
T
h
is
 a
rtic

le
 is
 p
ro
te
c
te
d
 b
y
 G
e
rm

a
n
 c
o
p
y
rig

h
t la

w
. Y

o
u
 m

a
y
 c
o
p
y
 a
n
d
 d
is
trib

u
te
 th

is
 a
rtic

le
 fo

r y
o
u
r p

e
rs
o
n
a
l u

s
e
 o
n
ly
. O

th
e
r u

s
e
 is
 o
n
ly
 a
llo

w
e
d
 w
ith

 w
ritte

n
 p
e
rm

is
s
io
n
 b
y
 th

e
 c
o
p
y
rig

h
t h

o
ld
e
r.

it 5/2009

Schwerpunktthema

Benchmarking and Performance
Modeling of Event-Based Systems
Modellierung und Bewertung von Ereignis-basierten Systemen

Samuel Kounev, Universität Karlsruhe (TH),
Kai Sachs, TU Darmstadt

Summary Event-based systems are used increasingly often to
build loosely-coupleddistributedapplications.With their growing
popularity and gradual adoption in mission critical areas, the
need for novel techniques for benchmarking and performance
modeling of event-based systems is increasing. In this article, we
provideanoverviewof thestate-of-the-art in thisareaconsidering
both centralized systems based on message-oriented middleware
as well as large-scale distributed publish/subscribe systems.
We consider a number of specific techniques for benchmarking
and performance modeling, discuss their advantages and dis-
advantages, and provide references for further information. The
techniques we review help to ensure that systems are designed
and sized to meet their quality-of-service requirements. ���
Zusammenfassung Ereignis-basierte Systeme werden im-
mer häufiger beim Aufbau von hochverteilten Systemen und als

Kommunikationstechnologie in Enterprise-Software eingesetzt.
Durch den damit einhergehenden Bedeutungszuwachs treten
Methodiken zur Bewertung und Vorhersage von Leistungsmerk-
malen und Servicequalität wie Benchmarks und Performance
Modellierungsansätze immermehr indenVordergrund. Indiesem
Artikel geben wir einen Überblick über den aktuellen Stand der
Forschung im Bereich Performance-Modellierung und Bench-
marking von ereignis-basierten Systemen. Hierzu betrachten
wir zwei verschiedene Ansätze: zentralistische Infrastrukturen
(message-oriented middleware) und verteilte publish/subscribe
Systeme. Dabei beleuchten wir Vor- und Nachteile der beste-
henden Benchmark- und Modellierungsansätze und gehen
darauf ein, wie diese eingesetzt werden können, um mögliche
Engpässe und Servicequalitätsmerkmale vorherzusagen und
eine entsprechende Kapazitätsplanung vorzunehmen.

Keywords C.2.4 [Computer Systems Organization: Computer-Communication Networks: Distributed Systems]; C.4 [Computer
Systems Organization: Performance of Systems]; D.2.8 [Software: Software Engineering: Metrics] Performance Measures ���
Schlagwörter Verteilte Systeme, Modellierung zur Performanz-Vorhersage, ereignis-basierte Systeme, MOM

1 Introduction
Event-based systems (EBS) have been gaining increasing
attention in many industry domains including manu-
facturing, transportation, health-care and supply chain
management. Moreover, the publish-subscribe paradigm
is now used as a building block in major new soft-
ware architectures and technology domains such as
enterprise service bus (ESB), enterprise application in-
tegration (EAI), service-oriented architecture (SOA) and
event-driven architecture (EDA).

With the advent of ambient intelligence and ubiqui-
tous computing, many new applications of EBS have been
proposed [1]. Novel event-based applications, however,

pose some serious performance and scalability chal-
lenges.

To avoid the pitfalls of inadequate Quality-of-
Service (QoS), it is essential that EBS are subjected to
a rigorous performance and scalability analysis before
they are put into production. Common performance
metrics of interest are the expected event notification
latency as well as the utilization and message throughput
of the various system components (e. g., event brokers,
network links). Obtaining such information is essential
in order to determine the optimal system topology, con-
figuration and capacity that would provide adequate QoS
to applications at a reasonable cost.

262 it – Information Technology 51 (2009) 5 / DOI 10.1524/itit.2009.0550 © Oldenbourg Wissenschaftsverlag

T
h
is
 a
rtic

le
 is
 p
ro
te
c
te
d
 b
y
 G
e
rm

a
n
 c
o
p
y
rig

h
t la

w
. Y

o
u
 m

a
y
 c
o
p
y
 a
n
d
 d
is
trib

u
te
 th

is
 a
rtic

le
 fo

r y
o
u
r p

e
rs
o
n
a
l u

s
e
 o
n
ly
. O

th
e
r u

s
e
 is
 o
n
ly
 a
llo

w
e
d
 w
ith

 w
ritte

n
 p
e
rm

is
s
io
n
 b
y
 th

e
 c
o
p
y
rig

h
t h

o
ld
e
r.

Benchmarking and Performance Modeling of Event-Based Systems ���

In this article, we provide an overview of the major
methods and techniques for benchmarking and perform-
ance modeling of EBS. We first consider centralized
systems based on Message-Oriented Middleware (MOM).
We provide an overview of current benchmarks for MOM
focusing on the SPECjms2007 industry-standard bench-
mark. We then review several techniques for performance
modeling of MOM systems. We focus on a novel tech-
nique that we have developed which we present in more
detail and illustrate by means of a case study. Following
this, we turn to large-scale distributed event-based sys-
tems (DEBS). We survey the state-of-the-art in perform-
ance modeling of DEBS considering both analytical and
simulation-based approaches. We discuss the advantages
and disadvantages of different approaches and provide
references to several practical case studies that illustrate
them. The modeling techniques we review help to identify
and eliminate system bottlenecks and ensure that systems
are designed and sized to meet their QoS requirements.

2 MOM Systems
The most popular MOM platforms currently used
in industry include IBM WebSphere MQ, TIBCO En-
terprise Message Service, Progress SonicMQ, Oracle
WebLogic Server, Sun Java System MQ, Apache Ac-
tiveMQ and FioranoMQ. Most of these platforms support
the JMS (Java Message Service) standard interface for ac-
cessing MOM services. JMS supports two communication
modes: point-to-point and publish/subscribe. The former
is used for one-to-one communication through message
queues managed by the MOM server. The latter pro-
vides a topic-based publish/subscribe service with limited
content-based filtering capabilities.

2.1 Benchmarks
Over the last decade several proprietary and open-source
benchmarks for evaluating MOM platforms have been
developed and used in the industry including SonicMQ’
Test Harness [2], IBM’s Performance Harness for Java
Message Service [6], Apache’s ActiveMQ JMeter Per-
formance Test [5] and JBoss’ Messaging Performance
Framework [3]. Benchmarks not only help to compare
alternative platforms and validate them, but can also be
exploited to study the effect of different platform config-
uration parameters on the overall system performance.
While the benchmarks we mentioned have been em-
ployed extensively for performance testing and product
comparisons, unfortunately, they use artificial workloads
that do not reflect any real-world application scenario.
Furthermore, they typically concentrate on stressing in-
dividual MOM features in isolation and do not provide
a comprehensive and representative workload for evalu-
ating the overall MOM server performance.

To address these concerns, in September 2005, we
launched a project at the Standard Performance Eval-
uation Corporation (SPEC) with the goal to develop
a standard benchmark for evaluating the performance

and scalability of MOM products. The effort continued
over a period of two years and the new benchmark was
released at the end of 2007. The benchmark was called
SPECjms2007 and it was developed with the participation
of TU Darmstadt, IBM, Sun, BEA, Sybase, Apache, Ora-
cle and JBoss. SPECjms2007 exercises messaging products
through the JMS standard interface which is supported
by all major MOM vendors.

SPECjms2007 is based on a novel application in the
supply chain management domain that comprises a set
of supply chain interactions between a supermarket com-
pany, its stores, its distribution centers and its suppliers.
In addition to providing a standard workload and metrics
for MOM performance, the benchmark allows users to
customize the workload to their needs by configuring
it to stress selected features of the MOM infrastruc-
ture in a way that resembles a given target customer
workload. Thus, the benchmark provides a flexible and
robust tool for in-depth performance evaluation of MOM
servers. In [7], we presented a comprehensive workload
characterization of the SPECjms2007 workload captur-
ing the information needed in order to customize the
workload. Building on the workload characterization,
we developed a novel methodology for performance
evaluation of MOM platforms. The methodology is
the first one that uses a standard benchmark pro-
viding both a representative workload as well as the
ability to tailor the workload to the user’s require-
ments.

Using SPECjms2007 as a basis, we developed
a benchmark called jms2009-PS specifically targeted at
publish/subscribe systems [8]. jms2009-PS is built on
top of the SPECjms2007 framework and workload using
publish/subscribe communication for all of the seven
interactions. It is freely configurable and allows to de-
fine complex traffic scenarios with different destinations
(queues and topics), message types (using different sizes),
service levels and filters.

Case Study
In the following, we present a case study with
SPECjms2007 showing how the benchmark can be
used to evaluate alternative system configurations. We
use SPECjms2007 to analyse the influence of the Java
Virtual Machine (JVM) and the persistence store on
the total throughput of the open source JMS Server
ActiveMQ 4.1.2. As a persistence store, we use Derby
and MySQL. We configured the system using two pop-
ular commercial Java 6.0 JVMs hereafter referred to as
Vendor A and Vendor B. Overall, we considered the fol-
lowing four system configurations:
A Vendor A – Derby
B Vendor A – MySQL
C Vendor B – Derby
D Vendor B – MySQL
The hardware setup is illustrated in Fig. 1. We ran the
benchmark with all four configurations and measured

263

T
h
is
 a
rtic

le
 is
 p
ro
te
c
te
d
 b
y
 G
e
rm

a
n
 c
o
p
y
rig

h
t la

w
. Y

o
u
 m

a
y
 c
o
p
y
 a
n
d
 d
is
trib

u
te
 th

is
 a
rtic

le
 fo

r y
o
u
r p

e
rs
o
n
a
l u

s
e
 o
n
ly
. O

th
e
r u

s
e
 is
 o
n
ly
 a
llo

w
e
d
 w
ith

 w
ritte

n
 p
e
rm

is
s
io
n
 b
y
 th

e
 c
o
p
y
rig

h
t h

o
ld
e
r.

Schwerpunktthema

!"#$%&'())*+,-./0-
!"#$%&'($)***+$,-*$!('.('

$,$/01'($234('1#$567-896:;<
-*$:=$>?@A$5,B*-$:=$>?CD$B+

D(E&F#$G&#",$89-98-

12!+!0-/0-
8$,$*/01'($$C#4(H$)(1#$8966$:;<
B-$:=$>?@A$*$!?!$>?CD$+
I&#J1KL$8++6$!('.('$-*E&4

!"#$%&'())*+,-./0-
C=@$,657+$!('.('

*$,$8/01'($C#4(H$)(1#697:;<
B-$:=A$-$!?!$>?CD$B+
D(E&F#$G&#",$89-98-

B$:=&4

!"#$%&'())*+,-./0-
!"#$!3F'M$N#4('3'&L($O7B8+$!('.('

5/01'($O8$B98$:;<
68:=$>?@A$8,B*-$:=$>?CD$+
!1HF'&L$B+$B+P+5$$!Q?>0 Figure 1 SPECjms2007 experi-

mental environment.

 0

 20

 40

 60

 80

 100

200 400 600 800

C
P

U
 U

til
iz

at
io

n

BASE

Config A
Config B
Config C
Config D

 50

 55

 60

 65

 70

700 750 800 850 900

C
P

U
 U

til
iz

at
io

n

BASE

Config A
Config B
Config C
Config D

 0

 0.1

 0.2

 0.3

 0.4

 0.5

200 400 600 800

C
P

U
 T

im
e

P
er

 M
es

sa
ge

 (
m

s)

BASE

Config A
Config B
Config C
Config D

Figure 2 Measured CPU time per message and total server CPU utilization.

the maximum system throughput for each of them. Due
to space restrictions here we only provide a summary of
the most important findings. From the results, shown on
Fig. 2 and Table 2, we observed that under comparable
load the CPU utilization seems to be independent of the
selected JVM and the persistence store. The CPU time per
message as well as the total system utilization is similar
for all four configurations.

Furthermore, the results show that the maximal sys-
tem throughput is highly correlated with the chosen JVM
and database (Table 1). For both JVMs, the configura-
tion using MySQL as persistence store achieved higher
throughput than the configuration using Derby (between
4.9% and 6.9%). In our experiments, the choice of the
JVM had a higher impact on the system performance
than the choice of the persistence store (up to 15.3%).
The ’worst’ configuration for vendor B (Config. C, Derby)
outperforms the best configuration (Config. B, MySQL)
of vendor A by 7.8%. Therefore, we conclude that the
choice of the JVM is at least as important for maximizing
the system throughput as the choice of the persistence
store.

Another more detailed case study was published in [7].
There we consider a leading JMS platform, the Oracle
WebLogic server, conducting an in-depth performance
analysis of the platform under a number of different
workload and configuration scenarios. We evaluate the
server performance for both the point-to-point and pub-
lish/subscribe messaging domains studying the effect of
individual workload characteristics on the server CPU
utilization, the message throughput, the CPU processing
time per message/KByte payload and the message delivery
latency.

Table 1 Maximum system throughput.

Java VM
Vendor A Vendor B

Config. A Config. C

D Derby 720 830

B MySQL 770 870
Config. B Config. D

264

T
h
is
 a
rtic

le
 is
 p
ro
te
c
te
d
 b
y
 G
e
rm

a
n
 c
o
p
y
rig

h
t la

w
. Y

o
u
 m

a
y
 c
o
p
y
 a
n
d
 d
is
trib

u
te
 th

is
 a
rtic

le
 fo

r y
o
u
r p

e
rs
o
n
a
l u

s
e
 o
n
ly
. O

th
e
r u

s
e
 is
 o
n
ly
 a
llo

w
e
d
 w
ith

 w
ritte

n
 p
e
rm

is
s
io
n
 b
y
 th

e
 c
o
p
y
rig

h
t h

o
ld
e
r.

Benchmarking and Performance Modeling of Event-Based Systems ���

Table 2 System utilization: (a) CPU Utilization, (b) Disk I/O Utilization.

a) Java VM
Vendor A Vendor B

Config. A Config. C

D Derby 54.01% 53.44%

Config. B Config. D

B MySQL 54.63% 54.18%

b) Java VM
Vendor A Vendor B

Config. A Config. C

D Derby 66.15% 69.99%

Config. B Config. D

B MySQL 62.19% 60.96%

2.2 Models
We now consider modeling techniques for MOM systems
that can be used for performance prediction. We provide
an overview of several modeling approaches and then
focus on one of them showing how it can be applied in
the context of a case study. In [9], an analytical model of
the message processing time and throughput of the Web-
SphereMQ JMS server is presented and validated through
measurements. The message throughput in the presence
of filters is studied and it is shown that the message
replication grade and the number of installed filters have
a significant impact on the server throughput. A more
in-depth analysis of the message waiting time for the
FioranoMQ JMS server is presented in [10]. The authors
study the message waiting time based on an M/G/1 – ∞
queue approximation and perform a sensitivity analysis
with respect to the variability of the message replication
grade.

Another method for modeling MOM systems using
performance completions is presented in [12]. Per-
formance completions provide a general mechanism for
including low-level details of execution environments
into abstract performance models. The authors propose
a pattern-based language for configuring the type of
message-based communication. Model-to-model trans-
formations are used to integrate low-level details of
the MOM system into high-level software architecture
models.

In [11], an approach to predicting the performance
of messaging applications based on the Java Enterprise
Edition is proposed. The prediction is carried out dur-
ing application design, without access to the application
implementation. This is achieved by modeling the in-
teractions among messaging components using queueing
network models, calibrating the performance models with
architecture attributes, and populating the model pa-
rameters using a lightweight, application-independent
benchmark. The latter allows to avoid the need for pro-

totype testing in order to obtain the value of model
parameters, and thus reduces the performance prediction
effort.

The above techniques are all based on coarse-
grained models focused on predicting the average system
throughput and message waiting times. In [20], we pro-
pose a more fine-grained technique that allows to model
the individual message flows and interactions in a MOM
system. In the rest of this section, we briefly introduce
this technique and present a case study that demonstrates
its effectiveness.

Our modeling technique is based on Queueing Petri
Nets (QPNs) [19] which are a combination of queueing
networks and stochastic Petri nets. QPNs can be seen as
an extension of stochastic Petri nets that allows queues
to be integrated into the places of a Petri net. A place
that contains an integrated queue is called a queueing
place and is normally used to model a system resource,
e. g., CPU, disk drive or network link. Tokens in the Petri
net are used to model requests or transactions processed
by the system. In our case, tokens represent the mes-
sages processed by the MOM server. Arriving tokens at
a queueing place are first served at the queue and then
they become available for firing of output transitions.
When a transition fires it removes tokens from some
places and creates tokens at others. Usually, tokens are
moved between places representing the flow-of-control
during message processing. QPNs also support so-called
subnet places that contain nested QPNs. For further de-
tails on QPNs, the reader is referred to [19].

Case Study
To demonstrate the effectiveness of our modeling ap-
proach, we conducted a detailed case study [20] of
a representative state-of-the-art messaging application –
the SPECjms2007 benchmark – deployed on a leading
commercial MOM platform. We briefly discuss the way
the benchmark was modeled. Figure 3 shows the QPN
model of the first benchmark interaction. The workflow
of the interaction can be traced by following the tran-
sitions in the order of their suffixes, i. e., I1_1, I1_2,
I1_3, etc. For each destination (queue or topic), a sub-
net place containing a nested QPN (e. g., DC_OrderQ)
is used to model the MOM server hosting the destina-
tion. Similarly, the clients exchanging messages through
the MOM infrastructure (HQ, SMs, DCs and SPs) are
modeled using subnet places. Each subnet place is bound
to a nested QPN that may contain multiple queueing
places representing logical system resources available to
the respective client or server components, e. g., CPUs,
disk subsystems and network links. The respective physi-
cal system resources are modeled using the queues inside
the queueing places. Multiple queueing places can be
mapped to the same physical queue. For example, if all
destinations are deployed on a single MOM server, their
corresponding queueing places are mapped to a set of
central queues representing the physical resources of the

265

T
h
is
 a
rtic

le
 is
 p
ro
te
c
te
d
 b
y
 G
e
rm

a
n
 c
o
p
y
rig

h
t la

w
. Y

o
u
 m

a
y
 c
o
p
y
 a
n
d
 d
is
trib

u
te
 th

is
 a
rtic

le
 fo

r y
o
u
r p

e
rs
o
n
a
l u

s
e
 o
n
ly
. O

th
e
r u

s
e
 is
 o
n
ly
 a
llo

w
e
d
 w
ith

 w
ritte

n
 p
e
rm

is
s
io
n
 b
y
 th

e
 c
o
p
y
rig

h
t h

o
ld
e
r.

Schwerpunktthema

Figure 3 Model of Interaction 1
of SPECjms2007.

MOM server. The hierarchical structure of the model
not only makes it easy to understand and visualize, but
most importantly, it provides flexibility in mapping logi-
cal resources to physical resources and thus makes it easy
to customize the model to a specific deployment of the
benchmark. The remaining six interactions were modeled
using the same approach.

We validated our model by conducting an experimen-
tal analysis of SPECjms2007 in the environment depicted
in Fig. 1. The first step was to customize the model to
our deployment environment. The subnet place corres-
ponding to each destination was mapped to a nested
QPN containing three queueing places connected in tan-
dem. The latter represent the network link of the MOM
server, the MOM server CPUs and the MOM server I/O
subsystem, respectively. Given that all destinations are
deployed on a single physical server, the three queueing
places for each destination were mapped to three central
queues representing the respective physical resources of

 0

 20

 40

 60

 80

 100

 100 200 300 400 500 600 700

S
er

ve
r

C
P

U
 U

til
iz

at
io

n

BASE (Customized Vertical)

Model
Measured

 0

 5

 10

 15

 20

 25

 30

 35

 1 2 3 4 5 6 7

A
vg

. C
om

pl
et

io
n

T
im

e
(m

s)

Interaction

Model
Measured

Figure 4 Model predictions com-
pared to measurements.

the JMS server. As to the subnet places corresponding
to the client locations (SMs, HQ, DCs and SPs), they
were each mapped to a nested QPN containing a single
queueing place whose queue represents the CPU of the
respective client machine. In our setup, all instances of
a given location type were deployed on the same client
machine and therefore they were all mapped to the same
physical queue.

We employed the QPME tool (Queueing Petrinet
Modeling Environment) to build and analyze the
model [21]. QPME greatly simplified the task by
providing a user-friendly graphical user interface for
constructing QPN models and an optimized simulation
engine SimQPN for steady-state analysis.

To evaluate the accuracy of the model, we studied
a number of workload scenarios under different interac-
tion mixes and workload intensities. Figure 4 shows the
predicted and measured CPU utilization of the MOM
server when varying the BASE between 100 and 700. In

266

T
h
is
 a
rtic

le
 is
 p
ro
te
c
te
d
 b
y
 G
e
rm

a
n
 c
o
p
y
rig

h
t la

w
. Y

o
u
 m

a
y
 c
o
p
y
 a
n
d
 d
is
trib

u
te
 th

is
 a
rtic

le
 fo

r y
o
u
r p

e
rs
o
n
a
l u

s
e
 o
n
ly
. O

th
e
r u

s
e
 is
 o
n
ly
 a
llo

w
e
d
 w
ith

 w
ritte

n
 p
e
rm

is
s
io
n
 b
y
 th

e
 c
o
p
y
rig

h
t h

o
ld
e
r.

Benchmarking and Performance Modeling of Event-Based Systems ���

addition, the average interaction completion times are
shown. For completion times, we show both the pre-
dicted and measured mean values where for the latter
we provide a 95% confidence interval from 5 repetitions
of each experiment. The modeling error does not exceed
20% with exception of the cases where the interaction
completion times are below 3 ms, e. g., for Interactions 6
and 7. In such cases, a small absolute difference of say
1 ms between the measured and predicted values (e. g.,
due to some synchronization aspects not captured by the
model) appears high when considered as a percentage of
the respective mean value given that the latter is very
low. However, when considered as an absolute value, the
error is still quite small. For further details on the case
study including some more detailed results, we refer the
reader to [20]. The model proved to be quite accurate in
predicting the system performance, especially considering
the size and complexity of the system that was modeled.
The proposed modeling technique can be used as a pow-
erful tool to detect system bottlenecks and ensure that
systems are designed and sized to meet their performance
requirements.

3 DEBS
A generic large-scale distributed event-based system
(DEBS) is normally composed of a set of nodes de-
ployed in a distributed environment and exchanging
information through a set of communication networks
as illustrated in Fig. 5. Clients of the system are either
publishers or subscribers depending on whether they
act as producers or consumers of information. Publish-

PC Server
310

PC Server
310

PC Server
310

PC Server
310

PC Server
310

PC Server
310

PC Server
310

PC Server
310

WAN

WAN

WAN

WAN

Figure 5 A distributed event-
based system (DEBS).

ers publish information in the form of events which
are commonly structured as a set of attribute-value
pairs. Subscribers express their interest in specific events
through subscriptions. The main task of the system is
to deliver published events to all subscribers that have
issued matching subscriptions. The typical architecture
of a DEBS can be decomposed into four logical layers:
network layer, overlay layer, event routing layer and event
matching layer. A detailed overview of the four layers as
well as the techniques used to implement them can be
found in [13].

3.1 Benchmarks
To the best of our knowledge, currently no bench-
marks exist specifically targeted at DEBS. An overview of
relevant QoS metrics in the context of distributed pub-
lish/subscribe systems can be found in [14]. Some general
guidelines for designing a benchmark suite for distributed
publish/subscribe systems are presented in [17], how-
ever, no specific implementation or measurement results
are provided. The SPECjms2007 and jms2009-PS work-
loads [7] we discussed earlier can be used as a starting
point for building a benchmark targeted at DEBS.

3.2 Models
Modeling DEBS is challenging because of the decoupling
of communicating parties, on the one hand, and the
dynamic changes in the system structure and behavior,
on the other hand. When a request is sent in a tradi-
tional request/reply-based distributed system, it is sent
directly to a given destination which makes it easy to

267

T
h
is
 a
rtic

le
 is
 p
ro
te
c
te
d
 b
y
 G
e
rm

a
n
 c
o
p
y
rig

h
t la

w
. Y

o
u
 m

a
y
 c
o
p
y
 a
n
d
 d
is
trib

u
te
 th

is
 a
rtic

le
 fo

r y
o
u
r p

e
rs
o
n
a
l u

s
e
 o
n
ly
. O

th
e
r u

s
e
 is
 o
n
ly
 a
llo

w
e
d
 w
ith

 w
ritte

n
 p
e
rm

is
s
io
n
 b
y
 th

e
 c
o
p
y
rig

h
t h

o
ld
e
r.

Schwerpunktthema

identify the system components and resources involved
in its processing. In contrast to this, when an event is
published in a DEBS, it is not addressed to a particular
destination, but rather routed along all paths that lead
to subscribers with matching subscriptions. It is hard to
know in advance which system nodes will be involved in
delivering the event. There are many alternative event
routing algorithms and they all have different imple-
mentation variants leading to different routing behavior.
Moreover, depending on the subscriptions that exist, in-
dividual events published by a given publisher might be
routed along completely different paths visiting different
sets of system nodes. Another difficulty stems from the
fact that every time a new subscription is created or an
existing one is modified, or when nodes join or leave the
system, this might lead to significant changes in the work-
load behavior. Thus, the dynamics of DEBS necessitate
that workload characterization is done on a regular basis
in order to reflect the changes in the system configuration
and workload.

In [16], we proposed a novel approach to workload
characterization and performance modeling of DEBS
aiming to address the above challenges. We developed
a workload model based on monitoring data that captures
the system routing behavior and resource consumption
at a level that allows us to use this information as input to
performance models. The workload model we proposed
does not make any assumptions about the algorithms
used at the event routing and overlay network layers
of the system. Using the workload model and applying
operational analysis techniques we were able to charac-
terize the message traffic and determine the utilization
of system components. This in turn enabled us to derive
an approximation of the mean event delivery latency.
For more accurate performance prediction, we proposed
detailed performance models based on Queueing Petri
Nets (QPNs).

Our approach was the first to provide a comprehensive
methodology for workload characterization and perform-
ance modeling of DEBS that is applicable to a wide range
of systems. The methodology helps to identify and elim-
inate bottlenecks and ensure that systems are designed
and sized to meet their QoS requirements.

In [18], an analytical model of publish/subscribe
systems that use hierarchical identity-based routing is
presented. The model is based on continuous time birth-
death Markov chains. Closed analytical solutions for the
sizes of routing tables, for the overhead required to keep
the routing tables up-to-date, and for the leasing over-
head required for self-stabilization are presented. The
proposed modeling approach, however, does not provide
means to predict the event delivery latency and it suffers
from a number of restrictive assumptions. Many of these
assumptions are relaxed in [22] where a generalization of
the model is proposed, however, the generalized model
is still limited to systems based on hierarchical identity-
based routing.

4 Conclusion
This article presented a survey of current techniques
for benchmarking and performance modeling of EBS.
We first considered centralized systems based on MOM.
With exception of the SPECjms2007 and jms2009-PS
benchmarks, current benchmarks for MOM use artifi-
cial workloads that are not representative of real-world
application scenarios. SPECjms2007 provides a standard
workload and metrics for MOM performance as well as
a flexible and robust tool for in-depth performance eval-
uation of MOM servers. We reviewed several techniques
for modeling MOM systems and predicting their per-
formance under load. In the second part of the paper, we
surveyed the state-of-the-art in modeling DEBS consider-
ing both analytical and simulation-based approaches. We
discussed the advantages and disadvantages of different
approaches and provided references for further informa-
tion.

References

[1] A. Hinze, K. Sachs, and A. Buchmann. Event-Based Applications
and Enabling Technologies. DEBS’09, Keynote, 2009.

[2] Sonic Software Corporation. SonicMQ Test Harness. 2005.
[3] JBoss JMS Messaging Performance Framework. http://www.jboss.

org/community/wiki/JBossJMSNewPerformanceBenchmark, 2006.
[4] M. R. N. Mendes, P. Bizarro, and P. Marques. A framework for

performance evaluation of complex event processing systems In:
DEBS’08 Demo Session, 2008.

[5] Apache ActiveMQ. JMeter Performance Test.
http://activemq.apache.org/jmeter-performance-tests.html, 2006.

[6] IBM Hursley. Performance Harness for Java Message Service.
http://www.alphaworks.ibm.com/tech/perfharness, 2005.

[7] K. Sachs, S. Kounev, J. Bacon, and A. Buchmann. Performance
evaluation of message-oriented middleware using the SPECjms2007
benchmark. In: Performance Evaluation, Volume 66, Issue 8, 2009.

[8] K. Sachs, S. Kounev, S. Appel, and A. Buchmann. A Performance
Test Harness For Publish/Subscribe Middleware. In: SIGMETRICS/
Performance Demo Competition, 2009.

[9] R. Henjes, M. Menth, and C. Zepfel. Throughput Performance
of Java Messaging Services Using WebsphereMQ. In: Proc. of
ICDCSW’06, 2006.

[10] M. Menth and R. Henjes. Analysis of the Message Waiting Time
for the FioranoMQ JMS Server. In: Proc. of the 26th IEEE ICDCS,
2006.

[11] Y. Liu and I. Gorton. Performance Prediction of J2EE Applications
Using Messaging Protocols. In: Proc. of the 8th Int’l Symposium
on CBSE, LNCS 3489, Springer 2005.

[12] J. Happe, H. Friedrich, S. Becker, and R. Reussner. A pattern-based
performance completion for Message-oriented Middleware. In: Proc.
of the 7th Int’l Workshop on Software and Performance, ACM
2008.

[13] R. Baldoni and A. Virgillito. Distributed Event Routing in Pub-
lish/Subscribe Communication Systems: a Survey. Technical Report
15–05, Dipartimento di Informatica e Sistemistica, Università di
Roma “La Sapienzia”, 2005.

[14] S. Behnel, L. Fiege, and G. Mühl. On Quality-of-Service and Pub-
lish/Subscribe. In: Proc. of DEBS’06, 2006.

[15] S. Castelli, P. Costa, and G. Picco. Modeling the Communication
Costs of Content-based Routing: The Case of Subscription Forward-
ing. In: Proc. of DEBS’07, 2007.

[16] S. Kounev, K. Sachs, J. Bacon, and A. Buchmann. A Methodology
for Performance Modeling of Distributed Event-Based Systems. In:
Proc. of the 11th IEEE ISORC, 2008.

268

http://www.jboss.org/community/wiki/JBossJMSNewPerformanceBenchmark
http://www.jboss.org/community/wiki/JBossJMSNewPerformanceBenchmark
http://activemq.apache.org/jmeter-performance-tests.html
http://www.alphaworks.ibm.com/tech/perfharness

T
h
is
 a
rtic

le
 is
 p
ro
te
c
te
d
 b
y
 G
e
rm

a
n
 c
o
p
y
rig

h
t la

w
. Y

o
u
 m

a
y
 c
o
p
y
 a
n
d
 d
is
trib

u
te
 th

is
 a
rtic

le
 fo

r y
o
u
r p

e
rs
o
n
a
l u

s
e
 o
n
ly
. O

th
e
r u

s
e
 is
 o
n
ly
 a
llo

w
e
d
 w
ith

 w
ritte

n
 p
e
rm

is
s
io
n
 b
y
 th

e
 c
o
p
y
rig

h
t h

o
ld
e
r.

Benchmarking and Performance Modeling of Event-Based Systems ���

[17] A. Carzaniga and A. Wolf. A Benchmark Suite for Distributed
Publish/Subscribe Systems. Technical Report CU-CS-927-02, De-
partment of Computer Science, University of Colorado, Apr 2002.

[18] M. Jaeger and G. Mühl. Stochastic Analysis and Comparison of Self-
Stabilizing Routing Algorithms for Publish/Subscribe Systems. In:
Proc. of the 13th IEEE MASCOTS, 2005.

[19] S. Kounev. Performance Modeling and Evaluation of Distributed
Component-Based Systems using Queueing Petri Nets. In: IEEE
Transactions on Software Engineering 32(7):486–502, July 2006.

[20] K. Sachs, S. Kounev, and A. Buchmann. Performance Modeling of
Message-Oriented Middleware – A Case Study. Under review, Apr
2009.

[21] S. Kounev and C. Dutz. QPME – A Performance Modeling Tool
Based on Queueing Petri Nets. In: ACM SIGMETRICS PER
36(4):46–51, Mar 2009.

[22] G. Mühl, A. Schröter. H. Parzyjegla, S. Kounev, and J. Richling.
Stochastic Analysis of Hierarchical Publish/Subscribe Systems. In:
Proc. of Euro-Par 2009.

Received: May 15, 2009

Dr.-Ing. Samuel Kounev is a research fellow at
Karlsruhe Institute of Technology (KIT) lead-
ing the Descartes Research Group funded by the
German Research Foundation (DFG). He re-
ceived a M. Sc. degree in mathematics and com-
puter science from the University of Sofia (1999)
and a Ph. D. degree in computer science from
Technische Universität Darmstadt (2005). His re-
search interests include software performance en-
gineering, performance modeling and evaluation

of distributed systems, run-time performance and
resource management, benchmarking and cap-
acity planning, autonomic and energy efficient
computing. He has served as release manager
of SPEC’s Java Subcommittee since 2003 and as
chair of the SPEC JMS working group since 2005.
He is a member of the IEEE Computer Society
and the ACM.

Address: Institute for Program Structures and
Data Organization (IPD), Karlsruhe Institute of
Technology (KIT) – Universität Karlsruhe (TH),
Am Fasanengarten 5, 76131 Karlsruhe, Germany,
e-mail: skounev@acm.org

Dipl.-Wirtsch.-Inform. Kai Sachs is a research
assistant at TU Darmstadt and member of the
Databases and Distributed Systems Group. He re-
ceived a joint diploma degree in business admin-
istration and computer science from TU Darm-
stadt. His research interests include software per-
formance engineering, performance modeling
and evaluation of event-based systems and dis-
tributed systems in general, run-time perform-
ance management, capacity planning and bench-
marking. He has served as lead developer of
the SPECjms2007 benchmark. He is a member
of the IEEE Computer Society, the GI and the
ACM.

Address: Databases and Distributed Systems
Group, Department of Computer Science, TU
Darmstadt, Hochschulstr. 10, 64289 Darmstadt,
Germany, e-mail: ksachs@dvs.tu-darmstadt.de

269

mailto:skounev@acm.org
mailto:ksachs@dvs.tu-darmstadt.de

	1 Introduction
	2 MOM Systems
	2.1 Benchmarks
	Case Study

	2.2 Models
	Case Study

	3 DEBS
	3.1 Benchmarks
	3.2 Models

	4 Conclusion
	References

