
Scoping in Wireless Sensor Networks

A Position Paper

Jan Steffan Ludger Fiege Mariano Cilia Alejandro Buchmann
Department of Computer Science

Darmstadt University of Technology
D-64289 Darmstadt, Germany

steffan@ito.tu-darmstadt.de
{fiege,cilia,buchmann}@dvs1.informatik.tu-darmstadt.de

ABSTRACT
One of the trends of wireless sensor networks (WSN) is to
allow multiple applications to run on top of the same sensor
network. This will have an enormous impact on the way
WSN applications are developed, deployed and maintained.
Many applications for WSN are still developed on very low
level functions provided by simple operating systems or bare
hardware. Alternatively, generic WSN middleware focuses
on very high-level system abstractions, such as declarative
query languages, and acts as black box that tries to auto-
matically map applications to the underlying resources.

In this paper, we propose scopes as a generic abstraction
for the definition of groups of nodes. They bridge the gap
between high- and low-level interfaces and enable the parti-
tioning of WSN functionality. As middleware building block
they facilitate the construction of tailored services in multi-
purpose WSNs.

Keywords
Multi purpose wireless sensor networks, Scopes

Categories and Subject Descriptors
C.2.4 [Computer-Communication networks]: Distribu-
ted Systems—Distributed applications; D.2.11 [Software En-

gineering]: Software Architectures—Domain-specific archi-
tectures

1. INTRODUCTION
Wireless sensor networks (WSNs) are discussed as plat-

forms for many new kinds of applications, like habitat or
health monitoring, building automation, and logistics. And
with falling hardware costs they promise to become widely
applicable. However, today many WSNs and applications
are still designed and deployed for one specific purpose. The

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
2nd Workshop on Middleware for Pervasive and Ad-Hoc Computing
Toronto, Canada
Copyright 2004 ACM 1-58113-951-9 ...$5.00.

lack of versatility increases the complexity and cost of de-
veloping WSNs and applications, preventing their industrial
adoption.

In view of hardware improvements, sensor networks will
typically be used for longer periods of time and for multi-
ple purposes [14]. In some cases they may even undergo
evolutionary development and continuous adaption. Mul-
tipurpose WSNs will be heterogeneous in most cases: for
each application only a specific type of sensor node or some
parts of the monitored environment may be relevant. The
two main challenges of multipurpose WSNs are the support
of divergent application requirements and the efficient par-
titioning of the WSNs with regard to these requirements.

The envisioned multipurpose networks [13] are tackled by
current research in two quite different approaches. On the
one hand, there are low level implementations that focus
on programming individual sensors and their sensing/acting
and communication facilities directly. Examples are simple
operating systems like TinyOS [8] On the other hand, there
is work on declarative query processors offering high-level
interfaces [9, 1], which do not allow explicit control on the
level of individual nodes.

The difficulty lies in finding a good trade-off between the
universality of such high-level interfaces and the degree to
which application specific details can be passed and utilized
for the optimization of routing and resource scheduling. In
order to resolve this problem we propose a scoping approach
that partitions WSNs and their functionality. This com-
bines capabilities of high-level specifications with low level
programming of nodes. Multiple applications with divergent
requirements can coexist within the same WSN and still use
state-of-the art algorithms for the respective implementa-
tions. Scopes serve as a building block for creating WSN
middleware and adapting it to application needs.

1.1 Motivating Scenario
We consider a freight container monitoring scenario as an

example for a multi-purpose WSN.
Sensors deployed inside containers can monitor environ-

mental conditions for perishable goods; detect tampering [3]
or leakage of dangerous goods; or provide an RFID-based
real-time inventory. Nodes that are capable of communi-
cating with the outside of a container connect the sensors
to data-sinks by forming an inter-container ad-hoc network.
The layout of these networks is regular, forming a grid-like
two- or three dimensional matrix.

This inter-container network can be used for additional
purposes such as tracking containers during their journey,
detecting containers that went over-board or were forgotten
somewhere, or establishing the position of a specific con-
tainer in a stack.

Obviously all of these applications make use of the WSN
in a distinct way. Environmental condition monitoring, for
instance, makes use of temperature and humidity sensors
which are not relevant for the tracking application. More-
over, there are various aspects that require further differen-
tiation:

• For environmental conditions monitoring, different sen-
sor types, sampling rates and thresholds are appropri-
ate for different goods.

• A higher temperature sampling rate might be neces-
sary for containers at positions which are exposed to
sunshine. In containers at inaccessible inner positions
the sensors for tampering detection can be deactivated.

• Multiple parties are involved, such as the owners of the
containers, the cargo, or the ship or official authorities.
Much of the collected information such as inventory or
condition of goods is business-critical and should not
be available to competitors.

While technically each single application is feasible with
current sensor hardware, the efficient and economical inte-
gration of several of these applications within the same WSN
infrastructure is only possible if the following properties can
be achieved:

• application-specific grouping of sensor nodes based on
various conditions such as position, capabilities or other
kinds of meta-data

• a high-level abstraction of node groups in order to en-
able the economical development of multiple applica-
tions

• modular and extensible functionality in order to sup-
port different group formation schemes and other app-
lication-specific requirements

• means of restricting sensor access or the visibility of
sensor data to authorized parties

2. SCOPES IN WSN
Traditional publish/subscribe systems exhibit problems

that are similar to the ones mentioned in the introduction
in terms of missing control. Scoping has been successfully
introduced to amend these problems [6], and the basic ideas
are described and applied to WSN here. In a pub/sub sys-
tem producers and consumers of data interact indirectly by
publishing notifications about events they have observed,
and consumers announce their interest in certain kinds of
notifications by issuing subscriptions. An intermediate noti-
fication service conveys notifications in a network of routers
to those consumers having a matching subscription. The
data-centric communication in sensor networks is similar in
nature.

2.1 Scope Model
In the original scoping model, producers and consumers

are the components of the system, i.e., the software artifacts
that operate and communicate. Within the domain of sen-
sor networks, components implement all kinds of high-level
functionality within sensor nodes, such as query processing
or in-network processing of data. The idea of scopes is to
provide means to define groups of components and limit the
visibility of messages sent within groups. In pub/sub sys-
tems, a published notification is visible to a consumer only
if it is in the same scope as the producer. In a more general
sense, scopes serve two purposes: a) as design tool, they
identify and delimit groups of components, b) as part of the
infrastructure, they control the dissemination of data in the
network. A component can participate in multiple scopes
simultaneously, and scopes can be nested. The resulting
structure of the system is given by a directed, acyclic graph
of simple and complex components. However, for the pur-
pose of this paper nested scopes are not considered.

There are two versions of a scope graph. The descriptive
scope graph describes an application, the components and
the scopes it comprises and how they interrelate. The graph
is thus comparable to source code specified by the program-
mer. The deployed scope graph describes the components
actually running in the system; note that the graph is still
a conceptual data structure that is not necessarily instan-
tiated in the nodes. It conceptually includes information
on where and how many instances of a scope/component
are running. From an abstract point of view, the difference
between descriptive and instantiated state can be seen as
the result of a transformation. And one of the main advan-
tages of scopes is that this transformation can be governed
by annotations to scopes. These annotations are generic,
they are interpreted and implemented by the middleware at
deployment and at runtime.

2.2 Applications of Scopes in WSN
As already recognized, for example in [13], the ability to

model various logical or geographical node-subsets is one
of the main design dimensions of sensor network applica-
tions. There is a need for both network-wide and local node-
subsets such as the neighborhoods proposed by Hood [12]
and abstract regions [11]. In our example, nodes within
a container are composed in one scope, nodes with tem-
perature sensors would be composed in a different scope
(independent of the actual containers they belong to), and
the set of containers belonging to one transport company,
containing cargo of one owner, or carrying certain kinds of
dangerous goods would each constitute a scope of its own.

The presented scoping concept supports these kinds of
node selection. Annotations on scopes carry rules that de-
termine at deployment time which nodes belong to the scope
(cf. Section 3). In addition to [13], scopes may also carry
specifications determining the most suitable routing algo-
rithm for the communication between scope members or
special requirements regarding timeliness, fault-tolerance or
security. In the container example, messages can simply
be broadcasted within a container scope. The temperature
scope, on the other hand, constitutes an overlay that must
be mapped to underlying communication facilities (cf. Sec-
tion 4).

The separation of communication on the level of scopes
allows us to control the (side) effects of independent ap-

N
od

e
fe

at
ur

e

G
eo

gr
ap

hi
ca

l

N
et

w
or

k
to

po
lo

gy

. .
 .

S
ec

ur
ity

P
rio

rit
y

V
is

ib
ili

ty

. .
 .

Membership policies Communication policies

Implementation

Low−level Services

Applications

Scope A Scope B Scope C

Application 1 Application 2

Descriptive Scopes

Networking, Neighbor Management, Localization, . . .

modules

of scopes

Instantiation

Figure 1: Abstract model of scope application in

WSN

plications, which would otherwise not be possible without
adapting potentially all involved components. Furthermore,
application development is made easier. Consider a temper-
ature reading emitted via a send() call. The actual func-
tionality needed here is determined by the reader’s scope
membership. On deployment, this call is bound to mid-
dleware primitives that obey the overlay. Moreover, if the
set of required services is given by the scope definition, the
footprint of the WSN can be reduced. Unnecessary services
need not be active/deployed on the node. A future extension
would be to even allow for dynamic application and service
deployment.

Scoping is an abstraction for system programming that is
located on a higher level than application source code, but
which does not hide all the system details. And it defers
deployment-specific decisions until resources and constraints
are known.

3. NODE SELECTION
Perhaps the most apparent use of scope annotations is

node selection. Rules specify on which nodes a component
is to be deployed, and thus determine scope membership of
the transformed, i.e., instantiated scope graph components.

3.1 Selection Rules
Various kinds of selection rules determine at deployment

time and/or at runtime on which nodes of the sensor network
the scope’s components are to be deployed. Examples are
selection based on node features, geographic coordinates,
topology information, etc.

Node features are typically static information about the
node’s capabilities in terms of hardware, such as sensor
types, maximum sampling rate, maximum accuracy, persis-
tent storage or extended processing capabilities and avail-
able software modules. Selection can also be based on node-
specific meta-data, such as the owner of the node. This could
be used to separate the monitoring of goods or containers
that belong to different companies, possibly in combination
with security requirements. Dynamic properties, like the
current battery level or load, are often too generic, because
they relate selection on node state in general.

Geographical scoping is already an implicit feature of many
WSN implementations, e.g. [7]. A geographic scope can

be defined by absolute or relative coordinates, such as “all
nodes within 100m of the current node”. The latter is often
useful within event-triggered queries that collect and aggre-
gate additional data locally.

Selection based on network topology also considers node
positions, but on different measures. There are various net-
work topology properties used in current WSN algorithms,
such as the number of neighbors, the hop-count from an-
other node or the node density. A typical application would
be to select a low density subset of nodes that sufficiently
covers an area, which could be used for habitat monitoring
with a minimal number of nodes. The formation of local
clusters is another example [4].

While the above selection rules are ad-hoc examples of
those proposed in [13]. Our main idea is to have an exten-
sible set of rules to which application-specific rules can be
added. This requires the availability of a module that han-
dles the deployment and maintenance of a scope as specified
by its node selection rule.

3.2 Scope Deployment and Maintenance
For each type of rule there is a specialized implementa-

tion module that maps the scope definition to the underlying
network. So, new rule types can be added and existing solu-
tions can evolve independently. The task of these modules
is to perform the part of the transformation of the descrip-
tive scope graph, which comprises two steps. First, scope
deployment creates a scope and installs its components for
the first time on the selected nodes. Second, scope mainte-
nance updates the scope and adds (removes) nodes that are
now (no longer) covered by the selection rules. Both steps
install, activate, deactivate and deinstall components, which
is described in Section 4.

3.2.1 Scope deployment
This step includes discovering nodes that should run some

components of the scope, installing the components, and fi-
nally a strategy to instantiate the scope itself. Discovery
obviously relies on some routing algorithms to search for
the appropriate nodes, and the choice which algorithm to
use is guided by the node selection rule associated with the
scope. For instance, to implement geographic scopes, exist-
ing geographic routing algorithms can be reused. The most
simple implementation is flooding with a local evaluation of
the scope membership rule.

For the strategy to instantiate the scope we differentiate
in this paper only two alternatives. First, there may be
no strategy/no instantiation, that is, besides node selection
and component installation the scope does not affect system
operation. Second, the scope is instantiated and an overlay
structure is established that connects scope members and
allows for scope internal communication. This realization of
visibility control is described later.

3.2.2 Scope maintenance
Scope maintenance involves adapting a scope to exter-

nal changes so that its membership selection remains valid.
Changes that have to be considered include

• changes in the network topology typical for ad-hoc net-
works, such as node or link failures,

• node mobility,

• dynamic aspects of the membership rule itself, such as
the current battery level or load.

For the first two points, the routing algorithms employed
for node discovery have to be re-evaluated partially to as-
sess the selection rules after these changes. It depends on
the actual algorithm whether this reassessment can be done
locally or some distributed algorithm (e.g., measuring path
lengths, group diameter) is required. As for the commu-
nication overlay constructed for a scope, it must possibly
be updated to reflect topology changes, at least when the
routing cannot cope with these changes itself. For example,
directed diffusion maintains alternative paths and even in
classic pub/sub networks, epidemic algorithms [2] are being
investigated to improve failure behavior.

Finally, scope maintenance includes the task of removing
a scope from the network when it is no longer used.

4. ANNOTATIONS ON COMMUNICATION
SEMANTICS

In multipurpose sensor networks, a variety of services may
be provided as part of the WSN infrastructure (routing,
caching, etc.) and, generally, they will likely come in dif-
ferent flavors, offering different levels of quality of service or
security. Some examples are given below:

• The original purpose of scopes is to delimit the visibil-
ity of messages. This can be used as a means of concen-
trating tasks on a certain node set, thereby decreasing
network load, or in order to restrict the visibility of
information to authorized parties.

• Encryption is CPU-intensive and therefore conflicts
with the resource constraints of WSNs [10]. Scopes
can be used to delimit encryption to those areas where
it really is required. Moreover different scopes may be
adjusted to individual trade-offs between security level
and cost.

• In the same way selecting the appropriate QoS require-
ments on scope level allows for an efficient utilization
of resources and bandwidth.

• Messages originating in different scopes may also have
different priorities. Messages related of the monitoring
of dangerous goods for instance should have a higher
priority than tracking-related messages.

Scope annotations govern the selection of services appro-
priate for the installed application in the current environ-
ment.

4.1 Implementation Issues
Take security as an example. Messages are sent by ap-

plication components via a send() function, which is pro-
vided by different WSN services with diverse QoS charac-
teristics. If all communication between members of a scope
shall be subjected to (light-weight) encryption, send() must
be called on the appropriate service. Instead of manually
customizing the involved components, system engineers an-
notate the respective scope to guide the deployment process.

In general, this approach separates applications more clear-
ly from the underlying services and communication hard-
ware. It utilizes modern engineering principles (separation
of concerns) and makes it easier to modularize both appli-
cation and infrastructure functionality.

4.1.1 Overlay Structures
In order to implement communication policies it is of-

ten required that some overlay structure be established and
maintained. This may be the distribution of encryption keys
or the discovery of a routing tree that meets certain QoS
requirements. Normally these structures would be estab-
lished with the deployment of the sensor network or during
query dissemination. Annotating a scope with the appropri-
ate communication policies allows us to combine the benefits
of both approaches: an overlay structure can be established
selectively between the required node set during scope de-
ployment. This structure can then be reused for multiple
tasks within the same scope. Considering our container sce-
nario a routing tree with extra redundancy and low latency
might be established once in order to connect sensors in the
“dangerous-goods scope” with a sink.

4.2 Scoped Communication:
If scopes are used in their original sense of limiting the visi-

bility of messages, it is possible to incorporate available rout-
ing schemes and exploit their functionality to constrain the
set of receivers much like the scope deployment approaches
described in section 3.2.

Another approach is to instantiate administrative instances
of scopes in the network and let them maintain the necessary
routing and membership information; various alternatives
are investigated in [5] for general pub/sub systems.

So far, scoping is considered as functionality between ap-
plication and routing layers. But the management of groups
of nodes can also offer modularization of the lower layers.
When scoping is introduced in an extra layer between the
routing algorithm and the basic communication primitives,
the nodes they see and use for routing is restricted. More-
over, multiple instances of (different) routing algorithms can
run simultaneously. This reduces the amount of state infor-
mation needed for each instance. If tunneling between dis-
tant scope nodes is part of the core middleware, the design
of routing algorithms is made easier (i.e., modularized), and
it may even mask topology changes due to movements or
link failures to some extent.

5. CONCLUSIONS
This paper is basically motivated by the need for mid-

dleware in multipurpose WSNs. With this in mind, we
have proposed scopes as a generic abstraction for group-
ing nodes and/or components. Scopes serve as a building
block for creating WSNs and adapting them to different ap-
plication requirements. They support system engineering
on a higher level than application source code. Deployment-
specific decisions are deferred until resources and constraints
are known, and thus reduce system footprint.

We have exemplified the potential of scoping in a multi-
purpose sensor network with the help of a a freight container
scenario. The ability to integrate quite different forms of
routing and node clustering demonstrates the relevance and
usefulness of the scope concept.

This paper outlines many promising directions of future
work. The original scope concept includes nested scopes
with message filters and transformers between them. This
could be used to address heterogeneity issues and in-network
processing. If we treat scopes as first class objects in the
WSN, many alternatives exists for implementing scope rep-

resentatives, which can be used for many purposes, like plac-
ing caches or data aggregation and composition.

Acknowledgments
We gratefully acknowledge the fruitful discussions with Jack
Stankovic, Sang Son and the sensor networks group at the
University of Virginia.

6. REFERENCES
[1] S. Babu and J. Widom. Continuous queries over data

streams. SIGMOD Record, 30(3):109–120, 2001.

[2] Paolo Costa, Matteo Migliavacca, Gian Pietro Picco,
and Gianpaolo Cugola. Introducing reliability in
content-based publish-subscribe through epidemic
algorithms. In Proceedings of the 2nd International
Workshop on Distributed Event-Based Systems
(DEBS’03), pages 1–8, San Diego, CA, USA, 2003.
ACM Press.

[3] C. Decker, M. Beigl, A. Krohn, U. Kubach, and
P. Robinson. eSeal - a system for enhanced electronic
assertion of authenticity and integrity of sealed items.
In Proceedings of the Pervasive Computing, volume
3001 of Lecture Notes in Computer Science (LNCS),
pages 254–268. Springer Verlag, 2004.

[4] Henri Dubois-Ferriere and Deborah Estrin. Efficient
and practical query scoping in sensor networks.
Technical Report 39, CENS, UCLA, Los Angeles, CA,
USA, April 2004.

[5] Ludger Fiege. Visibility in Event-Based Systems. PhD
thesis, Technical University of Darmstadt, Darmstadt,
Germany, 2004.

[6] Ludger Fiege, Mira Mezini, Gero Mühl, and
Alejandro P. Buchmann. Engineering event-based
systems with scopes. In B. Magnusson, editor,
Proceedings of the European Conference on
Object-Oriented Programming (ECOOP), volume 2374
of LNCS, pages 309–333, Malaga, Spain, June 2002.
Springer-Verlag.

[7] B. Karp. Geographic Routing for Wireless Networks.
PhD thesis, Harvard University, Cambridge, MA,
October 2000.

[8] Philip Levis, Sam Madden, David Gay, Joe Polastre,
Robert Szewczyk, Eric Brewer Alec Woo, and David
Culler. The emergence of networking abstractions and
techniques in tinyos. In Proceedings of the First
USENIX/ACM Symposium on Networked Systems
Design and Implementation (NSDI 2004), 2004.

[9] Samuel Madden, Michael J. Franklin, Joseph M.
Hellerstein, and Wei Hong. Tag: a Tiny AGgregation
service for ad-hoc sensor networks. ACM SIGOPS
Oper. Syst. Rev., 36(SI):131–146, 2002.

[10] Adrian Perrig, John Stankovic, and David Wagner.
Security in wireless sensor networks. Commun. ACM
special issue: Wireless sensor networks, 47(6):53–57,
2004.

[11] Matt Welsh and Geoff Mainland. Programming sensor
networks using abstract regions. In Proceedings of the
First USENIX/ACM Symposium on Networked
Systems Design and Implementation (NSDI ’04),
March 2004.

[12] Kamin Whitehouse, Cory Sharp, Eric Brewer, and
David Culler. Hood: a neighborhood abstraction for

sensor networks. In Proceedings of the 2nd
international conference on Mobile systems,
applications, and services, pages 99–110. ACM Press,
2004.

[13] Alec Woo, Sam Madden, and Ramesh Govindan.
Networking support for query processing in sensor
networks. Commun. ACM special issue: Wireless
sensor networks, 47(6):47–52, 2004.

[14] Yang Yu, Bhaskar Krishnamachari, and V. E.
Prasanna. Issues in designing middleware for wireless
sensor networks. IEEE Network, 18(1):15–21, 2004.

