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Abstract

Complez query types, huge data volumes, and very
high read/update ratios make the indexing techniques
designed and tuned for traditional database systems
unsuitable for data warehouses (DW). We propose an
encoded bitmap indexing for DWs which improves the
performance of known bitmap indexing in the case of
large cardinality domains. A performance analysis and
theorems which identify properties of good encodings
for better performance are presented. We compare en-
coded bitmap indexing with related techniques, such
as bit slicing, projection-, dynamic-, and range-based-
indexing.

1 Introduction

Complex query types, huge data volumes and very
high read/update ratios play crucial roles in query pro-
cessing in data warehouses (DW). These factors make
the query processing/optimization techniques designed
and tuned for On-Line Transaction Processing (OLTP)
systems unsuitable for the DW environment. Many
approaches have been proposed for query processing
in DWs, such as, precomputation of summarized data,
predefined access paths, special index techniques, etc.
In this paper, we propose encoded bitmap indexing —
an extension of known bitmap indexing, first proposed
by O’Neil in the Model 204 DBMS [9].

In Section 2, we discuss bitmap indexing as pro-
posed in [9, 11], and propose an encoded bitmap in-
dexing to deal with large cardinality domains. We
thus correct a shortcoming of simple bitmap index-
ing, which is best suited for low cardinality attributes.
The basic idea of encoded bitmap indexing is to encode
the attribute domain. Therefore, we also discuss how
encoding affects the performance of the index. We de-
fine the concept binary distance, chain and well-defined
encoding and derive theorems that define the proper-
ties of a good encoding. Some potential applications
and variations of encoded bitmap indexing specific to
the DW environment are also discussed, such as hi-
erarchy encoding, total-order preserving encoding and
range-based indexes using encoded bitmap indexing. In
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Section 3 we give a comparative performance analy-
sis of simple and encoded bitmap indexes. The result
shows that encoded bitmap indexes perform better in
most cases. Even if the problem size increases dramat-
ically, the performance degrades logarithmically, while
the performance of simple bitmap indexes degrades lin-
early. In Section 4 we discuss related indexing tech-
niques, discuss the problems they solve and their dif-
ferences with encoded bitmap indexing. In Section 5
we present conclusions and future work.

2 Bitmap Indexing Techniques

We present a brief overview of simple bitmap in-
dexing and the application domain for which it is ide-
ally suited. The limitations of simple bitmap index-
ing lead us to propose a new indexing technique —
encoded bitmap indexing. The main advantages of en-
coded bitmap indexes are a drastic reduction in space
requirements and corresponding performance gains.
2.1 Simple bitmap indexing revisited

The basic idea behind simple bitmap indexing is to
use a string of bits (0 or 1) to indicate whether an at-
tribute in a tuple is equal to a specific value or not.
The position of a bit in the bit string denotes the po-
sition of a tuple in the table. The bit is set, if the
content of an attribute is associated with a specific
value. For example, a simple bitmap index on an at-
tribute GENDER, with domain {Male, Female}, results
in two bitmap vectors, say By and Bg. For By, the bit
is set to 1, if the corresponding tuple has the attribute
GENDER=Male, otherwise the bit is set to 0. For B,
the bit is set to 1, if the associated tuple has the at-
tribute GENDER=Female, otherwise the bit is set to 0.!
The simple bitmap index on the attribute GENDER,
BSENDER i the collection of bitmap vectors {Bwm, Br}.

B-trees and their variants (later simply denoted as
B-trees) have been widely adopted in database systems
as external indexing. They provide efficient mecha-
nisms for searching and require time and space only
logarithmic to the amount of indexed keys. Their

1Note that the negation of By must not necessarily be equiv-
alent to Br because of missing information and NULLs.



strength is their dynamic nature, performance and sta-
bility under update — properties that are not required
in a DW. In the DW environment, simple bitmap in-
dexing has advantages over B-trees, since 1) build-
ing/maintaining simple bitmap indexes usually costs
less time and space, and 2) bitmap indexes can effi-
ciently work together to reduce the search-space before
really accessing the data.

CosT ANALYSIS. Let ¥ be a table and ¥ =
{t1,...,tn}. Define the cardinality of ¥ as |%| = the
number of distinct tuples in €. Then, building a simple
bitmap index on an attribute A (A € {a1,...,am}) of
the table ¥ requires ElxiAl — 3™ bytes, where m
is the cardinality of A, defined as |A| = the number
of distinct values in the domain of A. On the other
hand, building a B-tree on attribute A requires about
1'44% X p bytes, where p is the page size, and M is the
degree of the B-tree [2, 1]. If m < 111'\542” , then simple
bitmap indexes are more space efficient than B-trees.
In other words, assume that p = 4K and M = 512,
then if the cardinality of A is smaller than 93 (i.e.,
m < 93), building a simple bitmap index on A is more
economic in size than building B-trees.

As for the time complexity, the complexity of build-
ing a B-tree on A is O(n x logyu m) + O(n x logy (%)),
where p is the page size and 4 is the size of a tuple-id.
The first term denotes the cost of traversing from the
root to the leaf nodes, and the second term denotes
the cost of inserting the tuple-ids into the correspond-
ing leaf nodes. On the other hand, the complexity of
building a simple bitmap index on A is O(n x m). If
n (the cardinality of the indexed table) is very large,
and m (the cardinality of the indexed attribute) is very
small, then O(n xloga m)+0(n xlog, ) > 0(nxm),
i.e., the time complexity of building B-trees is larger
than that of simple bitmap indexes.

COOPERATIVITY OF INDEXES. The main function
of indexes is to accelerate query processing by siz-
ing down the search space. Both B-trees and sim-
ple bitmap indexes can achieve this. However, if two
or more selection conditions are given in a query, say
A = a; AND B = bj, separate B-trees on attribute A
and attribute B cannot efficiently cooperate with each
other.2 We need to build another B-tree on the com-
pound key (A, B). In contrast, separate simple bitmap
indexes on A and B can efficiently work together to
fetch the desired data by simply performing a logical
operator, AND, on the corresponding bitmap vectors.
The impact of the cooperativity of simple bitmap

2 Although multiple index accesses on value-list based indexes
have been implemented in DB2 [5], the cost of multiple index
accesses for bitmap indexing is much smaller than that of B-
trees.

indexes is that if top n attributes with the highest ref-
erenced rate in users’ queries are chosen, and indexes
are to be built on them, we only need n simple bitmap
indexes. Any combination of selection conditions in-
volving any subset of the n attributes can be efficiently
evaluated by applying corresponding logical operations
on the bitmap vectors. If B-trees on compound keys
are built, in order to cover all possible combinations of
selection conditions among these n attributes, we need
CPr+C% +...4+4C = 2" —1 B-trees. The cost of
maintaining so many B-trees would be unacceptable.
If we consider index cooperativity, simple bitmap in-
dexes will have dominating advantages.
RESTRICTIONS. However, as the cardinalities of the
keys increase, both the time and space complexity
of building and maintaining simple bitmap indexes
rapidly become higher. The sparsity of the bitmap
vectors is another problem which comes with high car-
dinality. The sparsity of a bitmap vector is on average
’”T_l, where m is the cardinality of the attribute. Asm
increases, the space utilization degrades. Second, for
queries involving large range searches (range searches
denote both IN-lists and range selections of the form
i < A < j), the number of bitmap vectors which needs
to be processed also increases. For large bitmap vec-
tors, the cost cannot be ignored. In this case, sim-
ple bitmap indexes might perform worse than B-trees.
To solve the problems derived from high cardinality, a
new indexing technique — encoded bitmap indexing,
is proposed.

2.2 Encoded bitmap indexing

Suppose that we have a fact table, SALES, with NV
tuples and a dimension table, PRODUCTS, containing
12000 different products. Traditionally, if we want to
build a simple bitmap index on the PRODUCTS dimen-
sion, it will result in 12000 bitmap vectors of N bits in
length. In encoded bitmap indexing, instead of 12000
bitmap vectors, [log, 12000] = 14 bitmap vectors, plus
a mapping table, are used. For example, suppose that
the domain of attribute A of table ¥ is {a,b,c}. (As
for the cases of NULL-values, or non-existing tuples,
simple bitmap indexing uses separate bitmap vectors
to represent them, while in encoded bitmap indexing,
they are encoded together with other domain values.
Further discussion can be found later in this section.)
Instead of using 3 bitmap vectors, we use [log, 3] = 2
bitmap vectors to build the index on attribute A.

As Figure 1 shows, we use 2 bits to encode the do-
main {a,b,c}, where a is encoded as 00, b as 01 and
¢ as 10, respectively. For those tuples with A = a,
we set corresponding positions in both bitmap vectors
B; and By to 0; for those with A = b, By = 0 and
By = 1; and so on. In principle, the bitmap vector
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Figure 1: An example of encoded bitmap indexing

B; stores the i-th bit (from the least significant bit,
LSB, to the most significant bit, MSB) of the encoded
value of attribute A. To retrieve data, we define the re-
trieval Boolean function for each value as follows. A re-
trieval Boolean function, or shortly retrieval function,
is a k-variable min-term, where k = [log, |A|] = 2
in this example. If a value vy is encoded as bibg
(b; € {0,1}, 4 = 0,1), then the retrieval function for
vg is defined as zizg, where z; = B;, if b; = 1, oth-
erwise x; = negation of B;, ie., z; = ]B;.. For the
above example, the retrieval functions for a, b and
¢ should be f, = BBy, f, = BiBo, and f. = BBy,
where z’ denotes the negation of the variable =, zy
denotes (x AND y), and = + y denotes (z OR y). If
we want to select data where A = a OR A = b, then
we simply apply an OR operator on f, and fp, i.e.,
fo + f» = BBy + BBy, which can be further re-
duced to B}. In other words, to retrieve tuples with
A = a OR A = b, we simply use the inverse of the
bitmap vector B; and the 1’s indicate those tuples sat-
isfying the selection conditions. We define the encoded
bitmap index as follows:

Definition 2.1 (Encoded Bitmap Index) Given

a table T = {t1,...,tn}, where t; is a tuple of T
(G = 1,...,m), let A be an attribute of T, denoted
by ¥.A, and the domain of A be {ai,...,am}.
Then, an encoded bitmap indexr, BA, on T.A is a
set of bitmap vectors {By_1,...,Bo}, a one-to-one
mapping (M4 : A — {{bg_1---bo)|b; € {0,1},i =
0,...,k—1,and k = [log, m1}) and a set of retrieval
Boolean functions ({fay,---, fam})- The bitmap
vectors are defined as follows. ¥V B; (i =0,...,k—1),
ti G =1L...,n), 3 Bfj] = 1, i MA;.A)i] =
1, else B;[j] = 0, where B;[j] denotes the j-th bit of
B; and MA(t;.A)[i] the i-th bit (from LSB to MSB)
of MA(t;.A). In addition, ¥V « € {ai,...,am}, the
retrieval function for «, fo, is o k-variable min-term
(fundamental conjunction) Ty - - o, where x; = By,
if MA (a)[i] = 1, otherwise x; = B, (i =0,...,k—1). =

e MAINTENANCE OF ENCODED BITMAP INDEXES
As data is updated, the encoded bitmap indexes need
to be maintained. We discuss the maintenance for up-
dates without domain expansion and updates with do-
main erpansion.

UPDATES WITHOUT DOMAIN EXPANSION. Following
the example above, if a tuple with A = b is appended
to table ¥, then we only need to append B;[j] = 0
and Bg[j] = 1 at the end of bitmap vectors B; and
By, where j is the position of the new inserted tuple
in table ¥.

UPDATES WITH DOMAIN EXPANSION. If a tuple with
A = d is appended to ¥, i.e., the domain of A is now
expanded to {a,b,c,d}, then the following equation
should be first tested:

[og, |AT™ D] = [log, |A™]1, 1)

where |A(™)| denotes the cardinality of A before in-
sertion, and |A(™)| denotes the cardinality of A after
insertion. If Equation (1) is true, as is the case in
our example, then add the mapping M4 (d) = 11 into
the mapping table and set B;[j] = M (d)[{] (where
1=0,...,k—1 and j = the position of the new inserted
tuple in ¥), as Figure 2(a) shows, and set f; = B1Bj.
If another tuple with A = e is further appended to ¥,
i.e., the domain of A is now expanded to {a,b,c,d, e},
then [log, |[A™V|] < [log, |[A“™]]. The resulting
bitmap vectors and the mapping table are shown in
Figure 2(b).

The following actions need to be taken to reflect the
change to the encoded bitmap index.

1. Expand the mapping M4 : {A|A € {a,b,c,d}} —
{{b1bo)|b; € {0,1},i = 0,1} to MA : {A|A €
{a,b,c,d,e}} — {{b2b1bo)|b; € {0,1},i=0,1,2}.

2. Add a bitmap vector By to B4, and set Bs to 0.

3. Set B;[j] = M4 (e)[i], where i = 0,1,2 and j = the
position of the new inserted tuple in %.

4. Add the Boolean function f. = B2BjBj for the
value e and revise the Boolean functions for a, b, ¢ and
d by ANDing B to them, ie., f, = B,B|B, f, =
B, B, By, f. = B,B1B; and fy = B,B;B,.

A general algorithm for maintaining the encoded
bitmap indexes with respect to both types of updates
can be found in [18].

Some questions which still need to be clarified in
the encoded bitmap indexing are the representations
for tuples, which are deleted or non-existing, or tuples
with NULL values.

A simple way of solving these problems is to add
bitmap vectors, Bnotexist and Bnurr, indicating the
non-existing (or deleted) tuples and the tuples with
NULL values, by setting the corresponding bit to 1.
Another method is to assign the non-existing tuples
and the tuples with NULL value artificial key values,
and to encode these values together with the other key
values. Intuitively, the second method is expected to
perform better, since it reduces the number of bitmap
vectors which need to be accessed while processing
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Figure 2: Updates with domain expansions

queries. In the above example, the domain of attribute
A, which is to be encoded, should be considered as
{NotExist, NULL} U {a,b,¢,d, e}.

The assignment of the encoded value for non-
existing (void) tuples is arbitrary.  Nonetheless,
we suggest to reserve the value 0 for non-existing
tuples for the sake of performance. For the above
example, if we encode {NotExist, NULL,a,b,c,d, e} as
{000(2), 010¢2), 0112y, 100¢2), 1012y, 1102, 111(2)},
then, for the selection condition, “A IN
{NULL, a,b,c}”, the retrieval Boolean expression will
be (B,B; By + B,B; B, + B, B By + B, B, By) B, B B,
where the last term restricts the selections only to
those existing tuples. The expression will be reduced
to (]BI2]B1 + BQ]BII)(]BQ + ]B1 + ]Bo), which will be
further reduced to (B5B; + B2B}). It results in an
expression, as if we did not take the term, B, B} B,
into consideration. It is because all tuples with any of
the three bitmap vectors, i.e., By, By and Bg, set to 1,
exist. The following theorem certifies our suggestion
to reserve 0 for non-existing tuples.

Theorem 2.1 Let void tuples of a table, ¥, be en-
coded as 0. Given any selection on attribute A of T
on any subset of existing tuples, the corresponding re-
trieval Boolean expression, f,(4) AND f 4, can be re-
duced to f(a), i.e., ignoring the selection condition on
the existing tuples. "

In other words, in such an encoding, any selection on
any subset of non-void tuples can be evaluated without
taking the function, f .,, into consideration. There-
fore, it reduces the processing time, while in simple
bitmap indexing, the ezxistence bit vector must be al-
ways ANDed to the resulting bit vector to have the fi-
nal bitmap for selection. For the proof of Theorem 2.1
please refer to [18].

e THE ENCODING

In Definition 2.1, we have defined that an encoded
bitmap index includes a set of bitmap vectors, a one-
to-one mapping and a set of retrieval functions. As the
name suggests, the domain of the indexed attribute is

encoded by the mapping. So far, we did not mention
how to define this mapping and how it would affect
the performance of query processing. We will define
well-defined encoding for the improvement of perfor-
mance next. Let us first state the idea of well-defined
encoding by the following example.

Given an attribute A with the domain
{a,b,c,d,e, f,g,h} and it is known that tuples
with A in {a,b,c,d}, or {c,d,e, f} are likely to be
accessed together. Then, if we define the mapping
as Figure 3(a) shows, to select tuples with conditions
“A IN {a,b,c,d}” or “A IN {c,d,e, f}”, only one
bitmap vector is needed to be accessed for each case.
For “A IN {a,b,c,d}”, the retrieval Boolean func-
tion is B,BiB; + B.B;B; + B,B;By + B2B; By,
which can be reduced to B}, and as for “A
IN {c,d,e, f}”, the retrieval Boolean function is
B;B; B, + BB By + B,B; B, + B>B; By = B.

Mapping Mapping Mapping
Table Table Table

a | 000 a | 000 a | 000
c | 001 b | 001 c | 001
g | 010 c | 010 g | 010
e | 011 d | 011 b | o011
b | 100 g | 100 e | 100
d | 101 h | 101 d | 101
h | 110 e | 110 h | 110
7 111 7 111 7 111

(a) (a) . ()
Figure 3: Examples of proper and improper mappings

In contrast, subject to the two selections above,
the mapping in Figure 3(b) is not well-defined. The
retrieval functions for “A IN {a,b,c,d}” and “A IN
{c,d,e, f}” are B,B] + B,B, + B By and BBy +
B>B| + B2Bg, respectively, and they cannot be fur-
ther reduced, i.e., to evaluate the two selections three
bitmap vectors must be read instead of one.

The idea is that, by a well-defined encoding (with
respect to certain selection conditions), the number
of bitmap vectors accessed is minimized, as a result
shortening the processing time. Before going to the
definition of well-defined encoding, let us first define
binary distance and chain.

Definition 2.2 (Binary Distance) Given two bi-



nary numbers, x and y, the binary distance of x and
y is a function, X(), defined by A(z,y) = Count(z D y),
where Count(z) is a function which returns the number
of 1 bits in z, and @ is the bitwise XOR operation. =

For example, if a = 011(5) and b = 111(y), then the
binary distance of a and b is A(a,b) = 1.

Definition 2.3 (Chain) Given a set of distinct bi-
nary numbers, § = {co,...,cna} (n > 2). A chain in
s is defined as a sequence on s, say < Cogy---Cop_y >,
such that Xco;,¢oy) = 1 (i = 0,...,m—2) and
ACopy3Cop) = 1. m

Definition 2.4 (Prime Chain) Given a set of dis-
tinct binary numbers, s = {co,...,cna} and |s| = 2P
(p € NU{0}). A chain on s is said to be a prime chain,
if V ¢i,ci(3,j =0,...,n—=1), 3 Xcs,¢j) <p. =

For example, a prime chain can be defined on
{000,110, 010,100} as < 000,100, 110,010 >, while no
chain can be defined on {001,011,111}. Now, we de-
fine the well-defined encoding as follows.

Definition 2.5 (Well-Defined Encoding) Given
is a subdomain, s = {vg,...,vp1} (n > 2), of an
attribute A, and let p = |logon|. A mapping on
attribute A, M4 : A — {(bg_1---bo)|b; € {0,1}, i=
0,...,k—1, k=Tlog, |A|1}, is said to be well-defined
with respect to the selection “A IN {vg,...,vn1}", if
the following conditions are satisfied.

i) If n = 2P, then there exists a prime chain in
{MA (v)|v € s}.

i) If 27 < |s|] < 2PY1 and |s| is even,
then 3 s' C s,|s'| = 2P, such that there ex-
ists a prime chain in {MA(v)jv € s'}, and
there emists a chain in {MA(v)lv € s}, and
Vou,0' €5, A (MA(v), MA(v')) <p+1.

iii) If 22 < |s|] < 2P*') and |s| is odd, then
s C s, |8 = 2P, > there exists a prime chain
in {(MA(W)|lv € §'}, and 3w ¢ 5, but w € A, >
there erists a chain in {MA(v)jv € s U {w}}, and
Voo €sU{w}, A\(MA®v),MA(0)) <p+1.m

Theorem 2.2 A well-defined encoding minimizes the
number of bit vectors which need to be accessed. m

The proof of the theorem can be found in [18]. Ob-
viously, Theorem 2.2 results in a local optimum, since
Definition 2.5 takes only one subdomain (or, one se-
lection condition) into consideration. Theorem 2.3 is
a revision of Theorem 2.2 for describing the optimum
relative to a set of selection conditions.

Theorem 2.3 Given a set of (range) selection predi-
cates on attribute A, P4y = {p1,...,pn}, and each p;

(1 <@ < n) corresponds to one subdomain of A, i.e.,
§1,-..,6n. The number of bit vectors which must be
read while evaluating the selection predicates is mini-
mized, if the encoding on A is well-defined with respect
toallp; (1<i<n). =

Again, the proof can be found in [18]. The sub-
domains, s1,...,5,, are not necessarily disjoint, and
the optimal solution must not necessarily exist, or be
unique. In the above example, both the mappings in
Figure 3(a) and (a') are optimal to both selections, “A
IN {a,b,c,d}” and “A IN {c,d,e, f}”.

A well-defined encoding is desirable for optimization
but not essential. An efficient algorithm for finding a
well-defined encoding is needed, since the brute-force
approach has a complexity that is an exponential func-
tion of the cardinality of the attribute and the num-
ber of selection conditions. We have explored some
heuristics for finding a well-defined encoding. How-
ever, they are beyond the scope of this paper. Second,
intuitively, whether an encoding is well-defined is sub-
ject to the types of selections. In Definition 2.5, we
define the well-defined encoding with respect to range
selections of the form “Attribute IN {...}”. For other
selection conditions, e.g., “5 < Attribute < 7”, we
have to redefine the well-defined encoding, though,
for discrete domains, conditions of the form — “j <
Attribute < i” can be expressed as “Attribute IN
{...}”. In the next subsection, we give examples of
handling range searches on numeric data types. Third,
as stated above, whether an encoding is well-defined
is specific to selections. As the selections change over
time, a model is needed to evaluate when a re-mapping
is desirable, or how to make use of don’t-care values in
the encoding to optimize the performance.?

2.3 Applications and variations of en-

coded bitmap indexing

e HIERARCHY ENCODING

The warehouse data is usually modeled as a star
schema, which consists of one (or more) fact table(s)
and some dimensions. Hierarchies might exist in di-
mensions. As Figure 4 shows, the dimension SALES-
POINT of the sales data can be classified into three cat-
egories (hierarchy elements) — branch, company and
alliance.

3For optimization of the retrieval Boolean expression, we
might take the don’t-care conditions into account. For ex-
ample, if we want to select data with the selection condition
A = b OR A = ¢, then we consider the following two ex-
pressions: f, + fe and fy + fe + fgop’t-cares P the example
in the beginning of Section 2.2, f;,n%-care = B1Bo- Since
fo+ fe=B|Bo+ ]31]B6 = B1® Bp and f, + fc + fdon’t-care =
B} Bo + B1Bj, + B1Bg = B; + B, for computers without hard-
ware implementation of bitwise XOR operation, we might use
B1 + Bg to retrieve the data.



Figure 4: Hierarchies along dimensions

Suppose that we have 12 branches - {1,2,3,...,12},

5 companies — {a, b, ¢, d, e}, and 3 alliances — {X,Y, Z}.
Some branches belong to a company, and some compa-
nies form an alliance, e.g., branches {1,2, 3,4} belong
to company a, branches {5,6} belong to company b,
.., companies {a,b,c} form the alliance X, and so

on, as Figure 5(a) shows.
Mapping Table

company branches 1 0000

a {1,2,3,4} 2 | 0001

b {5,67} 3 | 0100

c {7, 8} 4 | oiol

d {3,4,9, 10} 5 | 0010

e {9,10,11, 12} 6 0011

7 0110

alliance companies 8 0111

X {(;(,7 b, c} 9 1100

Y {c,d} 10 | 1101

Z {d,e} 11 | 1111

12 | 1110
(a)Members of hierarchy elements (b)Hierarchy
— company and alliance encoding

Figure 5: SALESPOINT hierarchy and its encoding

Note that some companies join two different al-
liances. In the real world, the relationships between hi-
erarchy elements are not necessarily 1 : N, they could
also be m : N as is the case in the above example.

One essential operation of OLAP is the manipula-
tion along dimensions [17], e.g., roll-ups/drill-downs,
data analysis along dimension hierarchies. All these
operations are based on selections on dimensions, or
on dimension elements, e.g., selecting sales data of all
companies in alliance Z. Therefore, data of the same
dimension hierarchies is very likely to be accessed to-
gether in the DW environment.

The idea of hierarchy encoding is to build encoded
bitmap indexes with respect to selections on hierar-
chy elements. For the above example, the domains
of hierarchy elements, “company” and “alliance”, are
{a,b,c,d,e} and {X,Y,Z}, respectively, and the set
of selection predicates on either “company” or “al-
liance” will be P = {0company=ili € {a,b,c,d,e}} U
{0aliance=j1j € {X,Y,Z}}. A well-defined encoded
bitmap index with respect to P, as Figure 5(b) shows,
is optimized for selections along dimension elements,
“company” or “alliance”. For example, for selection
“alliance = X”, only one bit vector is accessed.

This idea can be further extended to build a
groupset index using encoded bitmap indexes. A
groupset index corresponds to the Group-By clauses

in users’ queries. Because of the limitation of space,
we do not further discuss this case.

¢ TOTAL-ORDER PRESERVING ENCODING

Another type of range selection, such as “j <
Attribute < ¢”, is performed on numeric or ordinal
type of attributes. Numeric or ordinal types have a
special property, namely, there exists a total-order re-
lation in their domain. As a result, if the encoding in
encoded bitmap indexes destroys the total-order rela-
tion, then selections in form of “j < Attribute < 4”
must be rewritten to ones in form of “Attribute IN
{...}”.

An encoding which preserves the total-order prop-
erty of the attributes is called a total-order preserving
encoding. A simple total-order preserving encoding is
the internal representation of integers in computers,
e.g., “8” is encoded as “1000”, “17” as “10001”. If
we define the encoding as the internal representation
of computers, the resulting encoded bitmap index is a
set of bit slices of the original attribute. In [11], O’Neil
and Quass defined such an index as bit-sliced index and
proposed algorithms for evaluating some query types
directly from the bit-sliced index.

Mapping Table

101 000
102 | 001
103 | 010
104 100
105 101
106 110

Figure 6: Total-order preserving encoding

However, bit-sliced index is not the only answer to
numeric (or ordinal) attributes. For example, given an
attribute A with domain {101, 102,103,104, 105, 106},
where there exists a total-order in A, i.e., 101 < 102 <
103 < 104 < 105 < 106. In addition, tuples with A in
{101,102,104, 105} are usually accessed together. The
mapping in Figure 6 preserves on one hand the total-
order property, and on the other hand, is optimized for
the selection “A IN {101,102,104,105}”.
¢ RANGE-BASED ENCODING
A possible variation of encoded bitmap indexing is to
use it for range-based indexing. Because of space lim-
itations, instead of giving a formal definition of range-
based encoded bitmap indexes, we demonstrate the
idea by a simple example.

Given an attribute A with the domain 6 < A <
20, A € N. Suppose that the following range selec-
tions are pre-defined by the end users — “6 < A < 107,
“g < A <12, 10 < A < 13” and “16 < A < 20”.
According to the predefined selections, the domain of
attribute A should first be divided into 6 disjoint par-
titions, as Figure 7 shows.

Next, we encode the set of intervals — {[6,8), [8,10),
[10,12), [12,13), [13,16), [16,20)} as Figure 8(a) shows.



6 8 10 12 13 16 20
Figure 7: Pre-defined ranges

Then, for example, for range selection “8 < A < 127,
the retrieval function is B, B} Bg + B2 B By, which can
be reduced to BjBy. The (reduced) retrieval func-
tions for all predefined range selections are listed in
Figure 8(b).

Mapping Table
6,8) 000

i i

5.0y 001 6<A<10 B, B,

- 8 A< 12 B’ B,

0,12) | 101 < 1B

213100 10< A< 13 BoB

3

13,16) | 010 16<A4<20 B2 By

16,20) | 110

(a)Range encoding (b)Retrieval functions

Figure 8: Range-based encoded bitmap index

If the ranges of selections are not pre-definable, or
the ranges are so evenly scattered on the attribute do-
main (which will result in many 1-element disjoint par-
titions), then the range-based bitmap index will reduce
to an encoded bitmap index on a set of single values,
instead of on a set of ranges.

3 Performance Analysis:
Approach

In Section 2, we have discussed the advantages of
simple bitmap indexes over B-trees in the DW environ-
ment under some restrictions, and proposed encoded
bitmap indexing to compensate for the limitations of
simple bitmap indexing. In the following, we compare
encoded bitmap indexing with simple bitmap index-
ing. By showing the advantages of encoded bitmap in-
dexing over simple bitmap indexing, the advantages of
encoded bitmap indexing over B-trees can be inferred.

Analytical

3.1 Comparing encoded bitmap indexing
with simple bitmap indexing

The space requirement of building both simple and
encoded bitmap indexes is WTM bytes, and the time
complexity is O(|%| x h), where h is the number of
bitmap vectors. In addition, the time complexity
for maintenance with respect to updates without do-
main expansion is O(h) for both simple and encoded
bitmap indexing. As for updates with domain expan-
sion, the time complexity is O(|%|) + O(h) for simple
bitmap indexing, and between O(h) and O(|%|) + O(h)
for encoded bitmap indexing. The main difference
is that for simple bitmap indexing, h = |A|, while
for encoded bitmap indexing, h = [log, |A|]. Obvi-
ously, |A| > [log, |A[], for all |A| > 1 and |A] € N.
|A] > [log, |Al], if the cardinality of A is large.

Besides, the sparsity of simple bitmap indexes is on

average ngl , where m is the cardinality of the indexed

attribute, while the sparsity of encoded bitmap indexes
is about % (independent of m).

As a result, building/maintaining encoded bitmap
indexes is more economical than building/maintaining
simple bitmap indexes, as the cardinality of the in-
dexed attribute increases.

However, maintenance cost is not the only fac-
tor when evaluating the performance of indexes. We
should also compare the complexity of query process-
ing with respect to both bitmap indexings. For both
bitmap indexing techniques, the complexity is a func-
tion of the number of bitmap vectors which are ac-
cessed and the number of logical operations performed
on the bitmaps.*

Following the example at the beginning of Sec-
tion 2.2, suppose that we have an attribute A, with
domain {a,b,c}. Both simple bitmap index and en-
coded bitmap index are built on A, as Figure 1 shows.
Consider the following two queries:

Ql: SELECT A Q2 SELECT A4
FROM FROM ¥
WHERE A=a WHERE A in {a,b}

If the simple bitmap index is used, then (B,) and
(B, OR By) are used for retrieving tuples for Q1 and
Q2, respectively. If the encoded bitmap index is used,
then (B} Bj) and (B') are used to select the tuples for
Q1 and Q2, respectively. Generally speaking, for sin-
gle value selection, simple bitmap indexing performs
better than encoded bitmap indexing. However, for
range searches, especially large range searches, en-
coded bitmap indexing performs better than simple
bitmap indexing. As the above example shows, for
single value selection (Ql), one bitmap vector is ac-
cessed if simple bitmap indexing is used, while two
bitmap vectors are accessed if encoded bitmap index-
ing is used. In contrast, for range search (Q2), one
bitmap vector is accessed if encoded bitmap indexing
is used, while two bitmap vectors are accessed if simple
bitmap indexing is used.

Let ¢s and ce denote the number of bitmap vec-
tors accessed by simple bitmap indexing and encoded
bitmap indexing, respectively. Obviously, 1 < ¢ < |A4|
and 1 < ce < [log, |A[]. For simple bitmap indexing,
¢s = 0, where § denotes the size of the interval of the
range search and 1 < § < |A|. For example, § = 2 in

4Comparing with the disk access costs, it is reasonable to
ignore the CPU time needed for performing logical operations,
such as AND , OR . In addition, in the following discussion, we
consider the number of bitmap vectors which must be accessed
for query processing using encoded bitmap indexing as the num-
ber of bitmaps after performing logical reduction on the retrieval
Boolean expressions, e.g., if the retrieval Boolean expression is
B/ Bo + B1Bo, then it is first reduced to Bo, and the number of
bitmaps which need to be accessed is considered as one.



Q2.

For encoded bitmap indexing, ¢ is a function of 4,
where 1 < ¢ < |A|, and of the distribution of selected
values. For worst cases, ¢ = [log, |A|]. For best cases,
ce = [log,y |A[] — 7', where +' is the number of bitmap
vectors reduced by performing logical reduction. (For
details please refer to Property 3.1 in [18].)

From the above discussion, we can see that c. < cs,
if § > log, |A| + 1. In addition, the cost of process-
ing simple bitmap indexes is a linear function of §,
while the cost of processing encoded bitmap indexes
is upper-bounded by a step function — [log, |A[]. In
other words, the encoded bitmap indexes perform sta-
bly, even when § is large, while simple bitmap indexes
degrade relatively fast. Figure 9(a) and (b) depict ce
and ¢ with |A| = 50 and 1000, respectively. (ce is cal-
culated according to Property 3.1 in [18], i.e., of the
best cases. For worst cases, ce = [log, |A4|], namely,
ce = 6 in Figure 9(a), and ¢, = 10 in Figure 9(b),
which are still much less than c.)
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Figure 9: Performance analysis

Figure 10 depicts the number of bit vectors required
for building both simple and encoded bitmap indexes
with respect to the cardinality of indexed attributes.
Again, the space requirement of a simple bitmap in-
dex is linear to the cardinality of the attribute, while
that of an encoded bitmap index is logarithmic to the
cardinality of the attribute.

3.2 Worst case analysis

Even for the worst case scenario, encoded bitmap

indexing performs better than simple bitmap indexing,

Space Requirement: No. of Bit Vectors

256 Q: 1o-Ri Trnd
1mple Bitmap-index
128 Encoded Bitmap Ind b
BT bHmap-ince

11

///(’

0 512 1024 1536 2048
Cardinality of Indexed Attributes

No. of Bitmap Vectors Required

Figure 10: Space requirements

if § > log, | 4|, as Figure 9(a) shows. Two reasons that
might lead to such behavior are discussed below.

Improper Encoding Given a selection, o1, if the
encoding was not well-defined with respect to o1, for
the worst cases, the number of bit vectors, which must
be accessed in query processing, is [log, |A|]. An ex-
treme case will be that, for all types of selections there
does not exist any selection, such that the encoding is
well-defined. The line ¢, = 6 in Figure 9(a) depicts
the extreme case.

The ratio between the areas under the curve of the
best case and the line ¢, = 6 denotes the average
benefit gained from well-defined encodings. The ratio
for the case in Figure 9(a) is 0.84, i.e., 16% saving of
the processing cost is gained, and the ratio for the case
in Figure 9(b) is 0.90, i.e., 10% saving of processing
cost is gained.

Note that the above calculation did not take the
frequencies of selection types into consideration. The
average savings are not very large in magnitude, so
that having a well-defined encoding is desirable but not
essential. For specific situations, the saving could be
up to 83% (for the case where § = 32 in Figure 9(a)),
or even up to 90% (for the case where § = 512 in
Figure 9(b)).

Logical Reduction A well-defined encoding only
makes sense together with the logical reduction of the
retrieval functions. The complexity of performing log-
ical reduction using a brute-force method is, however,
exponential to the number of bit vectors. For the per-
formance gain from well-defined encoding, we have to
pay the price of finding a well-defined encoding and
the cost of the logical reduction in exchange.

We do not think it is unfeasible, though the com-
plexities for both finding a well-defined encoding and
performing logical reduction are exponential to the
problem size. We have explored some heuristics to
solve the problem, but discussion of these preliminary
results is beyond the scope of this paper. Another
straightforward, but effective, approach will be: since
the ranges of selection predicates are pre-definable



(well-defined encodings are subject to predefined se-
lections), the retrieval functions for all the predefined
predicates can also be reduced by human experts, and
be verified with assistance of computers.

Furthermore, the cost for finding a well-defined en-
coding is a one-time cost, unless dynamic re-encoding
is desired, which is also beyond the scope of this paper.

The above analysis shows that, for range searches,
encoded bitmap indexes perform essentially better and
more stable, even when the range of selection increases.
For single value selections, encoded bitmap indexing is
second to simple bitmap indexing. However, according
to TPC-D [14], from 17 query types, 12 query types
involve range search.(They are Q1, Q3, Q4, Q5, Q6, Q7,
Q8, Q9, Q10, Q12, Q14 and Q16.) Therefore, we be-
lieve that the encoded bitmap indexing can play an
important role for improving query processing in the
DW environment. In addition, the worst case analysis
shows that even if the best cases cannot be reached,
the worst-case performance of encoded bitmap indexes
in range searches is still better and more stable than
that of simple bitmap indexes.

In practice, in order to improve both the perfor-
mance of B-trees and simple bitmap indexes, a hybrid
method is implemented, i.e., instead of storing tuple-
ids (value-lists) at the leaf-nodes of B-trees, bitmap
vectors are stored. As the sparsity increases (one con-
sequence of high cardinality), the bit vectors are ex-
pressed as value-lists. However, when the cardinality
is very high (exactly the circumstance where encoded
bitmap indexing is well-suited), the hybrid method
might degrade to a pure B-tree. In such cases, the co-
operativity of bitmap indexing in the hybrid method
is lost.

4 Other Indexing Techniques

In this section, we discuss some other indexing tech-
niques which are proposed in the literature for DWs.

Projection Indexing In [11], a projection index is
defined as materialization of all values of an attribute
in the tuple-id order. We can treat a projection index
as an encoded bitmap index, where the mapping table
is simply the table of internal codes, i.e., the mapping
function is

MA () = b1 - bo

where k is the length in bits of the internal represen-
tation of attribute A, and b; is the i-th bit (from LSB
to MSB) of the attribute value (i =0,...,k—1).

One difference between a projection index and an
encoded bitmap index, which uses the table of inter-
nal codes as the mapping table, is the physical storage
allocation. A projection index stores the values hor-
izontally, while an encoded bitmap index stores the

values vertically. A projection index stores the bits of
a value continuously, while an encoded bitmap index
stores the bits of the same position of different val-
ues continuously, which resembles the physical storage
allocation of bit-sliced indezes.

Bit Slicing In [11], a bit-sliced index is defined
as a set of bitmap slices which are orthogonal to the
data held in a projection index. In other words, a bit-
sliced index is a bitwise vertical partition of a projec-
tion index. Bit-sliced indexes are suitable for numeric
(fixed-point) or ordinal attributes, and are especially
good for wide-range searches. Bit-sliced indexing with
non-binary base was also introduced in [11]. Bit-sliced
indexes can also be treated as special cases of encoded
bitmap indexing. They are encoded bitmap indexes
with a total-order preserving encoding, which is triv-
ially the internal representation of fixed-point num-
bers.

Both projection indexes and bit-sliced indexes are
comparable to the transposed files [16]. A transposed
file stores one column from a main table in a row,
namely, one row per transposed column. A projec-
tion index stores only one transposed column, and a
bit slice is a transposed representation of a column of
bits from the same bit position of an attribute.

Value List Indexes Traditionally, a value list in-
dex stores key values and a list of tuple-ids for each
key value. A wvalue list index can be structured as a
B-tree, or simply as an inverted file.

A hybrid indexing using simple bitmap indexes and
value list indexes was said to resolve the problems of
sparsity in simple bitmap indexes caused by high car-
dinality domains. The B-tree structure is first used
to index the key values, and at the leaf nodes simple
bitmap vectors are stored. However, if one bit vector
is too sparse, a list of tuple-ids, instead of a bit vector,
is stored. A contradiction arises: B-tree is efficient for
random access, if the number of key values is large.
However, if the number of key values is large, i.e., the
cardinality of the indexed attribute is large, then the
problem of sparsity is more severe. As a result, instead
of bit vectors stored at the leaf nodes, value lists are
stored. Then, the so-called hybrid index reduces to a
B-tree. On the other hand, if the cardinality of the
indexed attribute is very small, the benefit of building
a B-tree on top of the bitmap vectors is also small.

In [11], the authors have proposed algorithms for
evaluating some aggregate functions and range selec-
tions directly on projection indexes, bit-sliced indexes
and value list indexes. The range selection predicates
considered in [11] was only of the form “i < A < j7,
while in our paper, we have generalized the cases,
by taking both in-lists and conventional range pred-



icates into consideration. For the special cases of nu-
meric/ordinal attributes, if the encoding is total-order
preserving, the algorithms proposed by O’Neil and
Quass are also applicable to the encoded bitmap in-
dexes. Slight changes might, however, be required.

Group-Set Indexes Group-By operations are of-
ten used for grouping the results of queries for better
understanding and analyzing. A groupset bitmap in-
dex was introduced in [11] to select tuples which satisfy
the group-by condition.

The proposed groupset bitmaps face the same spar-
sity problem of simple bitmap indexes. Some other ap-
proaches, such as clustering, or segmentation, can help
to process Group-By operations more efficiently. How-
ever, clustering can be performed according to only one
selection condition or one grouping condition. There-
fore, secondary indexes are needed. An eligible candi-
date for group-set indexing will be the encoded bitmap
index. If we had 3 attributes in the Group-By clause,
and the cardinalities of the attributes are 100, 200,
500, respectively. Then, the number of all possible
combinations will be 107, which means 107 bit vectors
if simple bitmap indexing is used, and only 20 bit vec-
tors if encoded bitmap indexing is used.’?

Furthermore, if hierarchy encoding (discussed in
Section 2.3) is applied, groupset indexes can be dy-
namically calculated at run-time, which results in more
flexibility, since it is not feasible to pre-compute all
possible Group-By combinations if the number of di-
mensions is large.

Dynamic Bitmaps Dynamic bitmaps are built
dynamically from high cardinality attributes. [13] If
there are n different values in the attribute domain,
they are encoded onto n  (logyn)-bit continuous bi-
nary integers.

Dynamic bitmaps are special cases of encoded
bitmap indexes, where the encoding trivially maps the
domain onto a continuous integer set. The significance
of encoding was not discussed in dynamic bitmaps.

Range-Based Indexing A dynamic range-based
bitmap indexing for high cardinality attributes with
skew was proposed in [19]. The idea is to partition the
domain into some equal population subsets, and simple
bitmap vectors are constructed, one for each subset. In
that work, the authors also took the distribution of the
attributes into consideration.

In Section 2.3, we have also introduced a similar idea
of building range-based indexes using encoded bitmap
indexing. The two approaches differ from each other in

5Naturally, in this problem, the density of the products of
the dimensions should also be considered, e.g., although there
are 107 combinations, there might only be 10® meaningful com-
binations, i.e., the density is only 10%.

the following aspects: (1) In [19], partition is done by
distribution of the attribute values, while we propose
to partition according to pre-defined range selections.
(2) In [19], Wu and Yu investigate how to dynami-
cally adjust the partition of the ranges to balance the
population of all buckets with respect to the distri-
bution of attribute values. However, we do not have
the problem of imbalance. Because we use the pre-
defined selection predicates to partition the attribute
domains, the retrieval functions will, therefore, exactly
match the desired tuples. Even in the cases that selec-
tion predicates are not pre-definable, or the predicates
result in a very large number of small partitions, en-
coded bitmap indexing can handle a much larger num-
ber of small partitions than simple bitmap indexing
can do. As a matter of fact, if the ranges of the se-
lections are not pre-definable, range-based indexes do
not make any sense. In this case, we propose to use
an encoded bitmap index with a total-order preserving
encoding, such that any range selection predicates can
be efficiently evaluated directly on the bit vectors.
Other Techniques Other indexing techniques for
the warehouse environment include multidimensional
B-trees [8, 4], compression techniques (e.g., run-length)
for simple bitmap indexes, hierarchical indezes [6, 7],
join indezes [15, 10] and multidimensional indexing for
spatial data [12]. Index techniques used in Sybase 1Q,
Red Brick Warehouse and Oracle are discussed in [3].

5 Concluding Remarks and Future

‘Work

We introduced encoded bitmap indexing for the DW
environment. The merits of this technique are:
1. Tt inherits the good properties of simple bitmap
indexing, such as cooperativity of different bitmap vec-
tors, low cost of construction and maintenance, and
low processing cost.
2. It differs from simple bitmap indexing in encoding.
Because of encoding, it solves the problems of sparsity,
at the same time, improves the space utilization, short-
ens the maintenance and processing time, and also im-
proves the performance of processing range searches.
Most of all, the cardinality of the indexed attribute
has no longer dramatical effects on the maintenance
and processing cost of the encoded bitmap indexes.
3. With customized definitions of encodings, the en-
coded bitmap indexes are suitable for and capable of
(but not limited to) indexing OLAP data. We have
discussed some of its applications, such as the hierar-
chy encoding for indexing dimensions with hierarchies,
total-order preserving encoding for numeric/ordinal
attributes, range-based encoded bitmap indexes, etc.
Theorems were derived for identifying the properties



for a well-defined encoding with respect to a given set
of predefined selection predicates. Under this encod-
ing, the number of bit vectors, which must be accessed
in query processing, is minimized. We have given a
comparative performance analysis of both simple and
encoded bitmap indexes using an analytical approach.
The result is satisfactory and shows that as the car-
dinality and the range of selections increase, encoded
bitmap indexes perform better and more stable than
simple bitmap indexes (even if the best cases described
by the theorems 2.2 and 2.3 cannot be reached).

There are still some problems to be solved. First, an
efficient algorithm for logical reduction of the retrieval
Boolean functions is needed. Second, an efficient al-
gorithm for finding well-defined encodings is required
to take full advantages of optimization. Third, for ap-
plication domains where the set of predefined selec-
tion predicates changes over time, a model for evalu-
ating the cost-effectiveness of a reconstruction of the
encoded bitmap indexes is desirable. Fourth, if selec-
tion predicates are not predictable, a proper encoding
is, however, achievable through an analysis of the his-
tory of users’ queries. In other words, in such an en-
vironment, data mining might be applied for finding
a good encoding. Fifth, in the text, we have concen-
trated on how range selections are evaluated directly
on the encoded bitmap indexes, since selections are
the very basic operation for other operations. How-
ever, in addition to range predicates, some aggregate
functions, or operations can also be evaluated directly
on the bitmaps, such as sum(-), average(:), median,
N-tile, column-product aggregations, joins, etc. Algo-
rithms for performing these functions, or operations
using encoded bitmap indexes, though of no difficulty,
must be defined.
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