
Integrat ing Not if ications

and Transactions:

Concepts and X2TS Prototype

C. Liebig, M. Malva, A. Buchmann

Database and Distributed Systems Research Group
Darmstadt University of Technology

���������
	��
���
Event-based architectural style promises to support building flex-

ible and extensible component-oriented systems and is particularly well suit-
ed to support applications that must monitor information of interest or react
to changes in the environment, or process status. Middleware support for
event-based systems ranges from peer-to-peer messaging to message queues
and publish/subscribe event-services. Common distributed object platforms
restrict publishing events on behalf of transactions to message integrating
transactions. We suggest that concepts from active object systems can sup-
port the construction of reliable event-driven applications. In particular, we
are concerned with unbundling transactional reactive behavior in a CORBA
environment and introduce X2TS as integration of transaction and notifica-
tion services. X2TS features rich coupling modes that are configured on a per
subscriber basis and supports the application programmer with coordinating
asynchronous executions on behalf of transactions.

1 Introduction

Messaging and event-services are attractive for building complex component-oriented
distributed systems [16, 22, 17]. Moreover, systems designed in an event-based archi-
tectural style [9] are particularly well suited for distributed environments without cen-
tral control, to support applications that must monitor information of interest or react to
changes in the environment, or process status. The familiar one-to-one request/reply in-
teraction pattern that is commonly used in client/server systems is inadequate for sys-
tems that must react to critical situations and exhibit many-to-many interactions. Exam-
ples for such applications are process support systems and workflow management sys-
tems. They are best constructed using event-based middleware, realizing the control
flow and inter-task dependencies by event-driven task managers [28]. In systems like
weather alerts, stock tracking, logistics and inventory management, information must
be disseminated from many publishers to an even larger number of subscribers, while
subscribers must be given the ability to select and extract the data of interest out of a
dynamically changing information offer [32, 4]. In related research as well as in de-fac-
to standard message oriented middleware, reliability concerns are restricted to event-
delivery using transactional enqueue/dequeue or transactional publish/subscribe [49].
Only minimal support is given to structure the dependencies between publisher and sub-
scriber with respect to their transaction context. In distributed object systems, transac-

tions are a commonly used concept to provide the simple all-or-nothing execution mod-
el. Transactions bracket the computations into spheres of atomicity. When using an
event-based style this implies asynchronous transaction branches and dynamically
evolving structure of atomicity spheres. Dependencies between publisher and subscrib-
er can be expressed in terms of visibility - i.e. when should events be notified to the sub-
scribers - in terms of the transaction context of the reaction and in terms of the commit/
abort dependencies between the atomicity spheres of action and reaction.

The overall goal of the Distributed Active Object Systems (DAOS) project is to unbun-
dle the concepts of active object systems [7], which are basic to active database man-
agement systems. An active object autonomously reacts to critical situations of interest
in a timely and reliable manner. It does so by subscribing to possibly complex events
that are detected and signalled by the active object system. To provide reliable and cor-
rect executions the action and reaction may be transactionally coupled. As active func-
tionality is useful beyond active databases, we aim to provide configurable services to
construct active object systems on behalf of a distributed object computing platform,
CORBA in particular. While DAOS in general addresses many of the dimensions of ac-
tive systems as classified in [50, 44, 14], in this paper we focus on X2TS, an integration
of notification (NOS) [37] and transaction service (OTS) [40] for CORBA. X2TS real-
izes an event-action model which includes transactional behavior, flexible visibilities of
events and rich coupling modes. The prototype leverages COTS publish/subscribe
MOM to reliably distribute events. The prototype deals with the implications of asyn-
chronous reactions to events. We explicitly consider that multiple subscribers with di-
verse requirements in terms of couplings need to be supported. The architecture also an-
ticipates to plug in composite event detectors.

The rest of this paper is organized as follows. In the next section we will briefly discuss
related work. In Section 3 we will introduce the concept of coupling modes and the di-
mensions for a configurable service. We discuss the application of active object con-
cepts to event-based process enactment. In Section 4, we will present the architecture
and implementation of the X2TS prototype. Section 5 concludes the paper.

2 Related work

Work has been done on integrating databases as active sources of events and unbun-
dling ECA-like rule services [18, 27] for distributed and heterogeneous environments.
Various publish/subscribe style notification services have been presented in the litera-
ture [35, 33, 10, 20, 47]. They focus on filtering and composing events somewhat sim-
ilar to event algebras in active DBMSs [15, 41]. In [49], the authors identify the short-
comings of transactional enqueue/dequeue in common message oriented middleware
and suggest message delivery and message processing transactions. The arguments can
be applied to transactional publish/subscribe [12], as well. Besides the work in [49], to
our knowledge the provision of publish/subscribe event services that are transaction
aware has not been considered so far. A variety of process support and workflow man-
agement systems are event-driven - or based on a centralized active DBMS - and en-
compass execution models for reliable and recoverable enactment of tasks or specifying
inter-task dependencies [53, 21, 25, 28, 13, 11]. However those systems are merely

closed and do not provide transactional event-services per se. The relationship of a ge-
neric workflow management facility to existing CORBA services and the reuse and the
integration thereof needs further investigation [46,8].

3 Notifications & transactions: couplings

In a distributed object system, atomicity of computations can be achieved using a two-
phase commit protocol as realized by the CORBA OTS for example (see section 4.1 for
a brief introduction to OTS). All computations carried out on behalf of an OTS transac-
tion are said to be in an atomicity sphere. Atomicity spheres may be nested, but still are
restricted to OTS transaction boundaries. OTS transactions relief the software engineer
to deal with all possible error situations that could arise to the various failure modes of
participating entities: either all computations will have effect, or none of them will (all-
or-nothing printciple). If isolation of access to shared data and resources is an issue, a
concurrency control mechanism must be applied, typically two-phase locking as in the
CORBA Concurrency Service. As a consequence, the isolation sphere corresponds to
the transaction boundaries. Objects may be stateful and require durability. In that case
full fledged ACID transactions are appropriate.

The design issue arises, where to draw the transaction boundaries. There are trade-
offs between transaction granularity and failure tolerance: always rolling back to the be-
ginning is not an option for long running computations. On the other hand, simply split-
ting the work into smaller transactional units re-introduces a multitude of failure modes
that must be dealt with explicitly. In addition, there are trade-offs between transaction
granularity and concurrent/cooperative access to shared resources and consistency.
Long transactions reflect the application requirements as they isolate ongoing compu-
tations, hide intermediate results and preserve overall atomicity. However, common
concurrency control techniques unnecessarily restrict cooperation and parallel execu-
tions. Short transactions allow higher throughput but might also commit tentative re-
sults.

3.1 Coupling modes for event-based interaction
When looking at event-based interactions, a variety of execution models are possible.
If we take reliability concerns into account, the consumer’s reaction to an event notifi-
cation can not considered to be independent of the producer in all cases. For example,
dependent on the need of the event consuming component, one could deliver events
only if the triggering transaction has commited. In other cases, such a delay is inaccept-
able. The reaction could even influence the outcome of the triggering transaction or vice
versa. Therefore the notion of a coupling mode was introduced in the HiPAC [15]
project on active database management systems. Coupling modes determine the execu-
tion of triggered actions relative to the transaction in which the triggering event was
published [7,5]. X2TS provides a mechanism to reliably enforce flexible structures of
atomicitiy spheres between producers and consumers through the provision of coupling
modes.

We consider the following dimensions that define a coupling mode in X2TS:

• visibility: the moment when the reacting object should be notified

• context: the transaction context in which the object should execute the triggered
actions

• dependency: the commit(abort)-dependency between triggering transaction and
triggered action

• consumption: when the event should be considered as delivered and consumed

Table 1 shows the configurable properties assuming a flat transaction model. We have
also considered the possible coupling modes in case of nested transactions. Because of
the arbitrary deep nesting of atomicity spheres, many more coupling modes are possi-
ble. Yet, not all of them are useful, as transitive and implicit dependencies must be con-
sidered. For sake of simplicity, they are not discussed here and will be presented else-
where.

• With immediate visibility, events are visible to the consumers as soon as they ar-
rive at the consumer site and independent of the triggering transaction’s outcome.
In case of on commit (on abort) visibility, a consumer may only be notified of the
event if the triggering transaction has committed (aborted). A deferred visibility
notifies the consumer as soon as the event producer starts commit processing.

• A commit (abort) forward dependency specifies, that the triggered reaction com-
mits only if the triggering transaction commits (aborts).

• A backward dependency constrains the commit of the triggering transaction. If
the reaction is vital coupled, the triggering transaction may only commit if the
triggered transaction has been executed and completed successfully.
If the consumer is coupled in mark-rollback mode, the triggering transaction is
independent of the triggered transaction commit/abort but the consumer may ex-
plicitly mark the producer’s transaction as rollback-only.
Both backward dependencies imply, that a failure of event delivery will cause the
triggering transaction to abort.

• Once an event has been consumed, the notification message is considered as de-
livered and will not be replayed in case the consumer crashes and subsequently
restarts. The event may be consumed simply by accepting the notification (on de-
livery) or when returning from the reaction (on return). Alternatively, consump-

visibility immediate, on commit, on abort, deferred

context shared, separate top

forward dependency commit, abort

backward dependency vital, mark-rollback

consumption on delivery, on return, explicit, atomic

7DEOH����Coupling modes

tion may be bound to the commit of the consumer’s atomicity sphere (atomic) or
be explicitly indicated at some point during reaction processing.

If the reaction is coupled in a shared mode, it will execute on behalf of the triggering
transaction. Of course this implies a forward and backward dependency, which is just
the semantic of a sphere of atomicity. Otherwise, the reaction is executed in its own at-
omicity sphere, i.e. separate top and the commit/abort dependencies to the triggering
transaction can be established as described above.

3.2 Discussion
The most notably distinctions between coupling modes in X2TS and in active databases
as proposed in [7,5] are that

i) coupling modes may be specified per event type even across different transac-
tions

ii) X2TS supports parallel execution in the shared (same) transaction context

iii)publishing of events is non-blocking, i.e. blocking execution of triggered actions,
is not supported

Backward dependencies even if implicit, as in ii) - raise the difficulty of how to syn-
chronize asynchronous branches of the same atomicity sphere. This is why we intro-
duce checked transaction behavior. A triggering transaction may not commit before the
reactions that have backward dependencies are ready to commit (and vice versa). Pub-
lish/subscribe in principle encompasses an unknown number of different consumers.
Therefore, we require that the consumers, that may have backward dependencies and
which need to synchronize with the triggering action, be specified in a predefined
group.

With the same arguments as presented in [43], event composition may span several
triggering transactions and we support couplings with respect to multiple triggering
transactions.

The visibility modes suggested, provide more flexibility than transactional messag-
ing (and transactional publish/subscribe). Transactional messaging, as provided by pop-
ular COTS MOM, only focuses on message integrating transactions [49], that is mes-
sages (events) will be visible only after commit of the triggering transaction. This re-
stricts the system to short transactions and therefore provides no flexibility to enforce
adequate spheres of atomicity (and isolation). Also, flexible and modular exception
handling - as supported by abort dependencies in our system - is not possible.

On the other hand, principally ignoring spheres of atomicity - using transaction un-
aware notifications - is not tolerable by all applications: with immediate visibility, com-
putations are externalized (by publishing events) that might be revoked, later. With re-
spect to serialization theory [2] publishing an event can be compared to a write opera-
tion, while reacting to it introduces a read-from relation. Therefore dirty reads -
reactions to immediate visible events of not-yet-committed transactions - may lead to
non recoverable reactions or cascading aborts. While in some cases it may be possible
to revoke and compensate an already committed reaction, in other cases it might not be.

The design of X2TS considers the fact, that a single execution model will not be flexible
enough to fulfil the diverse needs of different consumers. Therefore, coupling modes,

most important visibility, are configured on a per consumer basis. While one consumer
may be restricted to react to events on commit of the triggering transaction, others may
need to react as soon as possible and even take part in the triggering transaction e.g. to
check and enforce integrity constraints. More loosely couplings may be useful, too. For
example an active object that reacts immediately without a forward commit dependency
but additionally registers an abort dependent compensating action, in case the triggering
transaction eventually aborts.

An event-based architectural style is characterized to exhibit a loosely coupled style
of interaction. We suggest that for the sake of reliable and recoverable executions in
event-based systems, atomicity spheres and configurable coupling modes should be
supported. Nevertheless, X2TS provides the advantages of publish/subscribe many-to-
many interactions with flexible subject based addressing in contrast to client-server re-
quest reply and location based addressing. The asynchronous nature of event-based in-
teractions is sustained as far as possible and the differing demands of heterogeneous
subscribers are taken care of.

3.3 Example: event-based process enactment
Separation of concerns is the basis for a flexible and extensible software architecture.
Consequently, one of the principles of workflow and process management - separating
control flow specification and enforcement from functionality specification and imple-
mentation - is a general design principle for component-oriented systems [1,3,29,45].
Flow independent objects, that implement business logic, are invoked by objects that
reify the process abstraction, i.e. process flow knowledge. In the following, we will
briefly characterize the principles of event-based process enactment and the application
of transaction aware notifications.

A process model (workflow schema) is defined using some process description lan-
guage to specify activities that represent steps in the business process. Activities may
be simple or complex. A complex activity contains several subactivities. Activities
must be linked to an implementation, i.e. the appropriate business object. Activities are
connected with each other using flow control connectors like split and join. In addition
event connectors should be provided to support inter-process dependencies and reactive
behavior at the process model level [21]. An organizational model and agent selection
criteria must be specified, as well.

The process enactment system at runtime instantiates for each activity a task and a
task manager. The task manager initiates the agent assignments and business object in-
vocations, keeps track of the task state, handles system and application level errors, ver-
ifies the pre- and postconditions and enforces control flow dependencies. In any case, a
protocol must be established for the interaction between task manager and business ob-
jects as well as task manager and other process enactment components (i.e. other task
managers, resource managers, worklist handlers).

In the case of an event-based architecture, a task manager subscribes and reacts to
events originating from tasks (i.e. activity instantiations), other task managers, resource
and worklist managers as well as from external systems. This requires the participating
components to externalize behavior and publish events of interest or allow instrumen-
tation for event detection. Task state changes are published as events, for example "task

creation", "task activation"; "task completion". The task manager reacts to error situa-
tions, task completions, etc. Different phases of task assignment to agents, like "assign-
ment planned", "assignment requested", "assignment revoked", may be published to
support situation aware worklist managers.

Figure 1 illustrates the application of coupling modes. A task manager keeps track of
the execution of business objects in order to check consistency of task executions (sub-
scription sub_1); if consistency is violated, the triggering transaction will be marked
rollback-only. Otherwise, the task manager chains the respective follow-up task (sub-
scription sub_2), optionally using complex events to distinguish alternative execution
paths depending on significant events which are external to the process. If task execu-
tion errors occur, restarts can be initiated or contingency steps may be invoked (sub-
scription sub_e). As already mentioned, task managers may not only react to
primitive events signalled by the controlled task but also to composed events signalled
by other task managers of predecessor tasks, task managers of a different process or
even external systems. Therefore X2TS must support composition and couplings over
transaction boundaries.

Events published by controlled tasks and task managers will not only be of interest
in a local process enactment scope but also in a more global scope. In a recent study in
cooperation with the German air traffic control authorities [30, 23], we found that the
notification of regional and supra regional capacity planning systems and decision sup-
port systems about progress and critical situations in the flight departure (gate-to-run-
way) process is essential. In addition, worklist managers at the controller’s workplace
must be situation aware, that is track the status of different but inter-related process in-
stances, and track planned, past, and current task assignments for several agents in-
volved in inter-related processes, and timely notify the controller of significant situa-
tions.

)LJXUH�����Event-based process enactment

� ���������
	�����
��

���������

��
������
� �
���
� �
� �
� �

�!��� "#�
�$�%�
��&�

'!()�* (,+
-/.1032 465
7

���,8
��9 :
��;�<�
��,

�=�����?>

�������?@

�6%�A!"CBCD,E�
�F,
��G�G
�EIH�9 �
JK�L�
�M�/N=�G8
O O A���:��QPKR
:!<�
�:!�S�,������B�T

�6%�A!"1UVD,8
	�:&8��L��9 ��H�9 ��J&�6
�;����G���
�PWR
�X�,��� ���,������U�T

�6%�A!"1
VD,8
	��
A�8�� ��H�9 ��J&�!
�;����G���
�PWR
�X�,��� ���,������

Different event-subscribers will have different requirements with respect to visibil-
ity and coupling of atomicity spheres. For example, worklist managers will typically re-
quire immediate visible notifications and additionally react to the abort of actions or
change in assignment status in separate transactions. Reliable task control flow can be
implemented using on commit/abort visibilities whereas consistency checks typically
are deferred and share the same transaction context. The open nature of the envisaged
event-based architecture may provide the necessary flexibility to integrate next-gener-
ation air traffic control IT systems.

Activities are mapped to transactions defining atomicity spheres on the workflow
schema level. In the simple case, an activity is mapped to a transaction and subactivities
are mapped to (possibly open) subtransactions. Additionally, spheres of atomicity could
span more than one activity. This approach shares many ideas with [13] and [1]. X2TS
does not implement multitransactions (i.e. multilevel transactions [52], nested SAGAS
[19], DOM [6]) by itself, but supports the construction of multitransactions using X2TS,
as the necessary commit/abort dependencies can be established and for example com-
pensations can be triggered by X2TS. Recently, based on the work in [42], a proposal
for Additional Structuring of the OTS [24] has been submitted to the OMG, which pro-
vides activity management, e.g. allows for the realization of SAGAs and compensa-
tions, on top of OTS and which we think could benefit from X2TS. We note, that mul-
titransactions alone do not solve the problem of workflow recovery, as multitransaction
concepts all bear the problem of specifying compensations that preserve correctness in
terms of serializability. Such correctness criteria typically are based on commutativity
of operations [52, 26] and thus require application level knowledge. We think, that in a
CORBA world it will be hard to define which operations commute and which do not.
However, compensating activities at the workflow schema level seem to be a promising
approach. In that case, not all local transactions of a task execution need to be compen-
sated automatically.

4 X2TS prototype

First, we will summarize the key features of CORBA OTS and NOS as far as relevant
to the X2TS prototype and give a short overview of which part of the services are sup-
ported by our prototype and the interfaces that are essential for using it. The design and
implementation of the X2TS prototype will be discussed later on.

4.1 CORBA OTS
OTS can be thought of as a framework to manage transactional contexts and orchestrate
the two-phase-commit processing (2PC) between potentially remote recoverable serv-
ers. A CORBA transaction context - identified by its Control object reference - thus
represents a sphere of atomicity. OTS neither provides failure atomicity nor isolation
per se but delegates the implementation of recovery and isolation to the participating
recoverable servers. Isolation can be either implemented by the transactional object it-
self or by use of the Concurrency Service [39].

A CORBA recoverable server object must agree upon a convention of registering
callback objects with the OTS Coordinator. The latter drives the 2PC through invoca-
tion of callback methods as depicted in Figure 2 (subtransaction interfaces are left out).

Resource objects participate in the voting phase of the commit processing and impact
the outcome of the transaction. The Synchronization object is not essential for
2PC but for additional resource management, like the integration of XA compliant da-
tabases and queue managers. The OTS engine will call back the registered Synchro-
nization objects before start of and after termination of the two phase commit
processing. In X2TS we make use of Synchronization objects to realize checked trans-
action behaviour and to add publishing of transaction state change events (also see sec-
tion 4.4).

4.2 CORBA NOS
The CORBA Notification Service has been proposed as extension to the CORBA Event
Service. The most notably improvements in NOS are the introduction of filters and the
configuration of quality of service properties. NOS principally supports interfaces for
push-based and pull-based suppliers and consumers. Events may be typed, untyped or
structured and signalled to the consumer one-at-a-time or batch-processed. A Struc-
turedEvent consists of a fixed event header, optional header fields, a filterable event
body and additional payload.

An EventChannel is an abstraction of a message bus: all subscribers connected
to a channel can in principle see all events published to that channel. Consumers may
register conjunctions or disjunctions of filters, each of which matches events to a given
constraint expression. Event composition is not supported by NOS - besides underspec-
ified conjunction and disjunction operators. Quality of service (QoS) and filters can be
configured at three levels providing grouping of consumers. NOS implementations may
support specific QoS parameters, e.g. event ordering, reliability, persistence, lifetime
etc. Configurations are programmed by setting the respective properties, represented as
tagged value tuples.

)LJXUH�����Callbacks in OTS

� � �� �

���	��

�	������� �
����� ���
��������
�� �

� �	� ��!��"
#�
$ %'&)(*,+ %)$ -
*/.103234)$ 5)01(687'+ (5)0

$ %1&)(*,+ %)$ -
$ %1*85)91$ 23%

�;:
<�=)>@?�A BC=ED F)GEH D B�=CI I J@KEL B�A K'M >)B�NPO�Q K@HRD B#=�S T
�VU	K�W)B�X�A >'K I I O�A K#O@G�A K�S T
�ZYEK�>@D W@D B#=
�VU	K�W)B�X�A >'K I I >)B#N[N\D H S TC]
U�K�W1B�X�A >1K I I A B#Q Q J@GE>E^1S T
� :
<�=)>@?�A BC=ED F)GEH D B�=CI I GEL H KCA M >1B�N\O�Q K�H D B�=�S :�H GEH XEW3T

_a`cb

� ��� ��!���
#�
��������
��R�

�d�	�

���"����� �
�
�e� ���

4.3 Services provided by the X2TS prototype
X2TS integrates a push/push CORBA Notification Service and a CORBA Transaction
Service. The two basic mechanisms provided by the OTS, context management/propa-
gation and callback handling are a suitable basis for incorporating extended transaction
coordination. X2TS supports indirect context management, implicit context propaga-
tion and interposition. We have implemented an XA-adapter [48], mainly to integrate
RDBMSs, currently there is support for accessing Informix IUS using embedded SQL
in a CORBA recoverable server.

In our prototype, we only support the push-based interfaces with StructuredE-
vent one-at-a-time notifications. We assume that events are instances of some defined
type and that subscription may refer to events of specific types and to patterns of events.
Patterns may range from simple filters to complex event compositors. To this end, we
do not specify the event model and specific types of events, but suppose the Struc-
turedEvent to act as a container for whatever structured information an event of
some type carries.

The overall architecture of the combined transaction and notification service as pro-
vided by X2TS is shown in Figure 3.

An event supplier creates, commits or aborts transactions through the use of the Cur-
rent pseudo object (indirect context management). Events are published on behalf of
the current transaction context using the ProxyPushConsumer interface. The proxy
is provided by the SupplierAdmin factory. An event supplier must register (adver-
tise) the types of events to be published using the NotifyPublish interface. The
supplier then publishes events by invoking the push_structured_event with the

)LJXUH�����X2TS architecture

��� �
� ��

�	��

� �	��� � ����� ����

� �
��� � �����

� ��

� ��� ���������� �!�

��"�"�# $ ���

%'&�(�)
*�+-,-.0/�1 2�354�6�7

%'&�(8)
*) ,'.�2�9
6'1�.:4�6�7

; 4<2
2	=:>-1@?A>
; 1�B0BC/�4'DE=:6'4

=:9�F�1�G	4IH:.	J'4�9�F
*�2K,-+-+'/�1�4�6K7

=:9�F�1�G	4LH:.�J'4�9�F
*89
HK?02K,�MN4�6K7

O�PRQ�S-T�U V@WKV X�V�YRZ [
O�PRQ�\�T@U] YR^:_ X�] [�] `@] U] Z aRb
PRQ�Y@V W Z b
c V�TRV�Y c V�Y@P@] V@[�b
PRQ�YR[�\@S:T Z] Q�Y�d
O�P@e�V�P@f V c Z W
O�^�g Q�\@T-S'V�S:`�V�g [�e�] T

O�[�] S'T�U V-VRX�V�Y Z [�h
Z W�[Z iRZ \@[KVRX@V�YRZ [
O c] [Z g] `�\RZ V c Z W
O�P@e�V@P@f V c Z W
O�^�g Q�\�T-S'V�S:`RV�g [�e�] T

� ��

� �<���� ���j'��� k<l�j0$ �

� ��
	� �<��j0"��8 �$ � �8� m�n�o@� �8� �

� �	
�� p���
�k<l�j0$ �

� �	
	� qK� ����"�k<l�j0$ �

� �	
	� �<�8j5"��� �$ � ��� k�l�jC$ �

r s t�u v w s r x�r s v yRz r { s | }<s v yRz r { s�r s v ~ �
{ y �
��u w | ~ �Rr yR� � � �@{ �@| ~ �@� � �

y@� w �@u � x��@yRw u �@u { �@w u y � x �8z v � x�v z �R�8� u s r | � � � ~

{ r s �@w sR| ���@w w s r � ~

v s w x��Ry v | ��r y �8s r w �@��s ��{ yRz �8� u � t�v ~ �
� �@� u �R�@w s x�s � s �@w x��Ry v | � � � ~

v s w x�{ y ���8y v u w y r | ��y �8��y v u w y r�{ y ���8y v s r ~

� yRu � x t�r y z ��| ��w r u � t�t�r yRz ��� ��w r u � t'{ y �Rv z �	s r ~

� �	
	�
<�8"�"�# $ ��� k<l�j0$ �
y@� w �@u � x��@yRw u � u { �@w u y � x �8z v � x�{ y �Rv z �
s r | � � � ~

� ��

� ��� ���������� �!��
���� ��8j'���

� �	
	� p���
8k<l�j0$ �

� �	
	� qK� ����"�k
l8j0$ �
v s w x��Ry v | ��r y �8s r w �@��s �8~

� yRu � x t�r yRz ��| ��w r u � t�t�r yRz ��� ��w r u � t-v z �R�8� u s r ~

{ y �R�@s { w x�v w r zR{ w z r s � x �8z v � x�v z �R�8� u s r |
��w r zR{ w z r s � ��z v � ��z �R�8� u s r ~

�8z v � x�v w r z { w z r s � x�s � s �@w | ��w r zR{ w z r s � �8� s �@w�s � s �@w ~

� �	
	� � ��� $ � ��������# $ �!
y � � s r x�{ �R�R� t�sR| ��� s �@w � � �8s ��s �	v s � � ��� s �@w � � �8s ��s �	v s � ~

� s t�u ��| ~ � { y �
�
u w | ~ �Rr yR� � � �@{ � | ~ �@� � �

{ y �R�@s { w x�v w r zR{ w z r s � x �8z v � x�{ y �Rv z �
s r |
��w r zR{ w z r s � ��z v �@��y �Rv z ��s r ~

appropriate parameter i.e. the event type is set in accordance with the previous type ad-
vertisements.

A consumer - representing an active object - subscribes to events or patterns of events
by registering a PushConsumer callback object with a ProxyPushSupplier pro-
vided by the ConsumerAdmin factory. Subscription to patterns of events and trans-
actional couplings are imposed by configuring the service proxy, i.e. setting the appro-
priate properties through QoSAdmin and CompositorAdmin. Detecting patterns of
events is realized by pluggable event compositors that are created by a specific Com-
positorFactory. We do not support the standard NOS filters but added our own
proprietary Compositor interface.

The GroupAdmin interface provides group services, which are essential to realize
checked transactions and vital reactions. The semantic imposed by a vital reaction of
subscriber in a separate transaction as well as reactions in a shared context require, that
the subscriber is known to the publisher site X2TS before start of commit processing.
Otherwise, communication failures could hinder the vital (or shared context) subscriber
to be registered as a participant in the commit processing, and falsify the commit deci-
sion.

X2TS currently supports service configuration only at the ProxyPushSupplier
(ProxyPushConsumer) level. Event patterns are coded as strings and set in service
properties at the proxy level. An event pattern contains the event type declarations and
the composite event expression. If any coupling modes are specified, the couplings
must refer to event types of the pattern declaration. We propose that facades should be
defined which simplify configuration by providing predefined coupling mode settings.
For event composition to cope with the lack of global time and network delays we in-
troduce (in)accuracy intervals for timestamping events and suggest to use supplier
heartbeats. The details are out of the scope of this paper - basic ideas can be found in
[31]. We are implementing a basic operator framework for building application specific
compositors, incorporating some ideas of [55].

We remark that active objects are rather a concept than a programming language en-
tity. It compares to the virtual nature of a CORBA object. To refer to active objects de-
claratively, they must be part of the CORBA object model. We think, that the specifi-
cation of an active object should take place at the component level. In fact, the upcom-
ing CORBA Components model [38] includes a simple facet for containers to provide
event services and components to advertise publishers and register subscribers. Differ-
ent knowledge models for specifying reactions, e.g. rules, are possible. Active objects,
once specified, could use the services offered by X2TS.

4.4 X2TS prototype: architecture and implementation
In the next section, we will briefly describe the relevant features of the MOM used for
transport of notifications and then present the architecture and some implementation de-
tails of the X2TS prototype.

4.4.1 Pub/Sub middleware
X2TS is implemented on top of a multicast enabled messaging middleware, TIB/Ob-
jectBus and TIB/Rendezvous [51]. TIB/Rendezvous is based upon the notion of the In-

formation Bus [36] (interchangeable with “message bus” in the following) and realizes
the concept of subject based addressing. The subject name space is hierarchical and
subscribers may register using subject name patterns. Three quality of service levels are
supported by TIB/Rendezvous: reliable, certified and transactional. In all modes, mes-
sages are delivered in FIFO order with respect to a specific publisher. There is no total
ordering in case of multiple publishers on the same subject. Reliable delivery uses re-
ceiver-side NACKs and a sender-side in-memory ledger. With certified delivery, a sub-
scriber may register with the publisher for a certified session or the publisher preregis-
ters dedicated subscribers. Atomic message delivery is not provided. The TIB/Rendez-
vous library uses a persistent ledger in order to provide certified delivery. Messages
may be discarded from the persistent ledger as soon as all subscribers have explicitly
acknowledged the receipt. Acknowledgements may be automatic or application con-
trolled. In both variants, reliable and certified, the retransmission of messages is receiv-
er-initiated by sending NACKs. Transactional publish/subscribe realizes message inte-
grating transactions [49] and is therefore not suitable for the variety of couplings we aim
to support.

The diagram in Figure 4 depicts, how the multicast messaging middleware is intro-
duced to CORBA in ObjectBus. The General Inter-ORB Protocol is implemented both
by a standard IIOP layer and a TIBIOP layer. When using TIBIOP, the GIOP request
messages are marshalled into TIB/Rendezvous messages and published on the message
bus. In order to preserve interoperability, server objects may be registered with both,
TIBIOP and IIOP profiles at the same time. Most important for the X2TS prototype is
the integration of the ORB event loop with TIB/Rendezvous, in order to be able to use
the messaging API directly.

One of the design goals is to leverage the features of the underlying MOM as much
as possible in order to provide asynchronous publication, reliable distribution of events
and replay in case of failures. If a consumer crashes before the events have been con-

)LJXUH�����ObjectBus architecture

7,%�5HQGH]YRXV 7&3�,3

7,%,23 ,,23

SURWRFROV���*,23

25%�LQWHUIDFHV��',,��'6,�

VNHOHWRQV VWXEV

$SSOLFDWLRQ

���� �
��� �
��

����
�	
�	��

7,% ,,23

���
�
������ ���������� � ������� � �!
 "$#&% ���'�)(+*!
, �.-0/�� ����
 12"43 (.�6587 9�����:� � ���;�<� ���!

sumed or a network error occurs, the MOM layer should initiate replays of the missed
events on recovery of the consumer.

We have to ensure exactly-once delivery guarantees, end-to-end with respect to
CORBA supplier and consumer. Event composition requires the possibility to consume
events individually. Once an event is consumed, it must not be replayed. Additionally,
consumption of events may depend on the consumer’s transaction to commit. There-
fore, at the consumer side, X2TS supports explicit acknowledgement of received and
consumed events as well as transactional acknowledgement and consumption of events.
One of the complexities when realizing the prototype was to map delivery guarantees
at the X2TS supplier and consumer level to acknowledgements at the reliable multicast
layer provided by the TIB/Rendezvous MOM. We use certified delivery and explicit ac-
knowledgements of messages at the MOM layer, i.e. between X2TS publisher and sub-
scriber components. The publisher’s ledger will persistently log events as long as there
are subscribers that have not been delivered the message. In order to be able to consume
events individually, the MOM Connector at the consumer site must persistently log
consumption of events. In case of transactional subscribe, consumption of events will
be logged on behalf of the consuming transaction and the consumer’s transaction out-
come depends on the logging to be successful. Additionally, we must filter out duplicate
events, in case the event was consumed at the X2TS level but not acknowledged at the
MOM level.

4.4.2 X2TS publisher components
Figure 5 depicts the components of X2TS at the supplier site. The supplier has access
to its transaction context through the Current interface and may push an event to the

)LJXUH�����X2TS publisher components

���������	��
���

��������� �������
������� � �������

�
! " #
$% #
&

')(+*-,�.0/21+(0/
3�4�5�5�6 7 1�8')(3 /:9+/21

; 4�<�6 7 =�> 1)8 ? &
@ $
&A BCD E

F GH

IKJML�N O
P JML�N QSR J P�T�P JSQVU0W PMX J
X UKY-YZN R [P U0\ \ IK] XS^ _ &`

&#@
&#a b

c deA
@

f�g 3�h ;�82,+(Ki�; 4�=�>�j
*�,�. =�4�k 1�8

f�g 3�h ; 4+=�>+3�4�5�5�6 7 1)8

0H V V D J L Q J

0 L GG O HZDU H

D F W L Y H

R E M H F W

� V X S S O L H U �

f�g 3�h 3 /l8 4�m / 4 8 1�n)o�p01).0/�q
gr' 3�h 's(�*�,�.0/21�(K/ t�u ' 3�h o�p�1�.0/ v p�w�9�/:97 .0/21�x)829�/ 1 5�4�<�6 7 =�>

gZ' 3�h * 4 8y8 1).0/

z{|
}�~|
� �{
�� {��
� ~�
��
��

9 m / 7 ,�.

;
�
7 6

� S X E O L V K H U �

��g���*-,�.�.+1 m /:,�8

AppEvent Publisher, which implements the StructuredProxyPushCon-
sumer interface. In addition to the application events, which are signalled non-period-
ically, the event stream is enhanced with periodic heartbeat events. Thereby, event com-
position at the consumer site can correlate events based on occurrence order, instead of
an unpredictable delivery order [31].

The TxContext Supplier is responsible for enclosing the current transaction
context with the event. We use the OptionalHeaderFields of the event to piggy
back transaction context information as well as event sequence numbers, and times-
tamps. The MOM Connector marshals events into a TIB/Rendezvous specific mes-
sage (RvData) and publishes the events on the message bus.

The asynchronous nature of publishing events should be preserved, even if different
consumers couple their reactions in different modes. For example, the on commit visi-
bility of some consumer shall 1) not restrict other consumers to use immediate visibility
and 2) not block the supplier in 2PC processing unnecessarily. Therefore, events are al-
ways published immediately on the message bus and visibilities and forward depend-
encies are resolved at the consumer site without requiring further interaction with the
supplier in most cases. The design is based on the idea to publish transaction state
change events asynchronously and treat visibilities and dependencies as a special case
of event composition. In order to do so, the TxState Publisher publishes each
state change of a transaction, such as ’operation-phase-terminated’, ’tx-committed’ and
’tx-aborted’. While such an approach would be straight forward in a centralized system,
in a distributed environment with unpredictable message delays we cannot say at a con-
sumer node, if for example a commit has not happened yet or the commit event has not
been received yet. We will discuss in the section 4.6, how those situations are managed,
following the principle of graceful degradation.

While forward dependencies can be resolved at the consumer site, backward de-
pendencies impact the outcome of the triggering transaction and must be dealt with at
the supplier site. The Dependency Guard couples the commit processing of the sup-
plier’s transaction to the outcome of reactions that are vital or that are to be executed in
the same transaction context. In order to do so, for each backward coupled reaction a
Resource object must be preregistered with the triggering transaction. Additionally, this
requires to define the group of consumers which impose backward dependencies. A
supplier must explicitly join this group and thereby allow the backward dependencies
to be enforced.

4.4.3 X2TS subscriber components
The components at the consumer site are depicted in Figure 6 below. The MOM Con-
nector maps a X2TS consumer’s registration to appropriate MOM subscriptions. In
the simple case, NOS event types and domain names are directly mapped to correspond-
ing TIB/Rendezvous subjects. However, more complex mappings are possible and use-
ful to leverage subject-based addressing for efficient filtering of events.

On incoming RvData messages, the MOM Connector unmarshals the event into an
X2TS internal representation. The components run separate threads and are connected
in a pipelined manner. Events are first pushed to the Visibility Guard, which en-
forces the various visibility QoS by buffering events until the necessary condition on

the triggering transaction outcome is fulfilled. If events becomes visible, they are
pushed to the Compositor (which also may be a simple filter). When the Compos-
itor detects matching events, it passes them to the Dispatcher, which establishes
the appropriate transaction context for the reaction to run in and sets up the forward and
backward dependencies, before finally pushing the event to the PushConsumer object.

4.5 Enforcing visibilities
For each different visibility QoS which the consumer has configured, a Visibility
Guard and its corresponding RV Connector Pipe are created. The Visibility
Guard is running in its own thread and dequeues incoming events from the MOM Con-
nector through the RV Connector Pipe. The Visibility Guard holds the
events in a per transaction buffer until an appropriate Tx state change is signalled or a
timeout occurs. Thereby, events (potentially of different types) are grouped by visibil-
ity. In addition, a transaction event listener snoops all transaction status events and for-
wards them to the interested RV Connector Pipes - and its associated Visibil-
ity Guard - and additionally to the TxState Cache.

Assume two transactions tx1 and tx2, both publishing event types e1 and e2. Further
assume that the consumer subscribed on commit for an event pattern that contains e1
and e2 (whatever the pattern logic is).

)LJXUH�����X2TS subscriber components

��� �� �� �	�
�� �
� � � � �������� �

������� �"!$# % ��& ')()*
+ ,.- (/'10"'/(.,.2435')67(
68249:9;+ -=<>'.2�? ?A@CB�68D

E�3C,)F=0",/- ')3$6=- 35')(7G70�(/HC(/I"- J
B�6/D$K ? 25IC*)L

MON	P:Q R � S�T � R �
�U P �$V�V � � W �

MON�P:Q R �
�U$X SZY
 ��[W �

0H V V D J L Q J

0 L GG O HZDU H

D F W L Y H � R E M H F W

� F R1 V XPHU �

\]
^ _ `_ a
b `
cd a

e�f�g � � � hjilk PmQ n f W Y �
MONoPpQ P � �>��q � ��� W � nrf W Y �tsN k P:Q k
T X S
Y � W T �
 Y$S�S
V � �
 V"� � q U

N k PmQ X ���u� W Y �

� W�v ��q �t� S�Y
w \
^ x
yz{
ya

; | 7 6
� 6 X E V F U L E H U �

}~N�} X SZY�Y W q � SZ�

� a
�a
y� a
yc �

� �`
��

\]
b �y_
a]
_

^ �
���{ a
�

g �
 V"� � q U$W �

�w
�

� a
� za
�

Figure 7 depicts what the actions of the Visibility Guard would be in case some
supplier(s) publish e1;e1;e2 on behalf of tx1 and other supplier(s) publish e2;e1;e2 on
behalf of tx2. The buffer for tx1 would be flushed to the Visibility Pipe when
the commit status event of tx1 arrives, the buffer for tx2 would be discarded when the
abort status event of tx2 arrives. The Compositor - running in its own thread - would
be signalled when events are pushed into the Visibility Pipe.

4.5.1 Transaction status propagation
Visibility Guard and Dependency Guard at the consumer site depend on the
transaction status events to arrive on time. This is not necessarily so. Transaction status
events are published in reliable mode, only. Therefore a commit/abort event could get
lost because of communication failures. Other situations to be considered are long run-
ning triggering transactions, a supplier crash (and abort) as well as consumer crash and
recovery. In all cases, the situation could arise

i) that events are buffered by the Visibility Guard but no transaction status
event will ever trigger the application events to become visible or be discarded.

ii) completion of a triggered transaction cannot progress because of an unresolved
forward dependency (see following section 4.6)

To cope with i), we additionally feed timeout events to the Visibility Guard. For
each referenced triggering transaction, the Visibility Guard will then consult the
local TxState Cache and request a current TxStatus event to be submitted to its
Rv Connector Pipe. If the cache does not have a hit, it queries caches on near-by
nodes. If there is no success either, then the RecoveryCoordinator at the supplier site
will be contacted. The RecoveryCoordinator object is part of the OTS engine, although
it is implemented as a per node daemon in a separate process. It either forwards a trans-

)LJXUH�����Visibility guard

9LVLELOLW\�3LSH

59�&RQQHFWRU�3LSH

��� �� �����
��
	

�

��
��
� �

�����
��� �

�����
��� �

��
��
� �

�����
��� �

���
� �
��
 ��

!���"�#%$'&(!�)�*

+ ,
-

. /,

+ 0
-

. /,

+ ,
-

. /,

1 2
3

4 52

1 2
3

4 52

1 6
3

4 52

7�8 & &9�:! ��� � 7%8 & &9��! � �

&(; 8 $�<
#�= $���"�!�#

��
��
� �

��
��
� �

�%���
� �

> !?= � �%$@= A �)

action status request to the Coordinator, which is colocal to the supplier. In case of a
crash of the supplier process, the RecoveryCoordinator will inspect the transaction log
for the transaction outcome. The principle of graceful degradation restricts synchronous
callbacks to the supplier site to (presumably) rare occasions of major network failures.
Still, eventual progress is guaranteed in spite of various failure situations.

4.6 Transaction dependencies
The Dependency Guard components orchestrates the behavior of dependent dis-
tributed transactions. On the subscriber site the Dependency Guard enforces for-
ward dependencies, such as commit and abort dependencies by registering a Resource
with the transaction Coordinator. In that case, a lightweight approach is possible to syn-
chronize a separate top triggered action to the end of the triggering transaction. We may
benefit from the fact that transaction status changes are pushed to the consumer site. As
noted above, we cannot know at a consumer site, how long it takes the triggering trans-
action to complete and the commit/abort event to be delivered. In case the triggered re-
action is to be completed while the status of the triggering transaction is not yet known,
we heuristically decide to throw an exception and signal potentially unchecked behav-
ior.

On the publisher site, the synchronization of distributed branches of the same trans-
action context and the imperative consideration of all control delegates is required. We
need to consider the implications of coupling modes in case of multiple asynchronous
executing reactions. We have to provide checked transaction behavior, that is we need
a mechanism for joining multiple threads1 of control for commit processing in case of
coupling modes that use a shared context or specify backward dependencies. The situ-
ation may arise that the triggering transactions is to be committed while there are still
branches (reactions) active. We leverage the callback framework inherent to the OTS
in order to place bolts for checked transaction behavior and influence transaction out-
come. A bolt realizes a synchronization barrier, that is checked before commit process-
ing may start. Backward dependencies such as reactions in a shared context are realized
by setting bolts at the triggering transaction. The Synchronization callbacks at the con-
sumer site is then used to remove the (remote) bolts and eventually allow the triggering
transaction to start commit processing. We do not block a commit call in such cases but
raise an exception that the transaction is unchecked. The object in control of the trans-
action may then decide to retry later or take other measures. In order to establish an ap-
propriate bolt - for example at the triggering transaction site - it is required to anticipate
the reacting active objects in advance, using a group service.

5 Conclusions

X2TS provides services to realize concepts of active object systems in a CORBA envi-
ronment. X2TS integrates CORBA notifications and transactions, leveraging multicast
enabled MOM for scalable and reliable event dissemination. Exactly-once notifications
can be realized without the need for a supplier based transactional enqueue. Notifica-

���ZH�UHIHU�WR�D�WKUHDG�RI�FRQWURO�LQ�WKH�;�2SHQ�;$�VHQVH

tions may be consumed individually and in non FIFO order by the consumer, which en-
ables complex event composition. Coupling modes can be configured as quality of serv-
ice on a per consumer basis. Therefore, the event-based application can control the man-
ner in which to react to events published on behalf of transactions and dependencies
between spheres of atomicity can be dynamically established and will be enforced by
X2TS. We consider the asynchronous nature of “loose” coupling in event-based sys-
tems and let the application decide in how far to trade time independence and flexibility
of asynchronous interactions against synchronization with respect to transaction bound-
aries. As far as possible, visibilities and dependencies are resolved at the consumer site
without calling back to the triggering application.

We suggest, that in particular process enactment can benefit from the services pro-
vided by X2TS and multitransactions can be built on top. Still, declarative means to in-
troduce the concept of active objects into the CORBA object model are to be explored.

Once the prototype implementation [34] is enriched with more powerful event com-
positors and reaches a stable state, performance experiments need to be conducted.
There is still conceptual work to be done with respect to recovery of events. We sup-
pose, that a more flexible approach to recovery of events is required than simply replay-
ing the event history.

6 References

[1] G. Alonso, C. Hagen, H. Schek, and M. Tresch. Distributed Processing over Stand-alone
Systems and Applications. In 23rd Intl. Conf. on Very Large Databases, pages 575–579.
Morgan Kaufmann, August 1997.

[2] P.A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recovery in
Database Systems. Addison-Wesley, Reading, Massachusetts, 1987.

[3] K. Bohrer, V. Johnson, A. Nilsson, and B. Rubin. Business Process Components for Dis-
tributed Object Applications. Communications of the ACM, 41(6), June 1998.

[4] C. Bornovd, M. Cilia, C. Liebig, and A. Buchmann. An Infrastructure for Meta-Auctions.
In 2nd Intl. Workshop on Advance Issues of E-Commerce and Web-based Information Sys-
tems (WECWIS’00), pages 21–30. IEEE Computer Society, June 2000.

[5] H. Branding, A. Buchmann, T. Kurdass, and J. Zimmermann. Rules in an Open System:
The REACH Rule System. In Proceedings of the International Workshop on Rules in Da-
tabase Systems (RIDS ’93), pages 111–126, Edinburgh, Scotland, September 1993.

[6] A. Buchmann, M. Oszu, M. Hornick, D. Georgakopoulos, and F. Manola. A Transaction
Model for Active Distributed Object Systems. In A.K. Elmagarmid, editor, Database
Transaction Models for Advanced Applications, pages 123–158. Morgan Kaufmann, 1992.

[7] A.P. Buchmann. Active Object Systems. In A. Dogac, M.T. Szu, A. Biliris, and T. Sellis,
editors, Advances in Object-Oriented Database Systems. Springer Verlag, 1994.

[8] C. Bussler. OMG Workflow Roadmap. Technical Report Version 1.2 OMG Document
bom/99-08-01, Object Management Group (OMG), January 1998.

[9] A. Carzaniga, E. Di Nitto, D. Rosenblum, and A. Wolf. Issues in Supporting event-based
architectural Styles. In Proceedings of the third international workshop on Software Ar-
chitecture (ISAW98), pages 17–20, 1998.

[10] Antonio Carzaniga, David S. Rosenblum, and Alexander L. Wolf. Design of a scalable
event notification service: Interface and architecture. Technical Report CU-CS-863-98,
Department of Computer Science, University of Colorado, August 1998.

[11] S. Ceri, P. Grefen, and G. Sanchez. WIDE: A Distributed Architecture for Workflow Man-
agement. In Research Issues in Data Engineering. IEEE Computer Society, 1997.

[12] A. Chan. Transactional Publish/Subscribe: The Proactive Multicast of Database Changes.
In Intl. Conf. on Management of Data (SIGMOD 98). ACM Press, June 1998.

[13] Q. Chen and U. Dayal. A Transactional Nested Process Management System. In 12th Intl.
Conf. on Data Engineering. IEEE Computer Society, March 1996.

[14] C. Collet, G. Vargas-Solar, and H. Ribeiro. Toward a semantic event service for database
applications. In 9th International Conference DEXA 99, volume 1460 of LNCS, pages 16–
27, Vienna, Austria, August 1998.

[15] U. Dayal, B. Blaustein, A. Buchmann, U. Chakravarthy, M. Hsu, R. Ledin, D.R. McCa-
rthy, A Rosenthal, S.K. Sarin, M.J. Carey, M. Livny, and R. Jauhari. The HiPAC Project:
Combining Active Databases and Timing Constraints. In SIGMOD Record, volume 17 (1),
March 1988.

[16] L.G. DeMichiel, L.U. Yalcinalp, and S. Krishnan. Enterprise JavaBeans. Specification,
public draft Version 2.0, Sun Microsystems, JavaSoftware, May 2000.

[17] F. Cummins. OMG Business Object Domain Task Force. White Paper bom/99-01-01,
OMG, January 1999.

[18] H. Fritschi, S. Gatziu, and K. Dittrich. FRAMBOISE - an Approach to Framework-based
Active Data Management Construction. In Proceedings of the seventh on Information and
Knowledge Management (CIKM 98), pages 364–370, Maryland, November 1998.

[19] H. Garcia-Molina, D. Gawlik, J. Klein, C. Kleissner, and K. Salem. Coordinating Multi-
transaction Activities with Nested Sagas. In V. Kumar and M. Hsu, editors, Recovery
Mechanisms in Database Systems, chapter 16, pages 466–481. Prentice Hall, 1998.

[20] R. Gruber, B. Krishnamurthy, and E. Panagos. High-Level Constructs in the READY
Event Notification System. In SIGOPS Euroean Workshop on Support for Composing Dis-
tributed Applications, Sintra, Portugal, September 1998. SIGOPS.

[21] C. Hagen and G. Alonso. Beyond the Black Box: Event-based Inter-Process Communica-
tion in Process Support Systems. In Intl. Conf. on Distributed Computing Systems (ICD-
CS), pages 450–457. IEEE Computer Society, 1999.

[22] M. Hapner, R. Burridge, and R. Sharma. Java Message Service. Specification Version
1.0.2, Sun Microsystems, JavaSoftware, November 1999.

[23] B. Hochberger and J. Zentgraf. Design of a workflow management system to support mod-
elling and enactment of processes in air traffic control. Technical report, Darmstadt Uni-
versity of Technology, June 2000.

[24] IBM, IONA, VERTEL, and Alcatel. Additional Structuring Mechanisms for the OTS
Specification. Submission orbos/2000-04-02, OMG, Famingham, MA, April 2000.

[25] G. Kappel, P. Lang, S. Rausch-Schott, and W. Retzschitzegger. Workflow Management
Based on Objects, Rules, and Roles. IEEE Bulletin of the Technical Committee on Data
Engineering, 18(1), March 1995.

[26] H.F. Korth, E. Levy, and A. Silberschatz. A Formal Approach to Recovery by Compensat-
ing Transactions. In Dennis McLeod, Ron Sacks-Davis, and Hans-Jörg Schek, editors,
16th International Conference on Very Large Data Bases, pages 95–106, Brisbane,
Queensland, Australia, August 1990. Morgan Kaufmann.

[27] A. Koschel, S. Gatziu, G. von Bueltzingsloewen, and H. Fritschi. Unbundling Active Da-
tabase Systems. In A. Dogac, T. Ozsu, and O. Ulusoy, editors, Current Trends in Data
Management Technology, chapter 10, pages 177–195. IDEA Group Publishing, 1999.

[28] N. Krishnakumar and A.P. Sheth. Managing Heterogeneous Multi-system Tasks to Sup-
port Enterprise-Wide Operations. Distributed and Parallel Databases, 3(2):155–186,
1995.

[29] F. Leymann and D. Roller. Workflow-based applications. IBM Systems Journal, 36(1),
1997.

[30] C. Liebig, B. Boesling, and A. Buchmann. A Notification Service for Next-Generation IT
Systems in Air Traffic Control. In GI-Workshop: Multicast - Protokolle und Anwendun-
gen, pages 55–68, Braunschweig, Germany, May 1999.

[31] C. Liebig, M. Cilia, and A. Buchmann. Event Composition in Time-dependent Distributed
Systems. In Proceedings 4th IFCIS Conference on Cooperative Information Systems
(CoopIS’99), pages 70–78, Edinburgh, Scotland, September 1999. IEEE Computer Press.

[32] L. Liu, C. Pu, and W. Tang. Supporting Internet Applications Beyond Browsing: Trigger
Processing and Change Notification. In 5th Intl. Computer Science Conference (ICSC’99).
Springer Verlag, December 1999.

[33] C. Ma and J. Bacon. COBEA: A CORBA-based Event Architecture. In Conference on Ob-
ject-Oriented Technologies and Systems (COOTS’98), pages 117–131, New Mexico,
USA, April 1998. USENIX.

[34] M. Malva. Integrating CORBA Notification and Transaction Service. Master thesis, in
preparation, Darmstadt University of Technology, August 2000.

[35] M. Mansouri-Samani. Monitoring of Distributed Systems. PhD thesis, Department of
Computing, Imperial College, London, UK, December 1995.

[36] B. Oki, M. Pfluegl, A. Siegel, and D. Skeen. The Information Bus - An Architecture for
Extensible Distributed Systems. In SIGOPS ’93, pages 58–68, December 1993.

[37] Object Management Group (OMG). Notification service specification. Technical Report
OMG Document telecom/98-06-15, OMG, Famingham, MA, May 1998.

[38] Object Management Group (OMG). Corba components (final submission). Technical Re-
port OMG Document orbos/99-02-05, OMG, Famingham, MA, May 1999.

[39] Object Management Group (OMG). Concurrency service v1.0. Technical Report OMG
Document formal/2000-06-14, OMG, Famingham, MA, May 2000.

[40] Object Management Group (OMG). Transaction service v1.1. Technical Report OMG
Document formal/2000-06-28, OMG, Famingham, MA, May 2000.

[41] N. Paton, editor. Active Rules in Database Systems. Springer-Verlag (New York), Septem-
ber 1998.

[42] F. Ranno, S.K. Shrivastava, and S.M. Wheater. A system for specifying and coordinating
the execution of reliable distributed applictions. In Intl. Working Conference on Distribut-
ed Applications and Interoperable Systems (DAIS’97), 1997.

[43] W. Retschitzegger. Composite Event Management in TriGS - Concepts and Implementa-
tion. In 9th Intl. Conf. on Database and Expert Systems Applications (DEXA’98), LNCS
1460. Springer, August 1998.

[44] D.R. Rosenblum and A.L. Wolf. A Design Framework for Internet-Scale Event Observa-
tion and Notification. In 6th European Software Engineering Conference / 5th ACM SIG-
SOFT Symposium on Foundations of Software Engineering, pages 344–360, Zurich, Swit-
zerland, 1997.

[45] S. Schreyjak. Synergies in a Coupled Workflow and Component-Oriented System. In
Workshop on Component-based Information Systems Engineering (CBISE ’98), Pisa, Ita-
ly, 1998

[46] W. Schulze. Fitting the Workflow Managment Facility into the Object Management Ar-
chitecture. In 3rd Workshop on Business Object Design and Implementation, OOPSLA’97,
April 1997.

[47] B. Segall and D. Arnold. Elvin has left the building: A publish/subscribe notification serv-
ice with quenching. In Australian Unix Users Group Annual Conferece (AUUG’97), July
1997.

[48] R. Stuetz. Design and Implementation of a XA Adapter for CORBA-OTS. Master’s thesis,
Darmstadt University of Technology, October 1999.

[49] S. Tai and I. Rouvellou. Strategies for Integrating Messaging and Distributed Object
Transactions. In Proceedings IFIP/ACM International Conference on Distributed Systems
Platforms and Open Distribued Processing (Middleware 2000), New York, USA, April
2000. Springer-Verlag.

[50] The Act-Net Consortium. The Active DBMS Manifesto: A Rulebase of ADBMS Features.
SIGMOD Record, 25(3), September 1996.

[51] TIBCO Software Inc. TIB/ActiveEnterprise. www.tibco.com/products/enterprise.html,
July 2000.

[52] G. Weikum and H.-J. Schek. Concepts and applications of multilevel transactions and
open nested transactions. In A.K. Elmagarmid, editor, Database Transaction Models for
Advanced Applications, pages 515–553. Morgan Kaufmann, 1992.

[53] S.M. Wheater, S.K. Shrivastava, and F. Ranno. A CORBA Compliant Transactional
Workflow System for Internet Applications. In IFIP Intl. Conf. in Distributed Systems
Platforms and Open Distributed Processing (Middleware’98), September 1998.

[54] X/Open Company Ltd. Distributed Transaction Processing: The XA Specificiation Ver-
sion 2 . Technical Report X/Open Document Number S423, X/Open, June 1994.

[55] D. Zimmer and R. Unland. On the Semantics of Complex Events in Active Database Man-
agement Systems. In proceedings of the 15th International Conference on Data Engineer-
ing (ICDE’99), pages 392–399, Sydney, Australia, March 1999. IEEE Computer Society
Press.

	Integrating Notifications and Transactions: Concepts and X2TS Prototype
	1 Introduction
	2 Related work
	3 Notifications & transactions: couplings
	3.1 Coupling modes for event-based interaction
	3.2 Discussion
	3.3 Example: event-based process enactment

	4 X2TS prototype
	4.1 CORBA OTS
	4.2 CORBA NOS
	4.3 Services provided by the X2TS prototype
	4.4 X2TS prototype: architecture and implementation
	4.5 Enforcing visibilities
	4.6 Transaction dependencies

	5 Conclusions

