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Abstract—In distributed real-time applications, such as online
games or interactive conferencing systems, timeliness of update
event dissemination is a prevailing requirement. Direct connec-
tions are often the best solution. However, participants’ connec-
tion bandwidths, especially uplink capacities of asymmetric end
user Internet connections, impose a limit to this.

We present and evaluate a lightweight local algorithm that
optimizes many-to-many event dissemination in highly dynamic
scenarios. The algorithm exploits the high clustering of interest
networks, as observed in virtual environments based on local
vision, but also in social networks of many kinds. Our approach
allows reducing traffic by aggregating messages as well as
balancing traffic among participants based on their capabilities.

Index Terms—Distributed applications, multicast, peer-to-peer,
overlay, latency, optimization.

I. INTRODUCTION
In massively multiplayer online games (MMOG), large

numbers of players connect over the Internet to join a common
virtual world. With these games running in real time, there is
an imminent need to synchronize the virtual game worlds of
all players as tightly as possible to maintain user satisfaction.
Noticeable differences in the synchronization among users due
to end-to-end latencies or bandwidth limitations will nega-
tively impact user experience. In most games, the relevance
of information about game events for a particular player is
shaped by the virtual world vicinity. Like in the real world,
close events are more important than distant ones. Therefore,
the highest communication demand is within local groups.

Similar requirements can be imposed by other kinds of real-
time group communication applications, e.g., text, audio, or
video chat in social networks. The envisioned scenarios have
in common that they need a many-to-many communication in
potentially dynamic groups. We have identified the following
challenges: (1) The targeted applications are very latency-
sensitive. Since latency in the Internet is not predictable,
however, overlays can only provide best-effort guarantees. (2)
Every participant is an event producer and has an individual set
of interested participants. (3) Virtual locations of participants,
and therefore their interests, are highly dynamic. (4) Interest
among participants often has gradations. While some are of
high priority, delay or message loss from others might be
tolerable. (5) Some participants may be of particularly high
interest, causing heterogeneous fan-outs. (6) The participants’
resources are heterogeneous. (7) Additional infrastructure
(e.g., multicast servers) might or might not be available.

With simple server-based solutions, physical server place-
ment is crucial for keeping latency low (1). This raises the

cost of service deployment compared to a simple server setup.
Traditional application layer multicast (ALM) solutions, e.g.,
[1], [2], [6], form multicast groups, which are not optimized
with respect to (2) and (3). These are conceptually tackled by
context-aware [3] or parametric [7] publish/subscribe. Such
generic approaches, however, do not optimize topology for
latency based on interest locality. Peer-to-peer approaches
for networked virtual environments, such as VON [5] and
pSense [12], focus on interest management, but do not employ
sophisticated event dissemination strategies. Points (5)-(7) call
for an adaptive solution.

II. SYSTEM OVERVIEW

We present an approach that addresses these challenges by
employing neighboring peers for message multiplication only
where necessary. We apply a local optimization algorithm to
incrementally improve the forwarding configuration. A node
always starts sending its messages to the receivers directly.
When it exceeds its available bandwidth limit, it will request
other nodes with spare bandwidth to serve as message for-
warders and multipliers. More specifically, each node locally
evaluates a utility function based on its local knowledge to
decide where it is appropriate to forward its messages using a
neighboring node. This is most efficient if the forwarding node
itself is a receiver of the data. Then, no additional messages
are required. Essential for this to work is a strong clustering
of the interests among participants. In virtual environments,
this is an immediate result of the players’ local vision. But it
is also true for social networks [10].

Eventually, we achieve two effects. First, we shift load
among participants to balance the work based on the nodes’
capabilities. Second, aggregation of forwarded messages saves
total bandwidth. Of course, message indirection generally adds
latency. Our approach therefore allows trading latency for
bandwidth via a utility function: using direct connections
usually induces the lowest possible latencies; investing some
latency for indirection can save bandwidth.

A. Illustrative Example
For a simplified example, consider the interest cluster in

Fig. 1a. Nodes A and B are both interested in the updates
from C (in virtual environment terms, A and B can see C).
Additionally, A is interested in B’s updates. This interest
graph shows a simple version of a cluster. The necessary
update message path is thus directed in opposite direction
of the interest edges (Fig. 1b). Intuitively, if C sends the
same message to A and B, it can as well send the message
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Fig. 1. A simple example of an interest cluster (a), the resulting messaging
scheme (b) and its forwarding options (c).

only to B and let B forward it to A (Fig. 1c), halving its
bandwidth usage. B now has to additionally send C’s updates
to A, but B’s overhead in this situation is usually lower,
because it can piggyback C’s messages to its own, assuming
there is some timing synchronization of B’s and C’s updates.
Especially when the message payload is small, saving packets,
and thus packet headers, reduces the total traffic. Compression
and application-specific message aggregation techniques can
bring further savings. But even if the total traffic reduction
is marginal, this option allows shifting traffic between nodes.
If B has more spare bandwidth than C, this may still be a
good choice. In any case, the rerouting has to be paid with
an increased latency on the path from C to A.1 The deci-
sion whether to use the indirection depends on the available
bandwidths and latencies between the nodes and finally on the
application requirements.

III. SYSTEM MODEL

Each node V represents one participant in the system and
generates events with updates of its own state. Other nodes
may be more or less interested in the updates from a particular
node:

Definition 1: The interest function I : V × V → [0, 1]
quantifies the interest level of one node in another. I(v, u) is
the interest of node v in the updates of node u. Generally, the
interest level is continuous, but in simple cases, it can be bi-
nary. Then, the interest function defines as I : V ×V → {0, 1}.

Definition 2: G = (V,E) is the subscription graph, where

E := {(v, u) | v ∈ V ∧ I(v, u) ≥ τ }.
τ ∈ (0, 1] is the interest threshold, i.e, the minimum interest
level required for receiving any updates from the corre-
sponding node. Therefore, v is subscribed to u’s updates iff
(v, u) ∈ E. Although subscriptions are binary, the continuous
level of interest serves as an indicator for the delivery priority.

For each subscription (v, u), there will be a corresponding
event flow from u to v. Events may be sent directly from u to
v or via any number of intermediate forwarder nodes. In this
paper, we assume that events are sent on a regular basis and do
not exceed a predefined maximum throughput per flow. The
sequence of (forwarding) steps that messages of a particular
flow take is defined as their path.

IV. ALGORITHM

In this section, we present the optimization algorithm. Each
node maintains a forwarding table containing an entry for
every outgoing event flow. Such a flow may either originate
from this node, or the node is a forwarder. A forwarding table
entry consists of a pointer to the next hop node as well as

1 If the network has triangle inequality violations (TIVs), the latency might
even be lower. Zheng et al. [13] have shown that TIVs are common on the
Internet. These can be exploited to improve latencies in overlay routing.
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Fig. 2. Redirect operation initiated
by node S
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Fig. 3. Shortcut operation initiated
by node U

subscription metadata like origin, destination, interest level,
and the current path length and total delay.

For each new subscription, a direct connection between
origin and subscriber is established. All nodes continuously
run iterations of their local path optimization algorithm. There
are two basic operations for optimization:
Redirect (REDIR) For an existing outgoing event flow, a node

selects a forwarder from its local neighborhood (i.e., its
interest set), that will forward the events for the next hop
(Fig. 2). This operation increases the path length by one.

Shortcut (SHORT) If a node is neither origin nor destination,
it can take itself out of the path (Fig. 3). This operation
decreases the path length by one.

The optimization algorithm works incrementally. In fixed
time intervals, each node repeatedly performs one iteration:

0) Let rv be the current forwarding configuration from the
point of view of the local node v. Let

Nv := {u ∈ V | (v, u) ∈ E ∨ (u, v) ∈ E}
be its open neighborhood in the subscription graph G.

1) Enumerate all possible rerouting operations (redirect and
shortcut). Let O be the set of all options:
O := {SHORT(s, d) | (s, d) ∈ rv ∧ v /∈ {s, d}} ∪
{REDIR(s, d, u) | (s, d) ∈ rv ∧ u ∈ Nv ∧ (u, s) ∈ E}.
(s, d) ∈ V × V is a subscription of node d for s’s
events in v’s forwarding configuration rv . The operation
REDIR(s, d, u) will create a redirection of the path
(s, d) via u (Fig. 2). The operation SHORT(s, d) will
remove v from the path (s, d) (Fig. 3). Applying an
operation transforms the current configuration r into r′.

2) Find the best option according to the utility func-
tion u : R→ R, with R being the configuration space:
rmax := argmaxr′∈{o(r)|o∈O} u(r

′).
3) If u(rmax)−u(r) ≥ ε, then activate rmax, otherwise do

nothing. The threshold ε ≥ 0 accounts for the transition
cost. Greater values of ε reduce the risk of oscillations.

A. Utility Function
We identify two main factors for the utility function:

Bandwidth utilization Obviously, no node can exceed its
bandwidth limit. Since many end user Internet connec-
tions provide only asymmetric bandwidths, we ignore the
downstream limitation in this analysis. We will model the
nodes’ available bandwidths as penalty terms to allow
exceeding bandwidth limits temporarily2.

Path latency Targeting latency-critical applications, the la-
tency of events from the originating node to the subscriber
is the second factor. Depending on the application, there

2 In real systems, available bandwidth cannot be exceeded, even temporar-
ily. Such occurrences will lead to message loss, which can be controlled by
prioritizing high-interest neighbors and reducing update frequency.



might be a an upper bound, a target value, and/or a
lower bound for latency (e.g., to ensure fairness). The
values may also depend on the interest level. Again,
latency bounds are not modeled as constraints, but using
penalties.

Other possible components of the utility function include
a prediction on the reliability of forwarding nodes and the
projected remaining duration of a subscription. Furthermore,
queuing delays could be modeled more explicitly than only
by the bandwidth utilization [9]. We assume that for each
factor there is a cost function cf . Optional weights wf allow
trading cost factors for each other. The total cost for a given
configuration r is calculated as c(r) :=

∑
f∈F wf ∗ cf (r).

The utility is simply defined as the negative cost function; a
negative utility value has no effect on the above algorithm.

For a concrete gaming scenario, we have derived the fol-
lowing cost functions, which will be used in the evaluation:
c(r) := wbw,S ∗ cbw,S(r) +wbw,U ∗ cbw,U(r) +wlat ∗ clat(r), with
bw,S representing the link utilization of the sender (cf. Fig. 2
and 3, node S), bw,U the link utilization of the forwarder (node
U), and lat the latency of the respective subscription. The link
utilization cost function is cbw,v(r) := max (Uv(r)− 0.4, 0)

6,
where Uv(r) is the link utilization of node v with the config-
uration r. Latency cost is calculated as

clat(r) :=
∑
e∈E

max (le(r)− ltarget
e , 0)

2,

ltarget
e := 0.5 ∗ 2−2∗I(e).

ltarget
e is the target latency (in seconds) of the subscription
e ∈ E, which in this case depends on the interest level. le(r) is
the path latency (in seconds) of subscription e in configuration
r. Finally, wbw,S and wbw,U are set to 64, and wlat is set to 1.

B. Implementation Notes and Discussion
To make an implementation of the presented algorithm effi-

cient, it is necessary to maintain the required local knowledge
of each node without too much overhead. For enumerating
all possible rerouting options (Step 1 of the algorithm), a
node needs to know its two-hop neighborhood. Generally,
this would require transmitting neighbor lists, which causes
significant overhead. In our case, however, a node only needs
to know common neighbors of itself and a potential forwarder.
This can be efficiently communicated via Bloom filters, which
can be piggybacked on top of packets that are transmitted
between neighbors anyway. For the local utility function, a
node needs to know the spare bandwidth of its neighbors,
which can be transmitted along with the neighbor filters. Path
length and latency are metrics that cannot be computed based
on local knowledge. The forward hops and latency can be
piggybacked along the path. To inform all nodes along the
path, a message has to be transmitted in reverse direction.

When nodes that serve as multipliers fail, the affected routes
need to be adapted in a timely fashion. Therefore, nodes should
have a good awareness of the liveliness of their forwarders. If
the interest between the nodes is symmetric, the sender will
receive updates of the forwarder, which can be used to detect
inactivity. Otherwise, control data packets can be used.

V. EVALUATION

For the evaluation, we use a round-based simulation. In each
round, each node performs one optimization step of the algo-
rithm. The round-based model abstracts from the frequency of
iterations, which can be adjusted to the application needs. We
used a geo-location host model adapted from GNP [11] and
a link model with node bandwidths from 100 to 500 kbit/s,
at a stream throughput of 512 bytes/s. We assume messages
have an overhead from packet headers in the same order of
magnitude as the payload. For small messages, this assumption
is realistic: using UDP transport, IPv4 and UDP headers have
a total size of 20 + 8 = 28 bytes. With TCP, this grows to
20 + 20 = 40 bytes, and IPv6 makes it even worse.

A. Virtual Reality Scenario
In the virtual reality scenario, a variable number of nodes is

placed randomly in a fixed-size region. The interest function
is a Gaussian of the euclidean virtual-world distance. The
number of nodes is varied from 50 to 200, resulting in an
average fan-out between 7 and 30. Since the algorithm works
on each node’s neighbor set, the total number of nodes is
less significant than the fan-out, i.e, the interest set size. The
clustering coefficient is around 0.64, independent of density.

The iteration process in a static scenario is illustrated in
Fig. 4, showing the distribution of uplink utilizations after each
iteration. The average bandwidth utilization is reduced from
almost 100% to less than 75%. Initially, more than 35% of
the nodes have a utilization of greater than 100%, i.e., are
overloaded. After 17 iterations, the ratio is reduced to less than
3%. Overloaded nodes are relieved (top right) at the expense of
sparsely utilized nodes (bottom left). Eventually, the majority
has a utilization between 60 and 80%.

Fig. 5 shows the initial and optimized uplink utilizations
as well as path length and latency stretch depending on
the number of nodes. Both mean and 90th percentile of the
initial link utilization grow linearly with the number of nodes,
because the number of outgoing message streams equals the
fan-out. With 50 nodes, link utilization is below 100%, hence,
there is no need for further reduction. But the higher the
density and therefore link utilization gets, the greater becomes
the improvement in the optimized case. Especially the most
utilized nodes, represented by the 90th percentiles, profit the
most. In return, reduction of link utilization in the denser cases
is paid with an increased path length and latency stretch.

To demonstrate the trade-off between latency and bandwidth
utilization, Fig. 6 shows the results for 11 weight settings
between “free” bandwidth (0.0 on the x-axis) and “free”
latency (1.0). The values at 0.0 represent the purely direct
delivery configuration. At the other end, when latency does not
have any costs associated, the last bit of bandwidth saving is
bought with significantly added latency. Between the extreme
cases, the weights can be used to adjust the preference between
link utilization and indirection latency.

B. Clustering Scenario
To examine the optimization potential depending on the

clustering, we use a synthetic graph generator to build con-
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Fig. 4. CDF of uplink utilization for the itera-
tions of a typical optimization process with 150
nodes.
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Fig. 5. Uplink utilization by the number of
nodes.
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Fig. 6. Link utilization and path length depending
on weight factors of utility function. wbw,S =
wbw,U = 64 ∗ x, wlat = 1− x.

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 2

 2.1

 2.2

u
ti

liz
a
ti

o
n

st
re

tc
h

clustering coefficient

latency stretch after
path length after

link util. before (mean)

link util. after (mean)
link util. before (90th)

link util. after (90th)

Fig. 7. Optimization potential depending on clustering coefficient.

nected subscription graphs. The variant of the random in-
tersection graph algorithm by Deijfen and Kets [4] allows
us to generate random graphs with a predetermined degree
distribution and clustering coefficient. The algorithm’s param-
eters are tuned to generate graphs with a gaussian distributed
node degree with an average of 25 and clustering coefficients
of 0.1, 0.2, ..., 0.9. The nodes’ link capacities are reduced so
that the initial mean link utilization is above 2 and the 90th

percentile is above 4.
The results (Fig. 7) show that a higher clustering coefficient

increases the potential for optimization. Surprisingly, this
is not expressed by a decreasing link utilization after the
optimization. Instead, the necessary latency stretch is lower for
higher clustering coefficients. The behavior of the algorithm
is a result of the utility function used. The utility function can
therefore also be tuned according to application needs in such
case. Overall, the results show that a high clustering improves
the performance of our algorithm.

VI. CONCLUSION

We have presented a dynamic many-to-many message dis-
semination approach that uses direct connections between
overlay nodes for minimum latency and applies message
forwarding and aggregation where this is the better option.
Since the optimization algorithm runs locally on each node
using knowledge only about the local neighborhood, it is
applicable in scenarios with highly dynamic subscriptions.
In the evaluation we made three main observations: (1) The
optimization process effectively shifts the load to less utilized
nodes, leading to a distinctively more uniform load distribution
and significantly fewer overloaded nodes. (2) The utility func-
tion allows controlling the trade-off between link utilization
(fairness) and induced latency. (3) A high clustering coefficient

of subscriptions improves the performance of the algorithm.
This work has focused on the high-level algorithm definition

and an evaluation on a high level of abstraction. The next steps
will include a specification and implementation of the concrete
protocol in a real application. A suitable candidate application
is the multiplayer game Planet PI4 [8]. Furthermore, we want
to adapt this scheme for event dissemination in mobile ad-hoc
networks (MANET) and mixed P2P/MANET scenarios.
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