
978-1-4799-6882-4/14/$31.00 c©2014 IEEE

nSense: Decentralized Interest Management in
Higher Dimensions through Mutual Notification

Robert Rehner Maribel Zamorano Castro Alejandro Buchmann
Databases and Distributed Systems, Technische Universität Darmstadt, Darmstadt, Germany

{rehner, zamorano, buchmann}@dvs.tu-darmstadt.de

Abstract—Interest management is a key component of decen-
tralized multiplayer gaming overlays. Current approaches are
limited to two, sometimes three spatial dimensions. Considering
games that use game features like portals and unit-type visibility,
this limitation either forces the game designer to omit such fea-
tures or it causes increased latency and bandwidth for the player.
In this work we present and evaluate nSense, a decentralized
interest management scheme that can be used for an arbitrary
number of dimensions. It uses mutual notification so it only needs
to connect to players with close proximity. Therefore it is highly
scalable and suitable for massive multiplayer online games.

I. INTRODUCTION

In Multiplayer Online Games, Interest Management (IM)
is the mechanism that determines which of a player’s actions
need to be transmitted to which other players. IM can be
performed by a central instance, which then inevitable becomes
a scalability bottleneck and a single point of failure. Propos-
als for decentralized IM exist [1], but are limited to two,
sometimes three, spatial dimensions. In the light of games
like Portal or Miegakure that already make use of more
than three dimensions, this limitation appears anachronistic.
In this paper we present and evaluate a fully decentralized
Interest Management scheme called nSense, which supports
an arbitrary number of dimensions. Our approach is based
on mutual notification of the peers and therefore also solves
the neighbor discovery problem which is another challenge of
decentralized gaming overlays.

Due to the support of more than the common two to three
dimensions directly in the network overlay, corner cases of
previous approaches like portals or warp holes are eliminated.
Having these corner cases introduces delays for finding the
nodes at the other end of the portal (by gossiping, DHT
lookups, etc.) and establishing connections to them before
executing the jump. In nSense these corner cases no longer
exist for the network overlay: moving through a portal can
now be modeled as a regular movement in the d-dimensional
space that needs no special treatment on the network overlay.
Only the graphics, which are calculated locally, need to be
aware of the portal to map the d-dimensional space correctly
to 3D and render some special effects for portal. Further use
cases for more dimensions include unit type or team visibility,
or mapping node capabilities like bandwidth and latency as
additional dimension to use them for load balancing [2].

II. STATE OF THE ART

The approaches for handling MMOGs can be categorized as
being either centralized, decentralized or hybrid. Centralized
solutions have the typical drawback that the central instance
is the single point of failure and will eventually become a
bottleneck. Therefore some approaches use multiple servers
that communicate with each other in a peer-to-peer (P2P)
fashion but maintain the centralized facade for the players.

On the other side of the spectrum are the decentralized
approaches. Buyukkaya et al. [1] provide a overview of the
different proposed approaches. Despite their diversity, they all
have one limitation in common: their limited dimensionality.
Most approaches are suitable for two-dimensional games;
some can deal with three dimensions. But none of them can
handle more than three dimensions.

Voronoi-based approaches could be extended to more
dimensions, but only theoretical considerations exist. An
example based on a voronoi-approach is given by Almashor
and Khalil [2]: they use a 3D voronoi-based overlay for a 2D
game. The third dimension represents the bandwidth of a peer
and is used for load balancing. The increased computational
complexity associated with Voronoi computations in higher
dimensions has to be taken into account and may lead to a
degraded performance.

A simple idea is to ignore the additional dimensions and
use only the ones supported by the overlay. This results in a
change of the AOI shape and size as shown in Figure 1, i.e.,
if the original AOI in a 3D game was ball-shaped and one
maps this to a 2D overlay by omitting one dimension the AOI
becomes a cylinder. This is a severe problem because the AOI
becomes bigger and players far away but directly above or
below the player would be considered within the AOI.

Figure 1. Mapping a 3D spherical AOI to a 2D overlay yields a cylindrical
AOI where more players than necessary are seen and therefore network traffic
is increased. The effect worsens with more dimensions.

Another approach would be to use space-filling curves, like
the Z-order curve or Hilbert curve [3]. Space-filling curves
preserve locality to a certain degree and points that are adjacent
in the d-dimensional space are mapped close together to the 1-
dimensional space. However, no matter what curve is used, the
locality inevitably becomes very low in certain situations [3].

Therefore, we argue that multiple dimensions should be
directly supported by the overlay to avoid these problems.

III. NSENSE

One important aspect of an IM is the decision which
players can see and interact with each other. In our approach
we assume that each player has an Area of Interest (AOI)
surrounding her. Everyone within his AOI is visible and can
be interacted with; everyone outside of the AOI can not be seen

Figure 2. Dividing the space into sectors; diam specifies the diameter of
the exemplary sector. Left: In 2D we obtain a triangle-shaped sector. Middle:
In 3D we obtain a pyramid-shaped sector. Right: 3D sphere with 10 sectors.

by the player. The AOI could have various shapes depending
on the underling game [4]. In this work we assume, without
loss of generality, that the AOI is a sphere around the player.

The challenge is to know when someone enters the AOI.
For that we use a mutual notification scheme based on the idea
of pSense [5], which only supports two dimensions. Seen from
one peer the other peers are divided in three groups: within
the AOI, sensors, and other players that are unknown. Players
within AOI are known and a connection is maintained to
them; communication (e.g., position updates or player actions)
occurs regularly either by direct connection or via a multicast
scheme [6]. The outside of the AOI is divided in several
sectors, where we choose a sensor node within each sector.
They inform the player about incoming other players as well
as about other players that would be a better sensor than
themselves. The ideal sensor node for a sector is a node within
this sector that is closest to the border but still outside of the
AOI. It can happen that there is no node in a given sector
and outside the AOI. In this case the node within the AOI
and within the sector which is closest to the AOI border is
chosen. This setup achieves high scalability since the number
of connections is only dependent on the local player density
and independent of the total number of players.

The problem of dividing the region outside of the AOI in
sectors can be reduced to the problem of dividing the surface
of a d-dimensional sphere in areas. The sector is then defined
by the space that can be ‘seen’ by looking through this area
from the center of the sphere. The first idea for this approach
was presented earlier [7] and is illustrated in Figure 2.

For the selection of the partitioning method we define
two basic goals: minimizing the number of sectors n and
the diameter of the sectors. (1) Since the node needs to
communicate regularly with each sensor node, it is desirable
to keep the number of sensors as small as possible. (2) The
diameter of the sector should be small, or else a player could
’sneak’ by the sensor node and enter the AOI without being
seen. From this we can infer that all sectors should have the
same size: else it would mean that our division is sub-optimal
and has more sectors than necessary.

A. Sphere Partitioning Algorithm
Since position changes occur constantly in multiplayer

games, we need a sphere partitioning algorithm that satisfies
the above requirements and is simple to compute. For this work
we use the method presented by Leopardi [8]. Its geometrically
simple sector shapes lead to a simple calculation scheme where
only some angles need to be computed to determine the sector
of a given point (i.e., a player position). The so-called recursive
zonal equal area partition algorithm, EQ(d,N), takes the
dimensionality d and the number of desired partitions N as
input. It partitions a d-dimensional sphere in collars with
subdivisions; the two polar caps can be treated as collars with

Figure 3. An example of how to obtain the sector ID of a point in 4D space.
We start with a sphere with 112 sectors and determine the collar for the point.
Next we recursively use the same method on the collar which now has only
three dimensions.

no subdivision. The output are the angles corresponding to the
collars, the number of collars n and the number of subdivisions
for each collar (m1, ...,mn), such that N = 2 +

∑n
i=1mi.

Figure 2 (right) shows an example of a 3D sphere partitioned
in 10 sectors. The actual subdivision of collar i is then obtained
by applying EQ(d−1,mi) recursively until the collar consists
of only one partition. We pre-compute the values for a wide
range of values for d and N at build time. Since for each
configuration, i.e., dimension d and sector number N , we only
need to save O(d ∗ n) values.

With the help of the pre-computed values we can easily
determine the sector of another player, i.e., the sector of a
given point ~p = (p1, . . . , pd). The algorithm works as follows:
Let ~e1, . . . ~ed be the basis vectors of the d-dimensional space.

1) determine the angle α between ~p and ~ei for i = 1.
2) look-up to which collar α belongs.
3) if the collar consists of only one region (m = 1), we are

done and output the sector of the point.
4) for collars with several regions (m > 1), we recursively

repeat the algorithm with i := i+ 1.
The algorithm is illustrated in Figure 3. It computes at most
d−1 angles between p and the base vectors. Which leads to at
most log(n)∗(d−1) comparisons to the pre-computed angles.

B. Communication protocol
This section describes the nSense protocol messages. For

simplicity, we assume that a reliable transport protocol is used.
New connection Each node can initialize a connection by

contacting another node via its IP:Port combination.
Quit When a node leaves the AOI the connection will be

terminated after a threshold time by sending a quit message.
Position updates to nodes within the AOI and to all sensors.
Game actions Game event dissemination is not a part of

nSense, but it can be done similarly to position updates.
Join A node joins by contacting an arbitrary peer from the

overlay. This peer determines a joining position in his vicin-
ity and sends the node the contact data of the neighbors.

Sensor request If a node determines that a node would be
a suitable sensor it sends a sensor request containing the
sector number for which the node will be the new sensor.

Sensor quit The receiver is removed as a sensor.
Sensor suggestion The sensor s of player p usually knows

other players outside of the AOI of p. If s determines that
another player outside of the AOI of p would be a better
sensor node than himself, s sends a sensor suggestion to
p, i.e., the contact data of s′. Now, p will connect s′ and
follow its normal sensor selection algorithm but with a
better knowledge of its surroundings.

Node suggestion A sensor can also introduce the player to
new nodes that are about to enter the player’s AOI.

Figure 4. A 6D workload handled by overlays with different dimensionalites.

IV. EVALUATION

Our system simulates a multi-dimensional game where
peers, i.e., players, can move around. All players have the same
AOI size: in 2D this yields a circular AOI, in 3D a sphere and a
hypersphere in more than three dimensions. The requirements
of our system are based on a typical multiplayer game: accurate
detection and knowledge about all players within the AOI,
timely position updates of all players within the AOI, and
keeping network traffic as low as possible.

A. Simulation Environment and Workload
We use the discrete event network simulator Peerfact-

Sim.KOM [9] to simulate sessions of 5 minutes with 300
players. For this work we extended its workload generator so
that players move in multiple dimensions. We use a random
point of interest movement model, because it is reproducible,
scalable, and represents human behavior better than random
way point models [10], As performance metrics we use:
(1) Bandwidth consumption: obviously, in our setup the used
bandwidth depends mostly on the amount of players within the
AOI and the number of sensor nodes connected. (2) Precision:
to determine if the known players should be known to a player,
i.e., are within his AOI. (3) Recall: to determine if all players
within the AOI are known.

B. Simulation Results
First, we compared nSense-2D to pSense to establish that

our algorithm yields comparable results in 2D. When pSense
is used with a 3D workload its performance drops due to the
effects discussed in Section II, whereas nSense-3D performs
well. Next we simulate a six-dimensional world. Figure 4
(left) shows the average number of players within the AOI.
The expected number would be only three players and is
achieved by nSense-6D. When we map the 6D space to less
and less dimensions in the overlay the number increases up to
50 players within the AOI. The consequence of more players
within the AOI is illustrated in Figure 4 (right): the traffic
increases. We disabled the per-node traffic limit to obtain these
results. In a real world situation most upload capacities found
in home broadband connections would be saturated.

We also simulated nSense with different numbers of sectors
and observe that 8 sectors yields the best results. This is
due to two facts. First, more sectors increase the bandwidth
consumption which increases the probability for a node to be
overloaded. Secondly, the chance that a sector remains without
a sensor is increased. In such a situation it can happen that a
node “sneaks” into the AOI without being seen on time.

Our results also indicate that bandwidth consumption could
be further reduced by reducing the number of sectors, while
maintaining good values of recall and precision.

V. CONCLUSION AND FUTURE WORK

Today’s decentralized multiplayer gaming overlays are lim-
ited in their dimensionality to two or three spatial dimensions.
Elements that make more dimensions useful are already used
in games. For example portals or unit-type visibility have
already been used in games decades ago. These elements

become a challenge when we move away from a centralized
architecture. Then a portal results in a disruption of the
localized overlay and causes increased latency for the players.
Additional dimensions can also be used for other purposes like
mapping the bandwidth of a node to a dimension and use it
for load balancing.

We have presented nSense, a decentralized interest man-
agement scheme that is suitable for games with an arbitrary
number of dimensions. It uses localized communication only
and is therefore highly scalable. The overlay is built by using
direct communication with players within the area of interest
(AOI) and maintaining additional connections to so-called
sensor nodes. These nodes are guards for a certain part of the
world outside of the AOI and inform the player about other
players that are about to enter its AOI. They can also suggest
other nodes as sensor nodes if they are more suitable.

We have implemented and evaluated our approach and
shown that it outperforms algorithms that just ignore additional
dimensions.The main benefit is that we maintain connections
only to players that are within the AOI in a multi-dimensional
world. Current approaches with a limited dimensionality have
to maintain up to an order of magnitude more connections and
will therefore encounter bandwidth saturation.

As further work we plan to implement our approach in
a multiplayer game that makes use of more dimensions.
It would also be interesting to evaluate different AOI shapes
and AOIs with dynamic changing sizes during the gameplay.
We also plan on looking into adapting the number of sectors
dynamically for each player depending on the local player
density. If players within the AOI would participate in the
mutual notification it could eliminate the need for sensor nodes
in crowded areas and therefore save bandwidth.

ACKNOWLEDGMENT

The Authors would like to thank Michael Stein and Björn
Richerzhagen for their help with PeerfactSim.KOM. This work
has been co-funded by the DFG as part of CRC 1053 MAKI
and the GRK 1343 Topology of Technology.

REFERENCES

[1] E. Buyukkaya, M. Abdallah, and G. Simon, “A survey of peer-to-peer
overlay approaches for networked virtual environments,” Peer-to-Peer
Networking and Applications, pp. 1–25, Sep. 2013.

[2] M. Almashor and I. Khalil, “Load-Balancing Properties of 3D Voronoi
Diagrams in Peer-to-Peer Virtual Environments,” IEEE Parallel and
Distributed Systems, pp. 839–844, Dec. 2010.

[3] P. Ganesan, B. Yang, and H. Garcia-Molina, “One Torus to Rule them
All: Multi-dimensional Queries in P2P Systems,” in WebDB’04. New
York, New York, USA: ACM Press, Jun. 2004, pp. 19–24.

[4] S.-Y. Hu, “Spatial Publish Subscribe,” in IEEE Massively Multiuser
Virtual Environment (MMVE’09), 2009.

[5] A. Schmieg, M. Stieler, S. Jeckel, P. Kabus, B. Kemme, and A. P. Buch-
mann, “pSense-Maintaining a Dynamic Localized Peer-to-Peer Structure
for Position Based Multicast in Games,” in Peer-to-Peer Computing
(P2P’08), 2008, pp. 247–256.

[6] M. Lehn, R. Rehner, and A. Buchmann, “Distributed Optimization of
Event Dissemination Exploiting Interest Clustering,” in IEEE Local
Computer Networks, 2013.

[7] R. Rehner, M. Lehn, and A. Buchmann, “nSense: Interest Management
in Higher Dimensions,” in Peer-to-Peer Computing (P2P’13), 2013.

[8] P. Leopardi, “A partition of the unit sphere into regions of equal area
and small diameter,” ETNA, vol. 25, pp. 309–327, 2006.

[9] D. Stingl, C. Gross, J. Ruckert, L. Nobach, A. Kovacevic, and R. Stein-
metz, “PeerfactSim.KOM: A simulation framework for Peer-to-Peer
systems,” in HPCS. IEEE, 2011, pp. 577–584.

[10] T. Triebel, M. Lehn, R. Rehner, B. Guthier, S. Kopf, and W. Effelsberg,
“Generation of Synthetic Workloads for Multiplayer Online Gaming
Benchmarks,” in NetGames’12, vol. 4. IEEE, Nov. 2012.

