
Performance Evaluation of Peer-to-Peer Gaming Overlays

Max Lehn* Tonio Triebel† Christof Leng* Alejandro Buchmann* Wolfgang Effelsberg†

∗ Databases and Distributed Systems † Praktische Informatik IV
Technische Universität Darmstadt Universität Mannheim

Germany Germany

{max lehn, cleng, buchmann}@dvs.tu-darmstadt.de {triebel, effelsberg}@pi4.informatik.uni-mannheim.de

Abstract—In this demo we present a performance evaluation
testbed for peer-to-peer gaming overlays. It consists of a 3D first
person shooter game that is designed to run in a simulated net-
work environment as well as on a real network. Simulation with
autonomous players (bots) guarantees scalability, a controlled
workload, and reproducible results; a prototype deployment on
a real network can then validate the simulation results. The
information dissemination overlay pSense is implemented as a
first subject for evaluation.

I. I NTRODUCTION

In the last years gaming has become an attractive field
for peer-to-peer research. In particular the strict timingre-
quirements of first person shooter games (FPS) demand the
development of suitable network overlays. The main chal-
lenge consists of the combination of high dynamic movement
of players and low latencies that are required for update
messages. Specific peer-to-peer overlays, such as pSense [1],
VON [2], or Donnybrook [3], have been developed to address
these needs. For the evaluation of their systems most research
groups use simple custom game simulations. Only a few
overlays were analyzed with real games.

The simulation of a simplified game is hard to validate. The
simulator might abstract away important details that affect the
outcome of the simulation significantly. On the other hand,
a standalone application cannot compete against a simulator
in terms of parameter flexibility, reproducibility, and precise
measurement.

We propose a benchmark platform for the evaluation of
peer-to-peer gaming overlays that brings the two approaches
together. The platform is based on the 3D multiplayer space-
ship shooter Planetπ4 [4]. A key feature of our system is
the ability to run the game both as a standalone application
using the real network and in a discrete-event simulation on
a virtual network. Hence, it is possible to evaluate an overlay
in a discrete-event simulation with a workload generated by
autonomous players (bots) and to validate the results with
the prototype deployment using a real network. In addition,
our system provides the possibility to replace the peer-to-peer
overlay implementation in order to compare different overlays.
For the demonstration an implementation of pSense is used to
show the two main functionalities of our system.

Fig. 1. A screenshot of Planetπ4

II. PSENSE

pSense [1] is an information dissemination overlay ad-
dressing the specific need for exchanging updates of game
states based on virtual world proximity. Each player has a
vision range which determines the interest of activities of
other players (e.g. movements and shots). Thus, in the pSense
topology a node knows all neighbors in its vision range. To
prevent network partitions in sparse density areas, each node
keeps a list of eightsensor nodes outside its vision range.
These nodes also introduce new nodes approaching the vision
range.

In its original publication, like many other peer-to-peer
systems, pSense was only evaluated with simulations lacking
most networking detail. This work is the first to show that
pSense works in a real game application.

III. I MPLEMENTATION

In standalone application mode, like in conventional game
implementations, the game’s main loop repeatedly renders
a frame, processes user input, runs the game mechanics,
and performs network I/O. The frame rate is only limited
by the hardware capabilities. In simulation, the hardware is
abstracted, and the behavior is mapped to discrete-event mode.
The simulated instances usually do not render frames since



Fig. 2. High level system architecture

there is no user who needs to see them. For watching the
simulation, frame rendering can still be enabled. A frame
is then rendered each 100 simulated milliseconds. Thus, the
game has a virtual frame rate of 10 frames per second.

Planet π4 and the pSense implementation are written in
C++, while the simulator and network subsystem which we
are currently using come from the BubbleStorm [5] project1

and are written in Standard ML. To switch between simulation
and real application all that is necessary is to replace the
small component controlling the main loop in Planetπ4’s
core. All other components remain unchanged, provided that
they fulfill certain requirements. Most importantly, I/O and
wait operations are restricted to pure asynchronous mode,
since blocking calls cannot be executed in a discrete-event
simulation.

IV. WORKLOAD: BOTS

The measurement of overlay properties in the game requires
appropriate workloads. The obvious way to generate workload
is using human players. But setting up a testbed environment
for human players takes a lot of effort, especially in larger
scales (100 or more players). Furthermore, the generated
workload depends on the behavior of the players and thus is
not reproducible. The alternative of using traces from human
player matches is not convincing, since the highly interactive
gameplay is influenced by system properties (e.g., latency
and consistency). The traces measured on one system cannot
represent a realistic workload on a different system.

We chose to use bots to generate reproducible and easily
scalable workloads. For the currently very simple gameplay,
the bot implementations have simple aim-and-shoot mecha-
nisms. More complex gameplay modes of course need more
complex bot implementations. Those will then have to be
tuned to an activity level similar to human players.

V. DEMONSTRATION

The demonstration consists of two parts: a physical local
area network and a simulated Internet game.

A. Real-World LAN Game

A small set of PC runs the application in standalone mode,
joining a common game session. The PCs are available for
human players to play against each other and against the bots
which can be added to the session. Status information like
network traffic and overlay neighbor lists is made available
through an in-game head-up display.

1http://www.bubblestorm.net

B. Simulated Internet Game

The discrete-event simulation runs several game instances
(each controlled by a bot) within one operating system process.
The number of instances in the simulation is limited by the
available amount of RAM; 4GB currently suffice for up to 128
instances. The game can be watched from the perspective of
one of the instances.

VI. CONCLUSION AND FUTURE WORK

Our system provides a reproducible setup in a discrete-event
simulation with a workload generated by bots and prototype
deployment for real networks with a workload generated by
human players and/or bots, both using the same peer-to-
peer system implementation. Planetπ4 provides the base for
a realistic benchmark for peer-to-peer systems focusing on
realtime capabilities. And as a game Planetπ4 is still simple
enough to concentrate on the core aspects.

For the further evaluation of peer-to-peer overlays we plan
to extend Planetπ4’s gameplay, replacing the simple death-
match mode with a team mode in which the teams have to
defend certain strategic points of interest. The richer gameplay
is supposed to increase the realism of the game workload, the
fun factor for human players, and the scalability (number of
players) of the gameplay.

We like to extend our measurement infrastructure to the
standalone mode. While system-wide aggregation of statistics
is trivial in the simulation environment, the distributed nature
of the standalone mode makes the aggregation of highly
timing-sensitive statistics challenging.

Finally, we want to add support for the widely used ns-32

network simulator as a third option in addition to our custom
simulator and the real network stack.

This demo proposal and the related implementations where
developed in the QuaP2P research group3 funded by the
Deutsche Forschungsgemeinschaft (DFG).

REFERENCES

[1] A. Schmieg, M. Stieler, S. Jeckel, P. Kabus, B. Kemme, and A. Buch-
mann, “pSense-Maintaining a Dynamic Localized Peer-to-PeerStructure
for Position Based Multicast in Games,” inP2P’08. Eighth International
Conference on Peer-to-Peer Computing, 2008, pp. 247–256.

[2] S.-Y. Hu and G.-M. Liao, “Scalable Peer-to-Peer Networked Virtual
Environment,” inNetGames ’04: Proceedings of 3rd ACM SIGCOMM
workshop on Network and system support for games, 2004, pp. 129–133.

[3] A. Bharambe, J. R. Douceur, J. R. Lorch, T. Moscibroda, J. Pang,
S. Seshan, and X. Zhuang, “Donnybrook: Enabling Large-Scale, High-
Speed, Peer-to-Peer Games,”ACM SIGCOMM Computer Communication
Review, vol. 38, no. 4, pp. 389–400, 2008.

[4] T. Triebel, B. Guthier, R. S̈uselbeck, G. Schiele, and W. Effelsberg, “Peer-
to-Peer Infrastructures for Games,” inNOSSDAV ’08: Proceedings of the
18th International Workshop on Network and Operating Systems Support
for Digital Audio and Video, 2008, pp. 123–124.

[5] W. Terpstra, J. Kangasharju, C. Leng, and A. Buchmann, “BubbleStorm:
Resilient, Probabilistic, and Exhaustive Peer-to-Peer Search,” in SIG-
COMM ’07: Proceedings of the 2007 conference on Applications, tech-
nologies, architectures, and protocols for computer communications,
2007, pp. 49–60.

2http://www.nsnam.org/
3http://www.quap2p.tu-darmstadt.de/


