
SMS based Group Communication System for Mobile
Devices

Christian Seeger
TU Darmstadt

Darmstadt, Hessen, Germany
cseeger@dvs.tu-

darmstadt.de

Bettina Kemme
McGill University

Montreal, Quebec, Canada
kemme@cs.mcgill.ca

Huaigu Wu
SAP Research

Montreal, Quebec, Canada
huaigu.wu@sap.com

ABSTRACT
This paper presents a group communication system for mo-
bile devices, called MobileGCS. Mobile communication is
slow, expensive and suffers from occasionally disconnections,
especially when users are in movement. MobileGCS is based
on SMS and enables group communication despite these re-
strictions. It provides all primitives needed for a chat appli-
cation and handles process failures. As mobile communica-
tion is expensive, MobileGCS is designed for small message
overhead and, additionally, exploits SMS based message re-
laying to handle short-term disconnections. In this work,
we present the group maintenance service and the multicast
service of MobileGCS. In order to distribute the overhead of
failure discovery over all processes we introduce the concept
of a circle of responsibility for failure detection. We discuss
informally that MobileGCS can handle the most common
failures while keeping the message overhead very low.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—network communications, wire-
less communication

General Terms
Design, Reliability

1. INTRODUCTION
Mobile phones have not only become a standard commod-

ity for telephony but we also use them for online shopping,
to find the nearest restaurants, and to chat with our friends.
Text-messaging has become particularly popular, especially
in Europe. Nevertheless, basically all interaction we cur-
rently do is between two mobile phones or between the mo-
bile phone and a central service. While a central service
might disseminate information (e.g., flight information) to
many interested phones, a phone usually does not send mes-
sages to many recipients. Nevertheless, there are plenty of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MobiDE10, June 6, 2010, Indianapolis, Indiana, USA.
Copyright 2010 ACM 978-1-4503-0151-0/10/06 ...$10.00.

applications that would benefit from a communication mid-
dleware that allows mobile phones to participate in group
communication. Two applications are chat among a group
of friends or business partners, or information dissemination
among a group of people with similar interest.

In this paper, we propose such a group communication
system (GCS) providing both the primitives to manage a
group of mobile phones as well as offering multicast to group
members. A very special feature of our system is that it com-
pletely relies on SMS (the GSM Short Message Service) as
underlying communication medium. SMS allows short mes-
sages to be sent from one mobile device to another without
the need of a centrally maintained service that would charge
extra service fees. Routing is done through the network car-
rier. Our decision on this communication medium has two
main reasons. Firstly, not all mobile users subscribe to a
data plan that would allow Internet connectivity, and access
to the Internet through wireless access points is usually very
sporadic. In contrast, SMS is basically always provided, con-
tinuously available, and many plans already include a high
amount of free SMS messages. Secondly, even if a data plan
or other wireless access exists, phones cannot be directly ac-
cessed by other phones through TCP or UDP as they do
not own a permanent IP address. And even if they have
for intermittent time, it is usually not possible to connect
to them. Thus, any solution based on Internet communica-
tion would likely need to rely on a server on the Internet to
which the phones connect. The server would be responsible
of relaying messages to all phones. However, our goal was to
design a truly distributed, server-less solution that is easier
to deploy and run. Our GCS solution only relies on a net-
work carrier that supports SMS and a Java-enabled phone.
Compared to an ad hoc network solution, users do not need
to be in the same communication area.

The solution that we present is a pragmatic one. Mo-
bile communication is expensive and slow. Every message
counts. Furthermore, mobile devices have low computing
power and restricted memory. Thus, our solution provides
much weaker properties than traditional group communica-
tion systems. For instance, we consider the communication
overhead to maintain virtual synchrony [4] too high. Sim-
ilarly, providing reliable message delivery [4] requires con-
siderable communication and storage overhead that we are
not willing to pay. Nevertheless, our system needs to be
able to handle the fragile connectivity of mobile phones as
phones can quickly disconnect for short, medium and long
time periods. Thus, our approach includes extensive fail-
ure handling. However, it attempts to keep the overhead as

small as possible. As a trade-off, it does not handle all failure
combinations correctly. We believe this to be a compromise
that users are readily going to accept.

Our solution was influenced by the requirements of the
application that we believe will be the first one to adopt
group communication technology, and that is chatting. Nev-
ertheless, we believe that other applications can also benefit
from our tool. Our GCS offers the chat application to cre-
ate, join, leave and destroy a chat room and to send FIFO
multicast messages. All message exchange is done via SMS
and only among the phones. Failed phones are detected and
removed from the group. The system handles short discon-
nections gracefully. In order to keep the message overhead
for group maintenance small, we introduce the concept of
circle of responsibility as our failure detection system. Our
GCS design, named MobileGCS relies on one of the phones
to be the master phone to manage group management. This
expensive task can easily rotate among the members.

2. BACKGROUND
Group Communication Systems is a middleware that
provides two types of services [4]: group maintenance ser-
vice and multicast service. Group maintenance manages a
list of all active members, called view V. At any given point
of time a view describes the current set of members of a
group. Processes can join or leave, and failed processes will
be excluded. Members are informed about a view change
through the delivery of a view change message containing
the members of the new view. The big challenge is to find
a consensus between member processes about the current
view. View proposal algorithms usually involve complex co-
ordination protocols in order to guarantee that all members
agree on the same view. Advanced properties such as vir-
tual synchrony [3] are even more costly as they provide a
logical order between view change messages and application
messages delivered in each view.

Themulticast service propagates application messages sub-
mitted by the application layer to all group members. In our
notation, we say that the application layer of a member re-
ceives a message that the GCS layer delivers to it. There are
two main demands on a multicast service: ordering and re-
liability. FIFO ordering requires that two messages sent by
a particular node are delivered in sending order. Causal or-
dering requires that if an application first receives a message
m and then sends a message m′, then all members should
deliver m before m′. And total ordering requires for every
two messages m and m′ and two processes, if both deliver
m and m′ they deliver them in the same order. Message
delivery can be unreliable, reliable or uniform reliable. Reli-
able delivery (uniform reliable delivery) guarantees that if a
message is delivered to an available member (to any member
– available or one that crashes shortly after) then it will be
delivered to all available members. The higher the degree of
ordering and/or reliability, the more expensive and complex
is the message exchange between the members in term of
additional messages and message delay.
Network Environment of Mobile Devices. Mobile de-
vices, especially mobile phones, usually connect to station-
ary base stations provided by network carriers which pro-
vide mobile devices with different speech and data services.
The most common data services are SMS, MMS, GPRS and
UMTS. SMS and MMS are designed for direct data com-
munication among mobile phones. Messages are addressed

by the receiver’s phone number and can be sent even if the
receiver is disconnected from the network. The network car-
riers store the messages and relay them when the receiver is
connected again although the number of messages and the
time messages are stored are limited. GPRS and UTMS
enable mobile phones to establish an Internet connection.
The base station allocates an IP address to the device and
acts as a router enabling message delivery but only as long
as the phone is connected to the Internet. Furthermore, IP
addresses can change quickly due to two reasons. Phones
automatically disconnect after a certain idle time. When
the phone reconnects, the phone’s base station might allo-
cate another IP address. Furthermore, if a mobile phone
moves from one cell to another, the base stations change
and, hence, the allocated IP address changes, too. In ad-
dition to this, for propagating a phone’s current IP address
an additional server is needed.Phones could also connect to
the Internet through wireless access points. However, such
connectivity is very sporadic and not available everywhere.
Therefore, we decided to use SMS as underlying commu-
nication layer due to its universal, bidirectional and fairly
reliable services. MMS would be equally possible and we
will look into this in future work. Disadvantages of SMS
are an often higher message delay than for IP packets and a
payment per message independently of the message size.
Application. We decided for a chat application as our ex-
ample application and developed our GCS with regard to
the primitives a chat application requires. In our opinion,
chatting is a feasible scenario for a mobile application, be-
cause almost every mobile device fulfillls the hardware re-
quirements for a chat application. Additionally, we assume
that friends or colleagues have their phone numbers already
stored in their mobile phones. Hence, the users do not need
additional information from a server as long as the mem-
bership consists of known people. Since there is no need for
a name server in a chat application with known members,
we decided to design a completely decentralized group com-
munication system without an expensive server. However,
a server-based naming service could be easiy integrated into
our GCS architecture. In a chat application typically all
members multicast relatively short messages. While causal
order would be desirable, FIFO order should be acceptable
for most situations. While reliability is important, the em-
phasis is probably more on fast message delivery. We assume
that a chat application on a mobile phone is not feasible
with more than 20 users, as the message delay would be too
high. For applications beyond 20 users, SMS and server-less
communication will likely be problematic due to the high
message costs and delay. With twenty users, view change
messages can be easily propagated within one message as-
suming phone numbers are process identifiers.

3. RELATED WORK
Group communication systems are available for many dif-

ferent network types. The first generation of GCS has been
mainly developed for local area networks (LANs) such as
Totem [11], Isis [3], Horus [16] and Spread [1]. They pro-
vide basically all virtual synchrony and strong ordering and
reliability guarantees.

There are also approaches for mobile networks. The au-
thors of [13] propose an algorithm for consistent group mem-
bership in ad hoc networks. This algorithm allows hosts
within communication range to maintain a consistent view

of the group membership despite movement and frequent
disconnections. Processes can be included or excluded with
regard to their distance from the group. Different groups can
be merged when they move into a common geographical area
and the partition of one group can be handled as multiple
disjoint groups. Another further approach [12] uses not only
the ad-hoc network, but also the cellular network and a Vir-
tual Cellular Network (VCN). A Proximity Layer protocol
monitors all network nodes within a certain area.Based on
this information a three-round group membership protocol
builds a group of mobile nodes.

Closest to our approach is SMS GupShup Chat [15] which
is a commercial group chat application based on SMS and
managed by a central server. Users are able to create a group
by sending a SMS message to the special phone number of
the server. Also invitation messages containing up to four
phone numbers are possible. Once a group is created, users
can join or leave the group. Users can post a message to the
group by sending a simple SMS message to the special phone
number. The message forwarding to all group members is
done by the server. In contrast to SMS GubShup Chat, we
build a GCS for chatting which is completely decentralized
and does not rely on a central server.

Not all existing systems provide strong guarantees. Epi-
demic approaches only provide guarantees with a certain
probability and will only achieve that messages are “even-
tually” delivered (such [2, 6]) or views “eventually” converge
(e.g, [7]). The idea is to let nodes regularly exchange their
past history of received messages. Given the low memory
capacity and the high costs of communication, we do not
consider epidemic protocols applicable for mobile phones.
Also, in our application context of chatting we require much
lower delivery delays as provided by epidemic protocols.

4. SYSTEM OVERVIEW
Our GCS layer provides the typical primitives to the ap-

plication: create, join, leave and destroy a group. The ap-
plication receives a view change in form of an SMS message
every time the group configuration changes. The applica-
tion can write an SMS and submit it to the GCS layer. The
GCS layer will deliver this messages to all group members.

Multicast. We do not provide reliable message delivery to
all available nodes. This would require nodes to store mes-
sages it receives from other nodes in order to be able to relay
them in case of the failure of the sender. We consider this
unfeasible for mobile environments. However, as mentioned
above, we can assume each individual SMS message to be
delivered reliably, even when short periods of disconnection
occur. Therefore, we implement multicast by simply send-
ing the message via SMS to each phone that is currently in
the view of the sending phone. This achieves what we call
sender reliability. A message sent by a node that does not
fail during the sending process is delivered to all available
members that are in the view of the sending process. If
the sender fails during the sending process, some members
might not receive the message. If a phone disconnects before
the message is received, it will very likely receive it upon re-
connection. Furthermore, as SMS offers FIFO delivery, we
automatically also provide FIFO delivery.

Group membership guarantees. Considering a chat ap-
plication, we think that virtual synchrony, although desir-

able, is not absolutely needed. Thus, view membership is
decoupled from the delivery of application messages.

Ideally, we would like to have an eventual agreement, that
is, all available members of a group will have eventually the
same view of the group if there is a sufficiently long time
without membership changes. We achieve this if we assume
a strong failure detector that allows for the correct detection
of a failure by choosing a sufficiently large timeout interval.
In most cases, wrongly suspecting a non-failed node will sim-
ply lead to the exclusion of an available node from the group,
something that we consider acceptable. However, in some
rare cases, a wrong suspicion or short-term disconnections
might lead to partitioned, and thus, incorrect views. Never-
theless, we tolerate many forms of concurrent failures, and
we believe that our properties are acceptable for chat appli-
cations. As a result, we do not offer more than best-effort
membership that will handle the most common errors but
might not converge in some cases.

The remainder of this paper is dedicated to the discussion
of the membership protocols.

5. MOBILE GCS WITHOUT FAILURES
Groups in Mobile GCS have one process that is responsi-

ble for the group membership service, called group master.
The group master is responsible for creating and destroying
the group, for processing join, leave and failure requests, and
for sending the corresponding view change messages to all
members. When the application calls the create primitive of
the GCS layer, the corresponding phone becomes the mas-
ter of group. As the group master has a higher load than
other phones due to this coordination overhead, we provide
a mechanism to move the master responsibility to another
node. All mechanisms are designed to use very few messages
as this will be sufficient if there are no failures in the sys-
tem. In this section we assume there are no failures. Failure
handling is described in Section 6.

In the following descriptions we use letters instead of phone
numbers. Letters in braces under a phone represent the cur-
rent view of this phone. The group master is indicated by an
asterisk behind its identification letter and by a black phone
in the figures. Phones of group members are gray shaded
and phones of non-members are white. Time steps repre-
sent the time a phone has to react to a previous stimulus
(e.g. incoming or missing SMS message).

5.1 Create/Destroy
Since we avoid the usage of a central server the existence

of a new group has to be propagated. The idea is to invite
other processes to a group and combine this with the cre-
ation procedure. This is useful for chatting as it allows the
creation of a new chat room and to invite other people to join
it. Figure 1 shows how the creation and invitation is done.
In time step T0, the user of the upper phone creates a new
group. The create method requires a group name and a list
of other phones that are invited to become group members.
For a chat application, this will open a chat room and invite
others to join the group. The group name only needs to be
unique over its lifetime across the phones that might want
to participate. Given that it is unlikely that a given user
will create many chat rooms concurrently, a group name
containing the creator’s identifier and a sequence number
suffice. A phone that calls the create method automatically
becomes the group master (black color) and the group cre-

B

C EDA

B

C EDA

B

C EDA

J J J

B

C EDA

B

C EDA

T0 T1 T2

T3 T4

J – join

Invitation messages

View change {A,B*,C,D}

Figure 1: Create

ation is completed only including the calling phone as group
member. The next step is the invitation of contacts chosen
by the user. The chosen phones receive invitation messages
including the group name from the group master in T1. The
GCS layer of these phones relay the message to the appli-
cation which can now indicate whether it wants to accept
the invitation. If this is the case, the GCS sends a join re-
quest to the master. In the example, each phone except of
phone E sends a join request in step T2. In T3, the group
master adds all joining processes to the view and sends a
view change message to all members of the new group. The
master only waits a limited time to send the view change.
If a further join request is received later, it simply sends a
further view change message. Each view gets an increasing
sequence numbers as identifier. At T4 phones A-D are all
members of the group and have the same view.

For a chat application we think it makes sense that a
group can only be destroyed when there is only one process
left. Since every group must have a group master and there
remains only one process in the group, this one is the group
master. It can submit a destroy request which removes the
last member and removes the group. If a group master likes
to leave the group without destroying it, a new group master
has to be elected. Section 5.4 describes how this is done.

5.2 Join
A joining phone needs to know the group name and can

send a join request to any group member. This group mem-
ber forwards the request to the master which processes it.
It includes the new phone into the group and sends a group
join message containing the new view to all members of the
new view. It sends this message to the joining node last.
This is important for failure handling as discussed in Sec-
tion 6. Each node, upon receiving the message, updates its
view and informs the application.

Figure 2 depicts a group that first consists of the processes
A,B∗, C and all processes have the same view installed. In
time step T1, D sends a join request to the group member
C. C is not the group master and forwards the join request
to B∗. At T2, the group master adds D to the view and
sends a view change message first to the old view members
A and C, and then to joining process D.

5.3 Leave
When a phone other than the master wants to leave the

group, the GCS layer sends a leave request message to the
master process and deletes its local information regarding

{A,B*,C,D} {A,B*,C,D} {A,B*,C,D} {A,B*,C,D}

T4

{A,B*,C} {A,B*,C,D} {A,B*,C} {D}

{A,B*,C,D} {A,B*,C,D}

{A,B*,C,D}

I I

II

T3

{A,B*,C} {A,B*,C} {A,B*,C} {D}

Join_D
T2

JoinReq

{A,B*,C} {A,B*,C} {A,B*,C} {D}

T1

Figure 2: Join

the view. The master deletes the phone from its group and
sends a view change message to all members in the new view
which adjust their local views and deliver the new view to
the application. The master also sends the leave message to
the leaving node so it knows that the leave was successful.
All messages the leaving node might receive after having
sent the leave request, are suppressed by the GCS layer.

Before the mater process can leave the group, it has to
evoke the master move operation to determine a new master.
Once the new master is established, the old master sends a
leave request to the new master.

5.4 Master Move
The master move operation can be called by the group

master to elect a new group master. The master process
has additional message overhead when membership changes
occur, leading to higher costs. Frequently alternating group
masters distribute the additional master costs among all
phones. The operation could be exposed to the applica-
tion or be executed internally in the GCS layer, e.g., after
a given time period or after a certain number of processed
view changes. It will also be executed when the current mas-
ter wants to leave the group (see Section 5.3). To initiate
the master move, the current (old) master sends a master
move message to the new master. Upon receiving this mes-
sage, the new master changes the master flag in its view to
point to itself and sends a view change message first to all
other members before it sends it to the old master. Sending
the view change massage to the old master at the end is
needed in case of failures. It allows the old master to check
whether the master move succeeded or not. Section 6 dis-
cusses the cases where the move fails. Whenever a process
receives the view change message it adjusts the master flag
accordingly. While the master move protocol is in process
there exist two group masters. Nodes that have received the
view change message know that there is a new master, while
those who have not yet received it don’t. In order to handle
this, the old master stops acting like a master process once it
has sent the master move message and only stores incoming
view change requests in this period of time. Upon receiving
the view change message from the new master, the old mas-

heartbeat message
process

Figure 3: Circle of Responsibility

ter knows that the master move succeeded and forwards all
view change requests to the new master.

6. FAILURE DETECTION
SMS does not establish a connection to other phones nor

does it provide a method to check whether a phone is avail-
able or not. Hence, the GCS has to detect failures by its
own. Failure detectors are a standard component of GCS.
They typically require members to send heartbeat messages
to each other. Once heartbeat messages are not received for
a certain period of time, the member is suspected to have
failed. Then, an agreement protocol is run to remove the
suspected node. As we mentioned before, we do not want to
have a complex protocol requiring many messages, neither
heartbeat nor agreement messages. Thus, we use a prag-
matic approach where each member only sends heartbeat
messages to one other node, and this node makes a solitary
decision to remove the node if it does not receive the heart-
beat messages anymore. A simple approach is to put the
failure detector on the master and let all phones send the
heartbeat messages to the master. But this overloads the
master and needs enhancements to handle master failure.

The authors in [8] and [14] introduce distributed failure
detectors that distribute the workload for failure detection
to more than one failure detection modules. Each module
monitors a subset of nodes and, thus, has a reduced work-
load compared to a central approach. We use the same idea
by introducing a circle of responsibility among all processes.
The GCS runs on mobile phones and every phone has a
unique phone number. Since we use phone numbers as pro-
cess identifiers, every process knows all phone numbers in the
current view. By sorting the phone numbers and connecting
the first number with the last number, we get a unique circle
of phone numbers which is known by every process. As a
result, every process knows its successors and predecessors.
Figure 3 illustrates such a circle of responsibility. For simpli-
fication, we use again letters instead of phone numbers. The
white process A is monitored by the successor process on its
right side and, therefore, it sends heartbeat messages to B
every time period t. Every successor process also knows its
predecessor process and expects heartbeat messages from it.

6.1 Failure of a process (not Master)
If an expected heartbeat message is missing for a period

T (T is significant larger than t in order to handle mes-
sage delay variations), the failure procedure is started. The
monitoring process performs a self test, and if it succeeds
it sends a process down message to the group master. The
group master, upon receiving this request, removes the failed
process from the view and sends a view change message to
all members of the new view and the failed node. In princi-
ple, when node B does not receive the heartbeat from A, A
could have failed or be disconnected, in which case it should

be excluded from the group. Alternatively, B itself could be
temporarily disconnected from the network. If the latter is
the case, B should not send the process down message to
the master. The self-test allows B to detect whether it is
currently connected and is described in Section 6.5.

6.2 Adapting to Process Leaves/Failures
For the circle of responsibility, it makes no difference whether

a process leaves the group or has failed. In both cases, the
process will be excluded from the failure detection and the
circle of responsibility has to be adapted. The adaption is
done as follows: the successor process of a leaving process
has to change the process it monitors and the predecessor
process has to change its heartbeat receiver. Assume process
pi leaves or fails. Then the successor of pi, i.e., pi+1 must
now monitor the predecessor of pi, i.e., pi−1. That is, pi−1

has now to send its heartbeat messages to pi+1 instead of pi.
If the leaving process pi has a temporary status (temporary
processes are described in next section), pi+1 only deletes
pi as a heartbeat receiver and pi+1 stops monitoring it. No
other process needs to adjust its monitoring activity.

6.3 Adapting to Process Joins
If a process joins the group, the responsibilities change

and the circle of responsibility has to adapt to it. A joining
process pi is only then completely included into to the circle
when pi actually knows that the join was successful. This is
necessary because it might be that the group master failed
in the middle of sending the corresponding view change mes-
sage. As the group master sends the change to pi last, it can
be assured that when pi receives the view change message,
all others will receive it, too. But if pi does not receive it,
it will not consider itself in the group, and thus, will not
initiate the circle of responsibility. In order to avoid a gap
in the circle of responsibility, a joining process gets first a
temporary status. Upon receiving the first heartbeat mes-
sage from a joining process, it is assured that all available
processes will receive the new join. Only the processes pi−1,
pi and pi+1 have to adjust their monitoring activity upon
receiving the view change message including pi: (i) pi−1

marks pi as temporary and starts sending heartbeat mes-
sages to both pi and pi+1, (ii) pi starts sending heartbeat
messages to pi+1 and monitoring pi−1 and (iii) pi+1 marks
pi as temporary and starts monitoring pi (it still monitors
also pi−1). Upon receiving pi’s first heartbeat message, pi+1

stops monitoring its former predecessor pi−1 and deletes pi’s
temporary status. In addition to this, pi sends a stop heart-
beats message to pi−1. Process pi−1, upon receiving pi+1’s
stop heartbeats message, deletes pi’s temporary status and
stops sending heartbeat messages to pi+1.

If there are two or more joining processes in a row, they
are all first monitored as temporary processes.

6.4 Master Failure
If the master fails, a new master process has to be found.

In order to avoid a costly agreement protocol, our failure
detection system elects the master’s first available successor
process. This is done as follows: If the master pi fails and its
successor pi+1 is still alive, this process detects the failure
and elects itself as the new master. Accordingly, it removes
pi from its view, sets the master flag to itself and sends a
view change message containing a master move. In the case
that the master and one or more of its successors fail, the

first available successor pj detects the failure of its prede-
cessor pj−1. As a consequence, it sends a down message to
the (already failed) group master pi. As pj does not receive
a view change from pi after a certain timeout, it suspects pi
to have failed and forwards its failure assumption about pi
and pj−1 to the master’s successor pi+1. If still no response,
it continues until it receives a response from one of the pro-
cesses. If not, it has unsuccessfully probed all successors
of the old master and, hence, pj itself is the first available
successor. Therefore, pj elects itself as the new master and
sends a view change message excluding the old master and
all unsuccessfully probed processes.
It might be that a further failure somewhere else in the cir-
cle occurs. The successor pu of this failed process will not
receive a view change message either. Hence, it also starts
probing all old master’s successors. If it sends to an avail-
able successor pj which has not detected and elected itself as
the new master so far, pj stores the down message from pu
and sends an acknowledge message to pu. When pj finds out
being the new master, it combines its own failure assump-
tions with those of foreign processes and sends a view change
message. Process pu frequently probes pj for availability as
long as it has not received any view change message. If pu
does not receive further acknowledgment messages, it as-
sumes that pj has failed and continues probing for the next
available successor. It could also be that pu receives a new
view change message excluding the old master before it re-
ceives any confirmation from one of the probed processes.
In this case, it simply sends the process down message to
the new master from which it received the view change.

6.5 Self Test Message
With a self-test, a mobile phone checks whether it is con-

nected to the network. A phone does so by sending a self-
test SMS to itself. SMS does not distinguish between a
message sent to a foreign phone number or the own phone
number. It will always use the network carrier to send the
message. Thus, we can use SMS to test our own network
status. As long as a phone is able to send and receive a self
test-message, it is also able to receive foreign messages. If a
phone does not receive the own self test message (identified
by a random number), we can assume that this phone is
currently disconnected from the network and, hence, we can
avoid wrong failure assumptions. Thus, after not receiving
its own self-test message, it will suppresses all process down
and heartbeat messages until connectivity is re-established
and the self-test message is received.

6.6 Down Status
Mobile phones can be frequently disconnected for short

time periods, for instance, while its user takes the metro for
two stops. The network carrier forwards messages sent to
a disconnected phone after reconnection. We do not want
that short disconnections completely expel a phone from the
group. Therefore, we take a two-step approach for remov-
ing phones from group activity. When the failure detection
mechanism is triggered for a process pi from which no heart-
beat messages are received anymore, pi is removed from the
circle of responsibility. This leads to a view change message
excluding pi. However, the remaining processes keep pi’s
phone number and set a down flag. They continue send-
ing the application messages to pi. If pi does not reconnect
within a certain time period, pi’s phone number will be com-

pletely deleted and no more messages sent to it.
At the same time, pi itself will detect that it is disconnected
as it does not receive any heartbeat messages from its pre-
decessor and performs a self-test which fails. It will set itself
to down status and queue all messages that the application
wants to send. It also informs the application that there is a
disconnection. If pi does not become connected within a cer-
tain time period, it drops all queued messages and informs
the application about being removed from the view. When
pi becomes connected it will receive all messages sent to it,
including the view change excluding itself. It will deliver all
received application messages. These might not be all mes-
sages sent within the view during the downtime because each
process handles down flags individually, but the application
is aware of this best effort since it received the temporary
disconnection message. From there, pi will join again and
then send any message it might have locally queued.

6.7 Reasoning of correctness
In this section we argue about the correctness of our ap-

proach by showing that many common failure cases are han-
dled correctly by our approach. We will illustrate some
of these failure cases by assuming a group of six processes
A,B,C,D,E, F . Process A is the group master. In each of
the situations below, we assume there are no further joins,
leaves and failures than the ones explicitly mentioned. The
descriptions provide some special actions in failure cases that
we haven’t described previously for simplicity. For space
reasons, we do discuss some cases only very shortly.

In the following, we first assume that all processes that
are suspected to have failed, have actually failed (or are
disconnected from the network), and do not recover until the
view change protocols have terminated. We will later discuss
false suspicions and the effects of intermittent connectivity.
In this case, we will show situations where our protocol will
not work correctly.
One Failure. Assume only one process pi fails. Then pi’s
successor pi+1 will detect the failure by not receiving heart-
beat messages from pi. If pi is not the master it forwards
a pi-down message to the master (not needed if pi+1 is the
master) and the master will send a new view change mes-
sage. Everybody adjusts the circle of responsibility guaran-
teeing that process pi−1 monitored by pi will receive as new
monitor pi+1. Although all nodes will still send application
messages to the failed node for a time period after exclusion
(as long as the down flag is set), the failed process is re-
moved from the view. If pi is group master pi+1 will detect
the group master failure and immediately elect itself as the
new group master, because pi+1 is the direct successor of pi.
All adjust their view and the circle of responsibility. After
the takeover there is again only one master in the system
and every node has a monitor.
Several Failures (not Master). Assume some processes
fail, but not the group master. If the failures are not consec-
utive corresponding to the circle of responsibility, they will
be detected concurrently. Every monitor process detects the
failure of its predecessor and forwards the information to the
group master. When master A receives the down messages,
it might bundle several changes in one view change message.

As no consecutive processes fail, the adjustments to the
circle of responsibility are independent of each other. If there
are consecutive failures (for e.g., pi and pi+1), the last pro-
cess in row (pi+1) will be detected first (by pi+2). After a

new view was sent and the responsibilities were adapted, the
next process (pi) will be detected (again, by pi+2) and so on.
Concurrent Joins and Leaves. Concurrent joins and
leaves are not a problem. The master process serializes
them. If a process p sends a join request to a leaving process,
the leaving process does not need to react. Process p will
timeout receiving the view change and send the join request
to another process.
Concurrent Join and Failure (not Master). Assume
a view Vi = {A∗, B,C,E, F} (with identifier i) and process
D joins the group. If D sends the join request to a process
that does not fail, this process forwards the join request to
A. At the same time, the monitor of the failed process sends
a failure message to A. Both events are serialized by master
A and distributed by one or two view change messages. If
D sends the join request to the failed process, it will time
out and resend the request. In fact, non-master processes
might fail in any combination concurrently to the join, and
the master might combine view changes or send one after
the other, all failed processes will be detected and removed
and at the end the circle of responsibility is set correctly at
all remaining processes.
Let’s have a look at some interesting cases. If joined and
failed node are consecutive in regard to the circle of re-
sponsibility, e.g., D joins and E fails, and A sends Vi+1 =
{A∗, B,C,D, F}, then the predecessor C of the failed node
will send the heartbeat message both to the new node D
and the successor F of the failed node. F will be monitor
for both processes until it receives the first heartbeat mes-
sage from the joining process D.
Now assume D joins the group and C fails shortly after. Be-
fore the join of D, process E was responsible for C. After
the join, D is responsible for C. If E detects the failure
before receiving the new view Vi+1 = {A∗, B,C,D, E, F} it
forwards the failure to A. A sends a new view Vi+2 exclud-
ing C, and D starts monitoring B. If E detects the failure
after receiving Vi+1 but before receiving the first heartbeat
message from D, both processes might send the failure mes-
sage to A, but E for sure. Independent of the originator, A
excludes C and sends the new view Vi+2. If E receives the
first heartbeat message from D before suspecting C as failed,
D is the only process that detects and forwards the failure
of C. A process join and concurrent failures can be han-
dled, even if the joining process fails immediately after Vi+1

is installed. The reason is that the successor of the joining
process only stops monitoring the former predecessor once
it knows that the joining process has started monitoring.
Several Failures including Master. If the master’s mon-
itor does not fail, it detects the failure and elects itself as the
new master. Concurrently, other nodes might send process
down messages to the old master due to other failures. If
they time out receiving the corresponding view change they
forward the failure assumptions to the master’s monitor. In
this case, the first view change from the new master will
contain these changes. If they receive the new view change
from the new master first, they resend their process down
messages to the new master.

A special case occurs when the old master crashes in the
middle of sending a view change and some but not all all
members have received the new view V . If it has sent the
view to its successor before the crash, then, the successor will
receive V before it suspects the master to have failed (as the
view change can be considered as a heartbeat message that is

sent before it was actually due). In this case, processes that
have not received V will be updated when they receive the
first view change V ′ from the new master, as it subsumes the
changes of V . Another issue is that messages from different
nodes do not obey causal order. Thus, it is possible that a
process receives V ′ before V . But as V ′ has a larger identifier
than V (by one as the counter is increased upon each view
change), V can be safely ignored. If the master has not
sent the view V to the successor before the failure, then
the first view change V ′ sent by the new master will not
contain the changes of V . Furthermore, it will also not have
a larger identifier than V but the same identifier (as at most
the sending of one view change might be incomplete). It is
important that other processes eventually install V ′. If a
process receives first V ′ and then V , it can detect that V
is an old view as it has the same identifier as V ′ and V ′

indicated a master move which is not the case for V .
If the group master and at least one of its successors fail,

the first available successor process will elect itself as the
new master.
Concurrent Join and Master Failure. Compared to the
case of a concurrent join with a non-master failure, there
is only one additional situation to consider. Assume D is
the joining node, and the master fails after having sent the
view change V including D to some but not all processes.
In this case, D will not receive the view change V as the
master sends the view change last to the joining process. D
will time out and resend its request to another process. For
space reasons, we only discuss one scenario in which A is the
master and B its monitor. (a) If B does not fail and has not
received V , it sends a new view change V ′ (with the same
identifier) neither including A nor D. When D eventually
resends its request, it will succeed. (b) If B does not fail and
has received V it sends a new view change V ′ (with a larger
identifier than V) that excludes A but includes D. There are
now two things going on concurrently. First, E will time-
out receiving a heartbeat from D and request the exclusion
of D to the master. The master will send a new view V ′′.
Second, D resubmit its join request to another process, e.g.,
F . If F receives V ′′ before D’s request, it will forward the
join request to the new master, and D will eventually join.
If F receives D’s request before V ′′ it actually assumes D to
be already a member and ignores the request. D will again
time-out and has to resend the request.
Concurrent Leave and Master Failure is in spirit sim-
ilar what was discussed for the join.
Master Failure during Master Move. Assume B initi-
ates a master move B sends a new view V , excluding A if
it had failed, and setting itself as the new master. If B fails
after having sent V to C, C elects itself immediately as new
master. If B fails before sending V to C, C sends a B down
message to A. If A has not failed, it will inform C that it
is no more master, and C will take over as master. If A has
failed, C will time out, and, being the next successor, take
over as master. Failure of C will trigger similar action at D.
Wrong timeouts. Timeouts have to be set conservatively,
as the system might not continue to work correctly if time-
outs are chosen too short. Let’s go through some examples.
If a non-master node is wrongly suspected due to a too short
timeout, it will be excluded from the view. As it is informed
about its exclusion, it can rejoin. If the master node A is
wrongly suspected by B, two master processes exist concur-
rently. A will know about the takeover, when it receives the

new view V from B that excludes A. It can simply rejoin. A
problem occurs if there have been concurrent joins, leaves or
failures and they were still sent to A before A has received
the exclusion message. It handles them and can send views
that are truly concurrent to V . If there are several, their
identifiers can be even larger than V . And they can arrive
at the different nodes before or after V . V should eventually
be the view installed at all processes. The processes can de-
tect views concurrent to V as they have the same or a higher
identifier as V and come from the old master.

In general, however, while basic sequences of failures and
wrong suspicions might be handled, there will be situations,
where two masters might start acting independently. In the
worst case, they might come up with disjoint views, and
then the system is partitioned.
Short Disconnections. If a node is only disconnected for
short time, it might be suspected by its successor but actu-
ally be available again before the view change. Nevertheless,
it is excluded and has to rejoin. Similar problems as with
too short timeouts might occur.

7. PERFORMANCE ANALYSIS
In this section we provide an overhead analysis for simple

multicast messages, and single joins and leaves. We con-
sider both the number of messages as well as the communi-
cation steps needed to finish the operation. The overhead
of heartbeat messages is ignored. We assume we start with
a group of n phones. Each multicast takes n-1 messages.
As messages can be sent concurrently, there is only one time
step. For a join, assume the joining process does not contact
the master directly but another process (1 message; 1 step).
This process forwards the request to the master (1 message;
1 step). The master sends the message to all members in the
new view except itself (n messages; 1 step). Once the succes-
sor of a joining process p receives the first heartbeat from p
(1 step) it sends a stop heartbeat message to p’s predecessor
(1 message; 1 step). Thus, we have a total of n+3 messages
in 3 steps until the joining process is included and 5 steps
until the circle of responsibility is completely adjusted. A
leave request takes n messages and two time steps. One
message for the request itself and n-1 view change messages
to all group members except the master. The same holds for
failures as there is one process down message and n-1 mes-
sages for the view change. These two time steps, however,
do not contain the delay until a failure is detected.

8. IMPLEMENTATION
Our GCS layer and a corresponding chat application layer

have been fully implemented based on Java ME [9]. We de-
cided for Java ME as a very common environment for appli-
cations running on mobile devices. It allows us to test our
GCS on many different devices. Additional toolkits [10, 5]
for Java ME supported our analysis. Java ME is divided into
two base configurations: Connected Limited Device Configu-
ration (CLDC) and Connected Device Configuration (CDC).
We use CLDC as it is designed for devices with limited ca-
pabilities like mobile phones and best fits our purpose. For
incoming messages, we utilize a synchronous message lis-
tener that listens at SMS port 2000. Thus, messages are
redirected to the GCS layer and do not end up in the mail-
box of the user. We have thoroughly tested scenarios with
up to four phones.

9. CONCLUSIONS
This paper presents a novel, completely decentralized group

communication architecture for mobile devices that uses SMS
based message passing. It’s main target application is chat-
ting but we believe that it can be used for other applications
with similar reliability requirements. The system has a thor-
ough failure detection mechanism that keeps the overhead
for failure handling very low while at the same time han-
dles the most common failure scenarios. Our approach han-
dles short disconnections as this is a common phenomenon
in mobile environments. Furthermore, failure handling is
equally distributed over all nodes, and while view changes
go through a master process, it is easy to rotate this task
among the group members. For future work we will focus on
integrating additional communication channels and, hence,
supporting a wider spectrum of applications.

10. REFERENCES
[1] Y. Amir and J. Stanton. The Spread Wide Area Group

Communication System. Technical report, 1998.

[2] K. P. Birman et al. Bimodal multicast. ACM Trans.
Comput. Syst., 17(2):41–88, 1999.

[3] K. P. Birman, A. Schiper, and P. Stephenson.
Lightweigt causal and atomic group multicast. ACM
Trans. Comput. Syst., 9(3):272–314, 1991.

[4] G. V. Chockler, I. Keidar, and R. Vitenberg. Group
communication specifications: a comprehensive study.
ACM Comput. Surv., 33(4):427–469, 2001.

[5] S. Ericsson. SDK 2.5.0.3 for the Java ME Platform.
http://developer.sonyericsson.com/, 2010.

[6] P. T. Eugster et al. Lightweight probabilistic
broadcast. ACM Trans. Comp. Sys., 21(4):341–374,
2003.

[7] R. A. Golding. Weak-Consistency Group
Communication and Membership. PhD thesis,
University of California at Santa Cruz, 1992.

[8] M. Larrea, S. Arevalo, and A. Fernandez. Efficient
algorithms to implement unreliable failure detectors in
partially synchronous systems. In Symp. on
Distributed Computing (DISC), pages 34–48, 1999.

[9] S. Microsystems. Java ME.
http://java.sun.com/javame/index.jsp, 2009.

[10] S. Microsystems. Java Wireless Toolkit.
http://java.sun.com/products/sjwtoolkit/, 2009.

[11] L. Moser et al. Lingley-papadopoulos. Totem: A
Fault-Tolerant Multicast Group Communication
System. Communications of the ACM, 39:54–63, 1996.

[12] R. Prakash and R. Baldoni. Architecture for Group
Communication in Mobile Systems. In IEEE Symp. on
Reliable Distributed Systems (SRDS), 1998.

[13] G.-C. Roman, Q. Huang, and A. Hazemi. Consistent
group membership in ad hoc networks. In Int. Conf.
on Software Engineering (ICSE), pages 381–388, 2001.

[14] A. Schiper. Early consensus in an asynchronous
system with a weak failure detector. Distrib. Comput.,
10(3):149–157, 1997.

[15] SMSGupShup. SMS Gup Shup Chat.
http://www.smsgupshup.com/apps_chat, 2009.

[16] R. van Renesse, K. P. Birman, and S. Maffeis. Horus:
A flexible group communication system. Commun.
ACM, 39(4):76–83, 1996.

