |ΨSM |] (7) λi, 1 ≤ i ≤ 7 are set as shown on Table 4

(4) |ΨHQ | =
⌈
|ΨSM |

20

⌉
Fig. 6 shows how the number of locations of each type is scaled as the BASE parameter is increased. The rates λi at

which interactions are initiated by participants are fixed so that the traffic per location (and therefore also per destination)
remains constant. The relative weights of the interactions are set based on a detailed business model of the supermarket
supply chain which captures the interaction interdependencies. This model has several input parameters (e.g. total number
of product types, size of supermarkets, average number of items sold per week) whose values are chosen in such a way that
the following overall target messaging mix is achieved as close as possible:

• 50% P2P messages and 50% pub/sub
• 50% of P2P messages persistent, 50% non-persistent
• 25% of pub/sub messages persistent, 75% non-persistent.

The goal is to put equalweight on P2P and pub/submessaging.Within each group, the target relativeweights of persistent
vs. non-persistentmessaging have been set according to the relative usage of thesemessaging styles in real-life applications.
The criteria forwhat is a typicalMOMapplicationwere defined based on input provided by the various participating vendors
in the SPECjmsworking group including IBM, Sun, Oracle, BEA, Sybase and Apache. A comprehensive survey was conducted,
considering real-life customer applications and analyzing their workloads.
Table 6(a) shows the resulting message mix in the horizontal topology. Fig. 7 presents the same data in graphical form.

Figs. 8 and 9 show how the number of messages of each type and the bandwidth they use are scaled as a function of the
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Fig. 8. Horizontal topology: # msg. sent.

Fig. 9. Message traffic in Kbytes.

Table 5
Message sizes in KByte.

Intr. Message Size 1 Size 2 Size 3 Avg. size
Probability 95% 4% 1%

1 OrderConf 2.02 7.39 41.29 2.63
StatInfoOrderDC 0.22 1.67 10.83 0.39
ShipInfo 1.28 8.76 55.95 2.13
ShipDep 1.12 8.59 55.79 1.96
Order 1.74 7.10 41.01 2.34
ShipConf 0.81 2.73 14.83 1.03

2 CallForOffers 1.35 7.06 36.52 1.93
Offer 1.69 9.65 50.71 2.50
pOrder 1.86 9.85 51.07 2.67
pShipConf 1.01 3.65 17.29 1.28
StatInfoShipDC 1.02 3.68 17.38 1.29
pOrderConf 2.07 9.79 49.56 2.86
Invoice 1.70 7.92 39.95 2.33
pShipInfo 0.98 3.62 17.26 1.24

3 PriceUpdate 0.24 0.24 0.24 0.24
4 InventoryInfo 1.48 10.22 49.03 2.31

5 StatInfoSM na 5.27

6 ProductAnnouncement 1.21 0.28 10.51 1.26

7 CreditCardHL 1.01 8.49 50.00 1.80

BASE parameter. As evident from the figure, when scaling the workload the proportions of the different types of messages
remain constant. This is expected since the relative weights of the various messaging styles used by the workload should
not depend on the scaling factor.
The sizes of the messages used in the various interactions have been chosen to reflect typical message sizes in real-

life MOM applications. Pub/sub messages are generally much smaller than P2P messages due to the decoupled nature of
the delivery mechanism. For every type of message, SPECjms2007 generates messages with sizes chosen from a discrete
distribution with three possible values, as shown in Table 5. There are two exceptions, the priceUpdate message used
in Interaction 4 and the statInfoSM message used in Interaction 5. The former has a fixed size, while the latter has size
between 4.7 and 24.78 KB with an average of 5.27 KB. Since statInfoSM messages contain sales statistics, their size is
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Table 6
Topology message mix.

Message group Message count (%) Bandwidth used (%)
Target Achieved

(a) Horizontal

a 37.50 37.46 24.66
b 12.50 12.45 2.41
c 25.00 24.55 49.19
d 25.00 25.55 23.74

(b) Vertical

a 15.00 14.19 7.19
b 5.00 5.99 2.25
c 40.00 39.09 61.03
d 40.00 40.74 29.52

Fig. 10. Vert. topology message mix.

Table 7
Interaction rate scaling factors for the vertical topology.

c1 c2 c3 c4 c5 c6 c7

0.076190476 0.106666667 0.050000000 0.162162162 0.577200577 0.142314991 0.102564103

determined by the rate at which items are sold in supermarkets, which depends on the number of customers visiting a
supermarket per day and the average number of items sold per customer.

4.3. Vertical topology

The goal of the vertical topology is to exercise the ability of the system to handle increasing message traffic through a
fixed set of destinations. Therefore, a fixed set of physical locations is used and the workload is scaled by increasing the rate
at which interactions are executed. Similar to the horizontal case, a single parameter BASE is used as a scaling factor. The
following rules are enforced:

(1) |ΨSM | = 10 (5) |Π | = 100
(2) |ΨDC | = 2 (6) ρ = 50%
(3) |ΨSP | = 5 (7) λi = ci · BASE, where ci is a fixed factor (see Table 7) and 1 ≤ i ≤ 7
(4) |ΨHQ | = 2

Again, the relative weights of the interactions are set, based on the business model of the supply chain scenario. Unlike
the horizontal topology, however, the vertical topology places the emphasis on P2P messaging which accounts for 80% of
the total message traffic. The aim is to exercise the ability of the system to handle increasing traffic through a destination by
processing messages in parallel. This aspect of MOM server performance is more relevant for P2P messaging (queues) than
for pub/sub messaging where the message throughput is inherently limited by the speed at which subscribers can process
incoming messages.
Table 6(b) shows the achieved message mix in the vertical topology. Fig. 10 presents the same data in graphical form.

Figs. 11 and 12 show how the number of messages of each type, and the bandwidth they use, are scaled as a function of
the BASE parameter. Again, when scaling the workload the message mix remains constant, which is the expected behavior.



K. Sachs et al. / Performance Evaluation 66 (2009) 410–434 423

Fig. 11. Vertical topology: # msg. sent.

Fig. 12. Message traffic in Kbytes.

The sizes of the messages used in the various interactions are computed in the same way as for the horizontal topology (see
Table 5).

5. Case study

In this section, we present a case study with a deployment of SPECjms2007 using the WebLogic Server 10 JMS platform.
We present a detailed performance analysis of the platform, considering both the P2P and pub/submessaging domains. Our
evaluation is the first one that uses a standard workload to stress the JMS server. We demonstrate how SPECjms2007 can
be exploited for in-depth analysis of selected aspects of the MOM server performance.

5.1. Experimental setting

The experimental environment in which we conducted our case study is depicted in Fig. 13. WebLogic Server was
deployed on a machine with two quad-core Intel Xeon 2.33 GHz CPUs and 16 GB of main memory. The server was run in a
64-bit JRockit 1.5 JVM using 8 GByte of heap space. A RAID 0 disk array comprised of four disk drives was used for maximum
performance. The WebLogic JMS Server was configured to keep persistent messages in a file-based store on the disk array
and to use a 3.8 GByte message buffer to store message bodies in memory. The SPECjms2007 controller and satellite drivers
were distributed across five machines, four one-way dual-core Opteron at 2.4 GHz and one four-way dual-core Intel Xeon
at 3.5 GHz. All machines were connected to a 1 Gbit network. To further increase the network capacity, a separate Gbit link
was installed between the server and the 4-way driver machine. The latter was configured to always use this link when
accessing the server. The satellite drivers were distributed across the machines in such a way that the network traffic was
load-balanced between the two networks.

5.2. Horizontal and vertical scaling

We first ran some experiments in the horizontal and vertical topologies in order to show the behavior of the server
when scaling the workload in the two alternative ways.2 Fig. 14 shows the server CPU utilization and the CPU processing
time per message (counting both sent and received messages) for the horizontal topology. Fig. 15 shows the same data for

2 SPECjms2007 is a trademark of the Standard Performance Evaluation Corporation (SPEC). The results or findings in this publication have not been
reviewed or accepted by SPEC, therefore no comparison nor performance inference can be made against any published SPEC result. The official web site
for SPECjms2007 is located at http://www.spec.org/osg/jms2007.

http://www.spec.org/osg/jms2007
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Fig. 13. Experimental environment.

Fig. 14. Measurement results for horizontal experiments.

the vertical topology. In both cases, there is a clear linear correlation between the scaling factor (i.e., the BASE) and the
server utilization. However, the server utilization growsmuch faster in the horizontal mode. For a given value of the scaling
factor, the CPU consumption of the horizontal topology is between 2.2 and 2.3 times higher than the CPU consumption of
the vertical topology. This is expected given that the number of messages injected per second in the horizontal topology is
about two times higher than in the vertical topology (see themessage traffic analysis in Sections 4.2 and 4.3). It is interesting
to compare the average CPU time per message (counting both sent and received messages). The latter is about 10% lower
for the horizontal topology. The reasons for this will become clear in the next section.

5.3. Customized vertical workloads

We now consider two customized workloads based on the vertical topology. The goal is to break down the workload
into its P2P and pub/sub components, and analyze the server performance when running them in isolation. To this end, the
first workload runs only P2P interactions (i.e., 1, 4 and 5), whereas the second one runs only pub/sub interactions (i.e., 3, 6
and 7).3 In both cases, the relative interaction mix for the considered interactions is the same as for the standard vertical
topology. Figs. 16 and 17 show the measurement results. We can see that, as expected, the pub/sub portion of the workload
is by far much more light-weight than the P2P portion. This is due to two reasons. On the one hand, for a given value of
the BASE, the P2P message traffic injected is much larger than the pub/sub traffic according to the definition of the vertical
topology presented in Section 4.3. On the other hand, the server overhead per delivered message is significantly lower in
the pub/sub case. Looking at the CPU time per message (counting both sent and received messages) in the two workloads,

3 Note that Interaction 2 is not part of these workloads since it contains a mix of both P2P and pub/sub messaging.
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Fig. 15. Measurement results for vertical experiments.

Fig. 16. Measurement results for customized vertical experiments with P2P messaging.

we can see that for both workloads the latter does not changemuch as we increase the BASE. For P2Pmessaging it stabilizes
at around 0.28 ms, whereas for pub/sub messaging it stabilizes at 0.13 ms. From this we can conclude that the overhead
per P2P message sent/received in the vertical topology is over two times higher than the overhead per pub/sub message
sent/received.
This explains why the CPU time per message sent/received in the horizontal topology compared to the vertical topology

was measured to be lower in the previous section. This is expected given that the horizontal topology has much less P2P
messaging as a proportion of the overall workload than the vertical topology (see Table 6).

5.4. Publish/subscribe messaging

We now study the performance of the server when running only pub/sub messaging. We use the freeform topology
and specifically Interactions 3 and 7 to exercise persistent transactional durable (PTD) messaging and non-persistent non-
transactional non-durable (NPNTND) messaging, respectively. Table 8 shows the configuration for five of the scenarios
we analyzed. For each scenario, the emulated number of producers and consumers are shown. Multiple producers and
consumers are configured by setting the number of interaction driver threads and the number of emulated SMs, respectively.
The producers were run on the 4-way IBM x3850 server, whereas the consumers were distributed among the four one-way
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Fig. 17. Measurement results for customized vertical experiments with pub/sub messaging.

Table 8
Configuration for pub/sub scenarios.

Scen. Interaction # Prod. # Cons. Msg. injection rate Msg. size Msg. group Figure

1 7 30 Variable 1000 msg/s Variable a Fig. 18
2 7 30 10 1000 msg/s Variable a Fig. 19
3 7 Variable Variable Unlimited 0.24 KByte a Fig. 20
4 3 1 Variable Unlimited 0.24 KByte b Fig. 21
5 3 and 7 1 Variable Unlimited 0.24 KByte b Fig. 22

Opteron-based servers. In both of the considered interactions, each SMacts as amessage consumer and therefore the number
of consumers is equal to the number of SMs. In all scenarios there is a single HQ instance and a different number of SMs
depending on the specified number of consumers. For each scenario, Table 8 also shows the message injection rate, the
message size and the message type according to the classification in Section 4.1.2 (Table 3). Given that in both Interaction 3
and 7, each interaction execution results in sending a single message, the specified message injection rate is configured
by setting the respective interaction rate. In the cases where ‘unlimited’ message injection rate is specified, each producer
is configured to inject messages at full speed (i.e., with zero delay between successive messages). The results from the
experiments are presented in Figs. 18–22.
We now take a closer look at the measurement results. We start with NPNTND pub/sub messaging. In the first scenario,

we consider the effect of increasing the number of consumers on the server CPU consumption. As expected, the overall CPU
utilization and the CPU processing time permessage increase linearlywith the number of consumers and the rate of increase
depends on the message size (Fig. 18). The larger the message size, the greater the effect the number of consumers has on
the overall CPU consumption.
The goal of the second scenario is to evaluate the effect of increasing the message size on the CPU consumption per

message and KByte of payload sent. The CPU processing time per message is directly proportional to the message size,
however, this does not hold for the CPU time per KByte of payload (Fig. 19). The latter drops exponentially for message
sizes up to 10 KByte and stabilizes around 0.2 ms for larger messages. This is due to the fact that for every message there
is a constant overhead around 0.4 ms (independent of the message size) for parsing the JMS message header. For small
messages, this overhead dominates the overall processing time. However, as the size of the message grows, the overhead
becomes negligible compared to the time needed to deliver the message payload. Thus, for messages larger than 20 KByte,
we can estimate the message processing time asMsgSize ∗ 0.2 ms.
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Fig. 18. Scenario 1: NPNTND Pub/Sub messaging with increasing number of consumers.

Fig. 19. Scenario 2: NPNTND pub/sub messaging with increasing message size.

In the third scenario, we analyze the effect of varying the number of producers and consumers (Fig. 20). Each producer
is configured to publish messages at full speed. Given that the number of emulated producers (up to 5) does not exceed
the number of available CPU cores on the machine hosting the producers, the latter can inject messages in parallel without
competing for CPU time on the client side. We consider the server CPU utilization, the throughput in terms of messages
sent per second and the CPU processing time per message sent. It is important to note that, in all considered scenarios,
the machines hosting the producers and consumers were far from saturated, so that the effect of the client side of the
benchmark on the observed system performance was insignificant. From the results we see that increasing the number of
message producers and consumers both lead to higher server CPU utilization, however, the number of producers has by
far much higher effect on the CPU consumption than the number of consumers. The reason is that whereas the message
throughput increases with increasing number of producers, it decreases with an increasing number of consumers even if
the server is only lightly loaded. The results show that the effect of the decreasing throughput on the CPU consumption
cancels out the effect of the increasing number of consumers, resulting in stagnation in the server utilization. This is due
to synchronization effects. The server has to ensure that successive messages sent by individual producers are delivered in
the order in which they are sent. Thus, the more consumers, the higher the synchronization overhead for each producer.
Messages sent by different producers, on the other hand, are not affected by this because the server is not required to deliver
them in the order in which they were sent. The results also show that the number of producers does not have a significant
effect on the average CPU processing time per message. On the other hand, as already shown in the first scenario, the CPU
processing time per message is directly proportional to the number of consumers.
In the fourth and fifth scenarios, we evaluate the performance of PTD pub/sub messaging. We first look at the effect of

increasing the number of consumers on the server CPU consumption, the mean message delivery latency and the number
of messages sent/received per second. The results are shown in Fig. 21. The server CPU utilization goes up to almost 80%
for 150 consumers and stabilizes at this level together with the total number of received messages per second for a higher
number of consumers. Message processing in this case includes disk I/O operations for persisting themessages. Themessage
delivery latency remains below 15 ms for up to 150 consumers. There is a good linear correlation between the received
messages/sec and the server CPU utilization. Finally, the rate of sending messages drops by almost a factor of 20 as the
number of consumers is increased up to the saturation point.
The fifth scenario compares NPNTNDmessaging with PTDmessaging in terms of the server CPU utilization, the message

throughput (number ofmessages sent per second) and the CPUprocessing timepermessage sent. Aswe increase the number
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Fig. 20. Scenario 3: NPNTND pub/sub messaging with varying number of producers and consumers.

of consumers, the server CPU utilization increases steadily at a decreasing rate. The CPU processing time per message sent
increases linearlywith the number of consumers and the rate of increase ismuch higher for PTDmessaging than for NPNTND
messaging. For 150 consumers, the overhead is over 6 times higher for PTD messaging than for NPNTND messaging. This is
explained by the fact that PTDmessaging includes additional overhead not just for persistingmessages but also formanaging
transactions which is directly dependent on the number of consumers.

5.5. P2P messaging

We now study the performance of the server when running only P2P messaging. We use the freeform topology and
specifically Interactions 5 and 4 to exercise non-persistent non-transactional (NPNT) and persistent transactional (PT)
messaging, respectively. Table 9 shows the configuration for three scenarios we analyzed. For each scenario, the number
of SMs and HQs are shown, as well as the message injection rate, the message size and the message type according to the
classification in Section 4.1.2 (see Table 3). Given that in both Interaction 4 and 5, each interaction execution results in
sending a single message, the specified message injection rate is configured by setting the respective interaction rate. The
interaction rate is specified on aper location basis. The analysis results for the three scenarios are presented in Figs. 23 and24.
We now take a closer look at the results. The first two scenarios compare the performance of NPNT and PT P2Pmessaging

(Fig. 23). In both scenarios, the number of queues used is varied and the goal is tomeasure themaximummessage traffic per
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Fig. 21. Scenario 4: PTD pub/sub messaging with increasing number of consumers.

Fig. 22. Scenario 5: NPNTND vs. PTD pub/sub messaging.
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Table 9
Configuration for P2P scenarios.

Scenario Interaction # SMs # HQs Injection rate Msg. size Msg. group Figure

1 5 Variable Variable Unlimited 2 KByte c Fig. 23
2 4 Variable na Unlimited 2 KByte d Fig. 23
3 4 5 na Unlimited Variable d Fig. 24

Fig. 23. Scenarios 1 and 2: NPNT vs. PT P2P messaging with increasing number of queues.

second that can be processed. The first scenario uses Interaction 5 with multiple HQ instances, each having its own queue
for incoming statInfoSMmessages sent by the SMs. In each test, both the number of HQ instances and the number of SMs are
set to the desired number of queues. Thus, every SM has a HQ instance and a respective queue that receives its messages. SM
agents have 5 producer (driver) threads each. HQ agents have 5 consumer threads each. In order to ensure that the number
of producer and consumer threads remains constant, the number of agents per SM/HQ is set in such a way that the number
of agents of each type does not change (Section 3.4.2). For example, in the test with 1 queue (1 SM and 1 HQ), there are 20
agents per SM/HQ, in the test with 2 queues, there are 10 agents per SM/HQ and so forth, in all cases leading to 20 agents in
total. The second scenario is set up in exactly the same way with exception that it uses Interaction 4 and therefore only SM
agents are involved. Each SM agent has 5 producer and 5 consumer threads. The two interactions are configured to use the
same message size so that we can compare the results.
As we can see in Fig. 23, when moving from 1 queue to 2 queues, the message throughput increases by about 5% for

NPNT messaging and about 10% for PT messaging. Increasing the number of queues beyond 2, does not affect the message
throughput, the server utilization or the CPU time per message/Kbyte. The server CPU utilization is slightly lower (6%–10%)
for PT messaging. The latter is expected given that persistent messaging involves disk I/O. The message throughput is about
2.5 times higher for NPNT messaging given that the CPU time used per message/KByte processed is over 2 times lower
compared to PT messaging. Overall, the results show that using more than two queues does not lead to any noticeable
change in the system performance of our configuration.
In the third scenario, we study the performance of PT P2P messaging with variable message size. We use Interaction 4

with a fixed number of SMs and 5 producer and 5 consumer threads per SM. The results are shown in Fig. 24. As we can see,
the CPUprocessing time permessage increases linearlywith themessage size,whereas the CPU timeper KByte quickly drops
and stabilizes around 0.1ms per KByte. As we discussed earlier when evaluating pub/submessaging, the reason for the drop
in the overhead per KByte is that there is a constant overhead for parsing the message header which, for small messages,
dominates the overall processing time. The mean delivery latency seems to increase quadratically with the message size.
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Fig. 24. Scenario 3: PT P2P messaging with increasing message size.

6. Related work

Message-oriented middleware is a major part of today’s enterprise systems and its performance and scalability has been
gaining increasing attention over the past decade. In the following, we present an overview of the most popular workloads
used for benchmarking MOM products and review a selection of performance studies of commercial and open-source
messaging platforms that have been published recently.
In [20], an evaluation of IBM’s MQSeries V5.2 platform is presented. The authors study the performance of four different

styles of messaging: non-persistent non-transactional, persistent non-transactional, persistent local transactional and
persistent global transactional. The server’s maximum sustainable throughput is introduced as a metric for characterizing
the server performance. The results show the impact of various factors including the message length, the server
log buffer space and the number of receiver threads. In [21], the authors evaluate three leading JMS providers, IBM
WebSphereMQ/MQIntegrator, TIBCO Rendezvous/MessageBroker V4.0 andMercator IntegrationManager V6.0. A synthetic
transactional workload is used and the maximum sustainable throughput for persistent and non-persistent messages is
measured. Similarly, in [22] an empirical methodology for evaluating the QoS of JMS products is presented. This time, in
addition to the maximum sustainable throughput, several further evaluation criteria are considered: the message delivery
latency, the elapsed time for batch messaging and the effectiveness of persistent message recovery after a server crash. Two
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leading JMS servers are evaluated. Unfortunately, the study only considers point-to-point messaging and the authors do not
disclose the names of the tested products.
Another performance study comparing TIBCO Rendezvous (TIB/RV) against SonicMQ was published in [23]. This study

considers both point-to-point and publish/subscribe messaging. For point-to-point messaging, the effects of increasing the
number of sender and receiver pairs is analyzed. For publish/subscribe messaging, the effect of increasing the number
of publishers and subscribers is analyzed. Furthermore, the authors consider the time taken for a batch of messages to
be delivered, the connection time for new subscribers, as well as the server memory and CPU utilization. Some general
guidelines for designing a benchmark suite for distributed publish/subscribe systems are presented in [24], however, no
specific implementation or measurement results are provided. In [25], the performance of the individual elements used
in message broker applications is evaluated, highlighting the cost of using each element rather than the cost of running
complete applications.
In [26], the capacity of the WebsphereMQ JMS server is evaluated in terms of its throughput performance. The message

throughput in the presence of filters is studied and it is shown that the message replication grade and the number of
installed filters have a significant impact on the server throughput. An analytical model of the message processing time
and the server throughput is presented and validated throughmeasurements. Several similar studies using Sun Java System
Message Queue, FioranoMQ, ActiveMQ and BEA WebLogic JMS server were published in [27–30], respectively. The study
in [29] considers complex AND-, OR-. and IN-filters of different length. In [31], the results from the evaluation of the different
products are compared and summarized. A more in-depth analysis of the message waiting time for the FioranoMQ JMS
server is presented in [32]. The authors study the message waiting time based on an M/G/1 − ∞ approximation and
perform a sensitivity analysis with respect to the variability of the message replication grade. The analysis shows that the
message waiting time is low as long as the server throughput is sufficiently high. The authors derive formulas for the first
two moments of the message waiting time, based on different distributions (deterministic, Bernoulli and binomial) of the
replication grade. Finally, two simple distributed architectures based on conventional JMS servers that increase the JMS
capacity beyond the capacity provided by a single server are proposed.
In [33], a simple test harness for testing of JMS providers for correctness and performance is presented. The authors

develop a formal model for JMS behavior based on the I/O automata used in other group communication systems. The focus
here is on verifying the correctness of JMS implementations and only basic support for performance analysis is provided.
In [34], an efficient strategy for reliable messaging using different persistence methods with different kinds of messages is
developed. The strategy utilizes daemon threads to reduce its influence on the system, and has been implemented as part
of a JMS server.
In addition to the above, a number of proprietary and open-source benchmarks for messaging platforms have been

developed and used in the industry — for example, the SonicMQ Test Harness [7], IBM’s Performance Harness for Java
Message Service [8], Apache’s ActiveMQ JMeter Performance Test [9] and JBoss’ Messaging Performance Framework [10].
Using these and other similar benchmarks, numerous comparative performance studies of competitive products have been
conducted and published by JMS product vendors over the last 5 years — see for example [11,12,35,36,13,37,38].
As evident from the above, numerous approaches to MOM performance analysis have been developed and used in

industry and academia. However, pretty much all of them are based on artificial workloads that do not reflect any real-
world application scenarios. Furthermore, they typically concentrate on exercising individual MOM features in isolation
and do not stress the server in a manner representative of real-life applications. Moreover, in most cases, performance
studies conducted using these workloads have been biased in favor of particular products, leading to contradictory
claims made by MOM vendors [39,40,36,11,12,41]. The workload and benchmarking methodology presented in this paper
represent a novel approach to performance evaluation of MOM platform performance. The benchmark we presented has
several distinct characteristics that distinguish it from previous benchmarks in this area. It not only provides standard
workload and metrics that are comprehensive and representative of real-life applications, but also provides a robust and
flexible performance analysis framework, making it possible to customize the workload to best match the user application
requirements.

7. Concluding remarks

We presented a methodology for performance evaluation of MOM platforms using the SPECjms2007 standard
benchmark. We first introduced the benchmark, discussing its goals, the business scenario it models and its internal
component architecture. After this, we presented a detailedworkload characterization of SPECjms2007with the goal to help
users understand the internal components of the workload and the way they are scaled. We showed how the workload can
be customized to exercise and evaluate selected aspects of MOM performance. Our extensive analysis of the message traffic
produced by the benchmark considered the following dimensions: (i) message types and destinations, (ii) message sizes,
(iii) message throughput and (iv) message delivery modes. We characterized the message traffic, both on a per interaction
and location basis. The results we presented can be used to define a workload configuration that stresses selected features
of the MOM infrastructure in a way that resembles a given target customer workload. Moreover, the traffic equations are
essential for finding an optimal deployment topology with a uniform load distribution and no client-side bottlenecks. After
considering the general freeform topology, we looked at the more specific horizontal and vertical topologies. We discussed
their goals and characterized the interaction andmessagemixes they are based on, and theway they are scaled. Our analysis
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not only helps to better understand and interpret official benchmark results, but also provides an example of how to define
a scalable workload configuration for evaluating selected performance and scalability aspects of MOM.
In the second half of the paper, we presented a case study of a leading JMS platform, the BEAWebLogic server, conducting

an in-depth performance analysis of the platform under a number of different workload and configuration scenarios. We
evaluated the server performance for both the point-to-point and publish/subscribemessaging domains, studying the effect
of individual workload characteristics on the server CPU utilization, the message throughput, the CPU processing time per
message/KByte payload, themessage delivery latency, etc. Two groups of scenarioswere tested. The first group uses complex
workloads based on the standard horizontal and vertical topologies provided by the benchmark. The second group includes
scenarios that focus on specific aspects and features of MOM such as the overhead of persisting messages, the influence of
the message size, the effect of increasing the number of message producers/consumers and the maximum throughput that
can be processed through a given number of queues.
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