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Darmstadt 2002, Darmstädter Dissertationen D17





Abstract

Today, the architecture of distributed computer systems is dominated by cli-
ent/server platforms relying on synchronous request/reply. This architecture is
not well suited to implement information-driven applications like news delivery,
stock quoting, air traffic control, and dissemination of auction bids due to the
inherent mismatch between the demands of these applications and the character-
istics of those platforms. In contrast to that, publish/subscribe directly reflects
the intrinsic behavior of information-driven applications because communication
here is indirect and initiated by producers of information: Producers publish
notifications and these are delivered to subscribed consumers by the help of a
notification service that decouples the producers and the consumers. Therefore,
publish/subscribe should be the first choice for implementing such applications.

The expressiveness of the notification selection mechanism used by the con-
sumers to describe the notifications they are interested in is crucial for the
flexibility of a notification service. Content-based notification selection is most
expressive because it allows to evaluate filter predicates over the whole con-
tent of a notification. The advantage in expressiveness compared to channel-
or subject-based selection results in increased flexibility facilitating extensibil-
ity and change. On the other hand, scalable implementations of content-based
notification services are difficult to realize. Indeed, the expressiveness of noti-
fication selection must be carefully chosen in large-scale systems, because ex-
pressiveness and scalability are interdependent. Hence, the most fundamental
problem in the area of content-based publish/subscribe systems is probably the
scalable routing of notifications from their producers to their respective con-
sumers. Unfortunately, existing content-based notification services are not ma-
ture enough to be used in large-scale, widely-distributed environments. Most
existing notification services are either centralized, use flooding, or use simple
routing algorithms that assume that each event broker has global knowledge
about all active subscriptions. All these approaches exhibit severe scalability
problems in large-scale systems. In contrast to that, this thesis concentrates on
mechanisms to improve the scalability of content-based routing algorithms and
presents more advanced routing algorithms that do not rely on global knowledge.
The algorithms presented here exploit similarities between subscriptions by us-
ing identity- and covering-tests, and by merging filters. While identity-based
routing is a simplified version of covering-based routing, merging-based routing
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is more advanced because it exploits the concept of filter merging. Furthermore,
the idea of imperfect routing algorithms is introduced.

The thesis consists of a theoretical and a practical part. The theoretical part
presents a formal specification of publish/subscribe systems, a routing frame-
work and a set of routing algorithms, and discusses how the routing optimiza-
tions can be broken down to the actual data/filter model. The practical part
presents the implementation of the Rebeca notification service which supports
advertisements and all the routing algorithms mentioned above. A detailed prac-
tical evaluation of the implemented algorithms based upon the prototype is also
presented.
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Zusammenfassung

Heutzutage wird die Architektur verteilter Systeme von Client/Server-Platt-
formen dominiert, die auf dem synchronen Request/Reply Paradigma aufbauen.
Diese Architektur ist jedoch nicht dafür geeignet, informationsgetriebene Appli-
kationen (z.B. Nachrichtendienste, Aktienkursdienste, Flugüberwachungsdienste
oder die Verbreitung von Auktionsgeboten) zu implementieren. Dies liegt dar-
an, dass die Anforderungen dieser Applikationen und die Charakteristika von
Client/Server Plattformen sich grundlegend voneinander unterscheiden. Im Ge-
gensatz dazu bilden Publish/Subscribe Systeme die Eigenschaften von informa-
tionsgetriebenen Applikationen direkt ab, da in diesem Fall die Kommunikation
indirekt ist und vom Produzenten der jeweiligen Informationen angestoßen wird:
Produzenten veröffentlichen Benachrichtigungen und diese werden allen subskri-
bierten Konsumenten durch einen zwischengeschalteten Benachrichtigungsdienst
zugestellt. Daher bieten sich Publish/Subscribe-basierte Implementationen für
die Umsetzung derartiger Applikationen an.

Die Ausdrucksfähigkeit der von den Konsumenten benutzten Nachrichten-
selektion ist entscheidend für die Flexibilität eines Benachrichtigungsdienstes.
Inhaltsbasierte Nachrichtenselektion ist am ausdrucksstärksten, weil in diesem
Fall Prädikate über dem gesamten Inhalt einer Nachricht ausgedrückt werden
können. Diese im Vergleich zu kanalbasierter und themenbasierter Selektion
erhöhte Ausdrucksfähigkeit vergrößert die Flexibilität und begünstigt somit die
Erweiterbarkeit und Änderbarkeit. Andererseits ist ein skalierbarer inhaltsba-
sierter Benachrichtigungsdienst schwierig zu realisieren. In der Tat muss die
Ausdrucksfähigkeit der Nachrichtenselektion in großen Systemen sorgfältig fest-
gelegt werden, weil Ausdrucksfähigkeit und Skalierbarkeit voneinander abhängig
sind. Daher ist das wohl grundlegendste Problem im Bereich der inhaltsbasierten
Publish/Subscribe Systeme das skalierbare Routen von Nachrichten von den Pro-
duzenten zu den entsprechenden Konsumenten. Unglücklicherweise sind die heu-
tigen Benachrichtigungsdienste nicht weit genug entwickelt, um in großen, weit
verteilten Umgebungen genutzt werden zu können. Die meisten existierenden
Benachrichtigungsdienste sind entweder zentralisiert, benutzen

”
Flooding“ oder

basieren auf einfachen Routing-Algorithmen, die annehmen, dass jeder Broker
globales Wissen über alle im System aktiven Subskriptionen hat. Diese Ansätze
haben allerdings ausgeprägte Skalierbarkeitsprobleme in großen Systemen. Die-
se Arbeit konzentriert sich auf Mechanismen, welche die Skalierbarkeit von in-
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haltsbasierten Routing-Algorithmen erhöhen und präsentiert verbesserte Algo-
rithmen, die kein globales Wissen voraussetzen. Die Algorithmen basieren auf
Tests, die bestimmte

”
Ähnlichkeiten“ zwischen Subskriptionen erkennen können

(Identitäts- und Überdeckungstests) und auf dem Konzept der Verschmelzung
von Filtern. Darüber hinaus wird auch die Idee der

”
nicht perfekten“ Routing-

Algorithmen eingeführt.
Im Einzelnen besteht die hier vorgestellte Arbeit aus einem theoretischen

und einem praktischen Teil. Der theoretische Teil stellt eine formale Spezi-
fikation von Publish/Subscribe Systemen, ein Routing-Framework und einige
Routing-Algorithmen vor. Daneben wird auch diskutiert, wie die vorgeschlage-
nen Routing-Optimierungen auf das eigentliche Daten- und Filtermodell her-
untergebrochen werden können. Der praktische Teil der Arbeit stellt die Im-
plementierung des Benachrichtigungsdienstes Rebeca vor, der die diskutier-
ten Routing-Algorithmen und zusätzlich zu Subskriptionen auch Ankündigun-
gen von Produzenten unterstützt. Außerdem wird eine detaillierte praktische
Evaluation der Routing-Algorithmen vorgestellt, die auf dem implementierten
Prototypen basiert.

iv



Preface

Acknowlegements

First of all I would like to thank my advisor Prof. Alejandro P. Buchmann,
Ph.D., for his invaluable help and advice, and Jean M. Bacon, Ph.D. for tak-
ing over the part of the second referee. Special thanks go to Ludger Fiege and
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Chapter 1

Introduction

The architecture of current large-scale and networked computer-systems is domi-
nated by synchronous client/server platforms (e.g., the World Wide Web, Corba

[80], J2EE [104], and COM+ [93]). In client/server systems two roles exist: A
component acts as a client if it requests data or functionality from another com-
ponent; it acts as a server if it responds to a client’s request. Moreover, a client is
blocked after it has issued a request, until the corresponding reply arrives. RPC
(remote procedure call) [52, 108] and more recently object-oriented successors
like RMI (remote method invocation) [106] automated request/reply-based inter-
action in such a way that calling a remote procedure/method is almost identical
to the local case. For example, arguments and return values are automatically
marshalled and unmarshalled.

The main advantages that lead to the widespread use of RPC-like platforms
are their simplicity and familiarity. Other implementations of the request/reply
pattern use explicit message passing. These implementations offer more flexibil-
ity but are also more complex. Besides their indisputable advantages, RPC-like
platforms also have some inherent disadvantages. One of the main deficiencies
is the tight coupling among the involved components, i.e., the clients and the
servers: A client needs to explicitly address the server that shall process the
request, the server must be ready and able to process the request, and the client
is blocked, until it receives the reply. Because of these inherent disadvantages a
large range of applications cannot be realized efficiently by using request/reply.

Consider the following example, where an automated stock trading program
monitors stocks and bases its decisions to sell or buy certain stocks on current
real-time quotes. If this program is realized using request/reply, it has to pe-
riodically retrieve the current quote of a specific stock by requesting it from
a quoting server. Each time communication and processing cost would be in-
curred, and in many cases no new information is delivered. This approach is
called polling. Polling leads to resource waste because it unnecessarily saturates
the servers, the network, and the clients [45]. This not only impedes scalability,
in a large-scale system, it may even lead to a total breakdown of the network

1
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connections or the server itself.

In the above example, it is important that quote updates are available to the
trading program with minimum latency and that no quote updates are missed.
Both requirements can only be met using a high polling frequency. Hence, data
freshness and completeness are inconsistent with a low data fetching overhead.
Moreover, synchronous polling blocks the client until the reply arrives. This
means that multiple polling requests (e.g., for different stocks) either have to be
executed sequentially or error-prone multi-threaded polling must be used. The
same would be true if multiple data sources (e.g., different stock exchanges) were
involved.

As another example, Bacon, Moody, and Yao [6] proposed to disseminate
revocations of security credentials instead of checking them every time they are
needed or on a regular basis. Polling is also inappropriate for applications that
run on mobile devices (e.g., PDAs). These devices are especially susceptible to
resource waste because of their limited processing power and network bandwidth.

These examples show that there are applications that cannot be realized
efficiently by using request/reply. Moreover, these examples are not in any way
exceptions but rather typical examples of information-driven applications, in
which information provided by a service depends on information supplied by
other services. Realizing such applications using request/reply will always lead
to implementations that do not scale and provide data that is inaccurate and
probably incomplete.

Of course, the disadvantages of synchronous computing platforms have been
recognized before and lead to the development of a number of extensions for
these platforms. Some of the disadvantages can be diminished by using asyn-
chronous request/reply. For example, the Synchronous Method Invocation (SMI)
of Corba was supplemented by the Corba messaging specification [51] which
introduced the Asynchronous Method Invocation (AMI) and the Time Indepen-
dent Invocation (TII). The former achieves that clients are not blocked while
they are waiting for a reply, and the latter allows for requests to be buffered
until the addressed server becomes available. These extensions circumvent the
problems raised by synchronous invocation, but still each client has to request
the data from a specific server. These problems are approached by a new com-
munication paradigm called publish/subscribe that recently gained increased
publicity in the distributed systems research area. Publish/subscribe is an asyn-
chronous communication paradigm that is also the basis for extensions [71] and
supplementary services [81, 82, 92] that have been added to standard middleware
recently.

1.1 Publish/Subscribe Systems

A publish/subscribe system consists of a set of clients that asynchronously ex-
change notifications, decoupled by a notification service that is interposed be-
tween them. Clients can be characterized as producers or consumers. Producers
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publish notifications (such as current stock quotes), and consumers subscribe
to notifications by issuing subscriptions, which are essentially stateless message
filters. Consumers can have multiple active subscriptions, and after a client has
issued a subscription the notification service delivers all future matching notifi-
cations that are published by any producer until the client cancels the respective
subscription. In this thesis it is assumed that producers and consumers are im-
plemented in a way such that they publish and subscribe to the intended events
as required by the application.

Publish/subscribe systems have a number of interesting characteristics. First-
ly, producers do not need to address consumers and vice versa. Instead, con-
sumers simply specify the notifications they are interested in. This loosely cou-
pled approach facilitates flexibility and extensibility because new consumers and
producers can be added, moved, or removed easily. Secondly, communication
is asynchronous, thereby removing the disadvantages and inflexibility of syn-
chronous communication described above. Thirdly, producers and consumers
do not need to be available at the same time. This means that a subscription
causes notifications to be delivered even if producers join after the subscription
was issued. Finally, publish/subscribe directly reflects the intrinsic behavior of
information-driven applications because communication is initiated by producers
of information.

The benefits of publish/subscribe make them first choice for implementing
information-driven applications. For example, publish/subscribe is well suited
for information dissemination applications like news delivery, stock quoting, air
traffic control [66], and dissemination of auction bids [12]. The use of pub-
lish/subscribe techniques has also been described in the areas of mobile agents
[102], work flow systems [29], ubiquitous computing [64], peer-to-peer systems
[57], and process control systems [60]. Furthermore, the use of publish/subscribe
was proposed for loose coupling of components [10] or several independent dis-
tributed applications.

Publish/subscribe systems exhibit a lot of interesting challenges, but a fun-
damental aspect in any publish/subscribe system is the expressiveness of the
notification selection, i.e., how consumers specify subscriptions. Choosing the
notification selection mechanism is perhaps the most important (and most diffi-
cult) choice to be made when developing a notification service.

1.2 Notification Selection Mechanisms

The expressiveness of notification selection is crucial for the flexibility of a notifi-
cation service. In large-scale systems the expressiveness of notification selection
must be carefully chosen because expressiveness and scalability are interdepen-
dent. On the one hand, insufficient filter expressiveness can lead to unnecessarily
broad subscriptions saturating the network and raising the need for additional
consumer-side filtering. In the worst case, when interests cannot be mapped
to selection mechanisms, all notifications must be delivered and the selection is
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imposed on to the consumer. On the other hand, scalable implementations of
more expressive filtering models require more complex delivery strategies [20].
In the following, three common notification selection mechanisms are described:
channels, subjects, and content-based selection.

Channel-based Selection. The first generation of publish/subscribe systems
[55, 82, 109] used channels. Here, a notification is published with respect to a
specific channel that is specified by the producer, and each notification that is
published to a channel is delivered to all consumers that have subscribed to
this channel. Channels can be implemented efficiently because they can easily
be mapped to multicast groups, but they have some inherent disadvantages.
Firstly, the expressiveness, i.e., the filtering capability, of channels is rather
limited because notifications can only be classified with respect to a number of
channels. If no channel exists that perfectly matches the interests of a consumer,
the consumer has to subscribe to multiple channels and/or has to carry out
additional filtering on its own. In general, a low number of channels and a
high selectivity are contradicting issues. Hence, there will rather be a channel
for all stocks of a specific market segment than for every single stock. But
what if the user is interested in a single stock only? Secondly, channels are
inflexible and inhibit changes. If the assignment of notifications to channels
changes, both producer and consumers may have to be changed: Producers may
be forced to publish notifications to different channels, while consumers may
have to subscribe to various channels and may have to carry out consumer-side
filtering. Finally, producers and consumers are not fully decoupled because the
producer decides into which channel(s) a notification is published.

Subject-based Selection. In subject-based publish/subscribe systems [83,
114] producers publish notifications with respect to a certain subject that is
usually specified as a dot separated string (e.g., market.quotes.NASDAQ). Sub-
jects are arranged in a subject tree by using a dot notation, and clients can
either subscribe to a single subject (e.g., market.quotes.NASDAQ.FooInc) or to
a subject and all of its subordinate subjects (e.g., market.quotes.NASDAQ.*).
In some systems it is also possible to express slightly more complex constraints
on the subject of notifications.

The above examples show that subjects provide more powerful notification
selection than channels. Nevertheless, subjects have a number of drawbacks.
Firstly, they have still a limited expressiveness. With subjects it is possible to
have a subject for each single stock, but what if the user is interested in the
stock price only if it rises above a certain limit? Secondly, subjects are only
suitable to divide the notification space with respect to one dimension. The use
of several dimensions leads to an explosion of the tree size because of subtree
repetition. In any case, the question arises who defines the subject tree. Thirdly,
changes to the subject tree can require major application fixes. For example,
consumers may have to subscribe to other subjects and may have to carry out
distinct consumer-side filtering. Furthermore, producers and consumers are still
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not fully decoupled because the producer determines the subject under which a
notification is published.

Content-based Selection. Content-based selection allows subscriptions to
evaluate the whole content of notifications, and so it provides a more powerful
and flexible notification selection than channel- or subject-based mechanisms,
for which the actual content of a notification is opaque. The increase in expres-
siveness allows the delivery of uninteresting notifications to be reduced or even to
be avoided. In particular, this is important for applications that run on mobile
devices having limited processing power and network bandwidth. For example,
content-based selection makes it possible to subscribe only to those quotes of
a certain stock whose price is above a certain limit. Moreover, only content-
based selection provides full decoupling of producers and consumers, facilitating
extensibility and continual change. Clearly, content-based selection is the most
flexible notification selection mechanism, but on the other hand, scalable imple-
mentations are the most complex to realize, too. Indeed, the expressiveness of
the selection predicates that can be applied has a large impact on the scalability
of any content-based notification service.

In the literature, several systems relying on content-based selection are de-
scribed. Early work was presented by Carriero and Gelernter [16, 48] in the
context of Linda Tuplespaces. Today, content-based selection is used by a set of
notification services including Elvin [44, 100, 101], Gryphon [1, 9, 8, 85, 86, 103],
Siena [17, 22], Le Subscribe [37, 36, 88, 89], JEDI [13, 14, 28, 29, 30], CEA
[4, 5, 7, 10, 56, 71], Hermes [90, 91], and Rebeca [38, 41, 42, 73, 75, 76]. More-
over, the Corba Notification Service Specification [81] and the Java Message
Service Specification [111] also rely on content-based filtering.

This thesis concentrates on content-based selection. More precisely, it in-
vestigates different possibilities for implementing content-based selection in a
scalable way by content-based routing.

1.3 Content-based Routing

Clearly, a centralized notification service is easy to implement, but neither scal-
able nor fault-tolerant. The alternative is to distribute the functionality of the
service by using a set of cooperating event brokers. In this scenario each broker
manages an exclusive subset of the clients, and notifications are propagated from
producers to consumers along a path of interconnected brokers. To achieve this,
each broker forwards a notification it processes to a (possibly empty) subset of
the brokers it is connected to, i.e., its neighbors. This must be done in a way
that guarantees that a notification is delivered to all interested consumers. In a
broker topology with cycles additional care must be taken to avoid delivering du-
plicate notifications. In order to simplify the discussion, only acyclic topologies
are considered in this thesis.
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The technique of flooding is the simplest approach to implement a notifica-
tion service that is distributed. Here, every broker forwards a notification that
is published by one of its local clients to all of its neighbors, and if a broker
receives a notification from a neighbor, it simply forwards it to all other neigh-
bors; of course, a notification is also delivered to all local clients with matching
subscriptions. With flooding, routing is trivial, but obviously a lot of unneces-
sary messages (which have no consumers at the other end) may be exchanged
among brokers because each published notification is eventually processed by
every broker.

An alternative to flooding is content-based routing. Here, each broker has a
routing table that is used to route notifications based on their content to local
clients and neighbors. Compared with flooding, content-based routing reduces
the number of notifications that are forwarded, but complicates notification for-
warding and introduces the necessity to update routing tables if subscriptions
change. In general, the routing tables are maintained by forwarding information
regarding new and canceled subscriptions through the broker network. Two
categories of content-based routing algorithms can be distinguished. Perfect
routing ensures that a notification is only forwarded to a neighbor broker iff in
the corresponding subnet a consumer with a matching subscription exists. With
imperfect routing, on the other hand, notifications may be forwarded that have
no subscription. Up to now, only perfect routing algorithms were considered.

Two versions of (perfect) content-based routing are known, simple routing
and covering-based routing. Moreover, advertisements can be used to further
optimize content-based routing.

Simple Routing. The most naive filtering-based routing algorithm is sim-
ple routing. This routing scheme incorporates a routing entry for every active
subscription in the routing tables of all brokers by flooding new and canceled
subscriptions in the broker network. This ensures that a published notification
is delivered to all interested consumers, while minimizing the amount of noti-
fication traffic in the system. However, with simple routing the routing tables
become rather large, because this routing scheme enforces that all brokers have
knowledge about all active subscriptions. Moreover, every routing table is af-
fected if a subscription changes. Obviously, these are undesirable features in
large systems. Simple routing is used, for example, by Gryphon [59].

Covering-Based Routing. As an alternative to simple routing Carzaniga
[17] has shown that global knowledge about all active subscriptions is not neces-
sary for implementing a perfect routing algorithm. His algorithms use selective
subscription forwarding based on covering-tests among subscriptions to avoid
flooding all subscriptions in the broker network. For example, a new subscrip-
tion is not forwarded to a neighbor if previously a subscription has been for-
warded to that neighbor that covers the former and that has not been canceled
yet. Unfortunately, this also implies that if a subscription is canceled, it might
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be necessary to forward some other subscriptions to some neighbors. This con-
cerns a subset of the subscriptions that is covered by the canceled subscription.
Covering-based routing is used by Siena [17, 22] and JEDI [29].

Using Advertisements. Advertisements are filters that are issued by pro-
ducers to indicate their intention to publish notifications. Advertisements can
be used as an additional mechanism to further optimize content-based routing
[17]. For this purpose a second routing table is managed by every broker. This
advertisement routing table can be maintained by the same algorithms as the
subscription routing table, i.e., by forwarding new and canceled advertisements
through the broker network. While the subscription routing tables are used to
route notifications from producers to consumers, the advertisement routing ta-
bles are used to route subscriptions from consumers to producers: a subscription
is only forwarded to a neighbor if it overlaps with an active advertisement that
has been received from this neighbor before. Most filtering-based routing algo-
rithms can be combined with advertisements. Advertisements are not supported
by previously implemented notification service prototypes.

1.4 Shortcomings of Current Approaches

Current approaches to content-based notification services exhibit a number of
serious deficiencies which are now explained.

Lacking Formalization. A formal specification offers a stable basis for any
reasoning about a system and for comparing different systems without misun-
derstandings. While most work on publish/subscribe imparts an intuitive notion
of the correct behavior of publish/subscribe systems, currently no formal treat-
ment of the semantics of publish/subscribe exists. Such a specification would
not only be useful to gain a deeper insight into the details of publish/subscribe
systems, but would also facilitate reasoning of the correctness.

Limited Scalability or Expressiveness. Today most content-based notifi-
cation services are either centralized (e.g., Le Subscribe [89]) or rely on simple
routing (e.g., Gryphon [8, 59, 85]). Both approaches exhibit scalability prob-
lems in large-scale systems. Siena [17, 22] and JEDI [29] exploit covering-based
routing. Clearly, covering-based routing can improve the scalability, but in some
situations it might be too complex (e.g., if two subscriptions are either disjoint or
identical) or even not sophisticated enough. Therefore, alternative routing algo-
rithms should be developed and evaluated by comparing them to each other. In
particular, there is currently no work dealing with imperfect routing algorithms.
It can be expected that imperfect routing algorithms lead to smaller routing
table sizes and maintenance overhead, but also to less efficient filtering. There-
fore, they might be a good compromise in (more) dynamic environments. While
improving scalability by applying covering-based routing, Siena and JEDI also
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restrict the expressiveness of content-based routing. Both systems only support
a number of predefined filtering predicates that work on primitive types (e.g.,
integers). In contrast to that, filtering should support more complex types, and
the set of filtering constraints should be extensible rather than predefined.

Limited Implementation. The implementations of current notification ser-
vices often rely on a single routing algorithm. This reduces the effort needed
to realize an implementation, but inhibits comparing routing algorithms to each
other in a uniform environment and under the same conditions. This would be
facilitated by an implementation that supports a set of distinct routing algo-
rithms and allows to easily add new routing algorithms. Moreover, most current
notification services are only validated by trivial example applications like a
ticker tape. These applications show that the basic functionality of the notifica-
tion service is working. Here, only JEDI is an exception which is applied to the
development of a more complex application, a work-flow system [29].

Insufficient Evaluations. One of the obvious questions that are raised by
work on content-based routing is whether and in what environments filtering is
superior to flooding. This question is difficult to answer because the efficiency
of filtering when compared to flooding depends on many parameters. Because
of that, existing evaluations of content-based routing [8, 13, 14, 17, 22, 85] have
not answered this question properly. Currently, only a few rules of thumb exist.
It is known that in the worst case filtering degrades to flooding. This worst
case occurs if for any published notification there is a matching consumer at
every broker. It is also clear that the effectiveness of filtering decreases the more
often the subscriptions (and advertisements) change. Finally, locality among the
interests of clients seems to improve the efficiency of filtering. But besides these
reasonable rules, what can be said about other scenarios?

1.5 Focus and Contribution of this Thesis

The focus of this thesis is on content-based publish/subscribe systems. This
thesis consists of two parts, a theoretical part and a practical part. The the-
oretical part deals with the formal semantics of publish/subscribe systems and
advanced content-based routing algorithms. The practical part describes the im-
plementation of the Rebeca notification service and two example applications
and presents a detailed evaluation of the implemented routing algorithms. The
contributions of this thesis are:

Formal Treatment of Publish/Subscribe Semantics. A formal specifica-
tion of publish/subscribe systems is introduced. The specification uses sequen-
tial traces and is based on the syntax of linear temporal logic. It allows one to
reason about the correctness of concrete systems and deficiencies in the descrip-
tion of the semantics of current systems to be pointed out. In this thesis the
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specification also serves as a basis for discussing the correctness of the routing
algorithms. Moreover, the notion of self-stabilizing publish/subscribe systems is
introduced, which is based on a weakened version of the specification of fault-free
publish/subscribe systems. Finally, a formalization of routing configurations is
presented that allows their correctness to be reasoned about.

Content-Based Routing Algorithms. Content-based routing algorithms
are proposed including identity-based routing and merging-based routing. While
the former is a simplified version of covering-based routing, the latter is more
advanced and exploits the concept of filter merging. The correctness of the dis-
cussed routing algorithms is proved by using the formalization of publish/sub-
scribe systems and routing configurations. Besides this, how self-stabilizing
publish/subscribe systems can be realized through subscription (and advertise-
ment) leasing is presented. This allows a system to recover from arbitrary
transient faults within a finite time. To complete this part of the thesis, it is
also shown how the proposed routing optimizations can be broken down to the
data/filter model that is used. Here, the focus is on name/value pairs, but ideas
on supporting semistructured data (e.g., XML) and objects are also described.

Implementation. As part of this thesis an implementation was carried out
that is part of the Rebeca notification service prototype. Moreover, two ex-
ample applications have been implemented. In contrast to other work, Rebeca

incorporates not only a single routing algorithm but a set of routing algorithms
(all those that were discussed above). Moreover, advertisements are supported
and new routing algorithms can easily be added. Hence, the implementation
allows to experiment with different routing algorithms and to compare them to
each other in a uniform environment. Rebeca is built upon a flexible and pow-
erful filtering framework instead of predefined filtering predicates. Rebeca also
provides service factories and basic support for replaying past events. Besides
the notification service, two example applications were implemented, a stock
trading platform and an infrastructure for self-actualizing web-pages. These ap-
plications show that non-trivial applications can be realized in a scalable way
with the implemented notification service.

Evaluation. A detailed practical evaluation of the content-based routing algo-
rithms is presented. The evaluation differs from previous ones by a combination
of two factors: (1) it is focused on the inherent characteristics of routing algo-
rithms (routing table sizes and filter forwarding overhead) instead of system-
specific parameters (CPU load etc.), and (2) it is based on a working proto-
type (Rebeca) instead of simulations. Moreover, several routing algorithms are
compared to each other, and the effects of locality regarding the interests of the
consumers are investigated. Finally, an evaluation of imperfect merging is car-
ried out. The derived results offer new and detailed insights into the behavior
of content-based routing algorithms: 1) Using advanced routing algorithms in
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large-scale publish/subscribe systems can be considered valuable. 2) The use of
advertisements considerably improves the scalability. 3) Advanced routing al-
gorithms operate efficiently in more dynamic environments than was previously
thought. 4) The good behavior of the algorithms even improves if the interests
of the consumers are not evenly distributed, which can be expected in practice.
5) The evaluation of imperfect merging shows that it is suited to further reduce
the routing table sizes.

1.6 Structure of the Thesis

Chapter 2 introduces a formal specification of publish/subscribe systems which
is based on traces. In Chapter 3 a framework for content-based routing is intro-
duced that builds upon the formal specification of publish/subscribe systems. A
set of routing algorithms is described and their correctness is discussed includ-
ing flooding, simple routing, identity-based routing, covering-based routing, and
routing based on filter merging. Chapter 4 discusses how the routing optimiza-
tion proposed in the preceding chapter can be supported for some data/filter
models. The focus of this chapter is on structured records which are based on
name/value pairs. In Chapter 5 the implementation that has been carried out as
part of this thesis is described. The implementation includes the prototype of the
Rebeca notification infrastructure and two example applications, a stock trad-
ing platform and an infrastructure for dynamic web pages. Chapter 6 presents a
detailed practical evaluation that has been carried out by using the implemented
notification service prototype. Chapter 7 summarizes the contributions of this
thesis and sketches areas of future work.
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2.1 Introduction

In this chapter a formal specification of publish/subscribe systems is described.
The specification uses sequential traces and is based on the syntax of linear tem-
poral logic [72, 94]. It permits the correctness of concrete systems to be reasoned
about and deficiencies in the description of the semantics of current systems to
be pointed out. In this thesis it also serves as the basis for proving the correct-
ness of the routing algorithms. The notion of self-stabilizing publish/subscribe
systems is introduced based on a weakened version of the specification of nor-
mal publish/subscribe systems. Self-stabilizing systems are able to recover from
arbitrary transient faults autonomously.

In the following, first the interface of publish/subscribe systems is described
(Sect. 2.2). After that, trace-based specifications are introduced (Sect. 2.3) and
a trace-based specification of publish/subscribe systems is presented (Sect. 2.4).
Subsequently, self-stabilizing algorithms and a specification for self-stabilizing

11
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publish/subscribe systems is given (Sect. 2.5). Finally, a specification which
considers advertisements of producers is presented (Sect. 2.6).

2.2 Interface of Publish/Subscribe Systems

There is a considerable amount of work on notification services, and many con-
crete systems have been designed and implemented (e.g., Siena [22], JEDI [29],
etc.). Unfortunately, understanding and comparing these systems is difficult
because of differing and informal semantics. Informal requirements can be de-
manded for a publish/subscribe system. For example, we could require that

• only notifications should be delivered to a client that match one of its
active subscriptions,

• each notification should be delivered to a client at most once,

• notifications should be delivered in some order with respect to their pub-
lication (e.g., in causal order etc.), and

• all notifications matching an active subscription should be delivered to the
respective client.

But how can these requirements be specified unambiguously and which ones
are really mandatory for the basic service level of a useful publish/subscribe
system? To answer these questions, first a way to capture the behavior of a
publish/subscribe system is needed. After that, it can be defined what it means
for a publish/subscribe system to be correct.

Interface

System

Interaction

. . . Clients

unsub(F)

Publish/Subscribe

pub(n)

notify(n)
sub(F)

Figure 2.1: Black box view of a publish/subscribe system.

Interface Operations. Conceptually, a system can be viewed as a black box
with an interface. The interface of the system offers a number of operations
each of which may take a number of parameters. While input operations can be
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invoked from the outside, output operations are invoked by the system to deliver
information to the outside. Note that this does not mean that the implemen-
tation of the system consists of a single component (cf. Chapter 3) or only has
a single interface. Moreover, “invocations” on the interface of a system can be
implemented by, for example, message passing. Indeed, the approach is used to
abstract from the internal structure and implementation details of a system and
to specify, inspect, and verify the behavior of a system by only looking at its
interface.

In the case of a publish/subscribe system (see Fig. 2.1), a set of clients is in-
teracting with the system. Clients publish notifications by invoking the pub(n)
operation, giving the notification n as parameter. The published notification can
potentially be delivered to all connected clients via an output operation called
notify(n). Clients register their interest in specific kinds of notifications by issu-
ing subscriptions via the sub(F ) operation which takes a filter F as parameter.
Each client can have multiple active subscriptions which must be revoked sepa-
rately by using the unsub(F ) operation. All these operations are instantaneous
and take parameters from different domains: the set of all clients C , the set of
all notifications N , and the set of all filters F . Formally, a filter F ∈ F is a
mapping from N to the boolean values true and false . A notification n matches
a filter F iff F (n) evaluates to true. The set of all notifications that match F
is denoted by N(F ) . Additionally, two further assumptions are made: Firstly,
it is assumed that notifications are unique, i.e., each notification can only be
published once. Secondly, every filter is associated with a unique identifier in
order to enable the publish/subscribe system to identify a specific subscription.

2.3 Trace-Based Specifications

sub(X, F ) Client X subscribes to filter F
unsub(X, F ) Client X unsubscribes to filter F
notify(X, n) Client X is notified about n
pub(X, n) Client X publishes n

Table 2.1: Interface operations of a publish/subscribe system

The behavior of the publish/subscribe system is specified by solely looking
at its interface. The interface is associated with a set of variables. A subset of
the variables are specification variables which are fictitious devices sometimes
necessary to keep track of the internal history of the system within a specifica-
tion. Two sets of specification variables are assumed at the interface for every
client X ∈ C:

1. a set SX of active subscriptions (i.e., all filters which X has subscribed
and not unsubscribed to yet) and
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2. a set PX of published notifications (i.e., the subset of N containing all
notifications X has previously published).

It is assumed that these sets are initially empty and that they are updated
faithfully according to the operations that occur at the interface of the system.
For example, whenever X subscribes to F , F is added to SX , and whenever X
unsubscribes to F , F is removed from SX . Hence, multiple (un)subscriptions to
the same filter are idempotent. This also implies that if a client X subscribes to
a filter F multiple times and then unsubscribes to this filter once then F is no
longer in SX afterwards.

An assignment of values to the variables is called a state of the interface. In-
voking operations on the interface results in atomic state changes of the variables.
Therefore, individual behaviors of the system can be described as a sequence of
states sn interleaved with operations opn. Such a sequence

σ = s1, op1, s2, op2, s3, . . . (2.1)

is called a trace of the system. In a trace, s1 is called the initial state of the
system. In order to capture which client is affected by an operation, the opera-
tions are extended to include the respective client (see Table 2.1). For example,
sub(X, F ) means that client X subscribes to filter F . Note that a trace in this
model reduces time to the relative ordering of operations within a trace. For
example, the trace

σ1 = s1, sub(X, F ), s2, pub(Y, n), s3,notify(X, n), s4, . . . (2.2)

describes that in the initial state s1 client X subscribes to a filter F . After that,
in the resulting state s2, client Y publishes a notification n, which in turn results
in state s3. The next state s4 results from client X receiving the notification n,
and so on. Note also that the trace σ1 does not require that n matches F . In
fact, many useless traces can be defined. For example, the trace

σ2 = s1, unsub(X, F ), s2,notify(X, n), s3, . . . (2.3)

describes that X unsubscribes to a filter it has never subscribed to and that it
receives a notification although it never subscribed to anything. The task now
is to find suitable restrictions on the set of all traces that express exactly what
is expected from a publish/subscribe system (e.g., that a delivered notification
has to match an active subscription of the respective client).

In order to specify the set of correct traces which a system may exhibit, a
way to impose predicates on traces is needed. Let σ = s1, op1, s2, op2, s3, . . . be
a trace. For every operation op (e.g., pub(n)) of the publish/subscribe system,
a predicate Op (here, Pub(n)) is defined on traces in the following way:

Op(σ) = true ⇔ op1 = op. (2.4)

This means that the predicate holds if the respective operation is the first one
in the trace. For example, the predicate Sub(X, F ) holds for trace σ1 (Eq. 2.2)
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above because sub(X, F ) is the first operation in σ1. The formal language used
to specify sets of traces is built from the above predicates, the quantifiers ∀ and
∃, the logical operators ∨, ∧, ⇒, ¬ and the “temporal” operators � (“always”),
♦ (“eventually”), and d (“next”) which are borrowed from temporal logic [94].
For example, the formula ¬Sub(X, F ) is true for a trace σ iff the first operation
in σ is not sub(X, F ). The semantics of the temporal operators is defined as
follows: let Ψ be an arbitrary formula. Then

• ♦Ψ is true for trace σ iff there exists an i such that Ψ is true for the trace
si, opi, si+1, opi+1, si+2, . . .,

• �Ψ is true for trace σ if and only if for all i, Ψ is true for the trace
si, opi, si+1, opi+1, si+2, . . ., and

• dΨ is true for trace σ iff Ψ is true for s2, op2, s3, op3, . . ..

Note that the temporal operators have higher precedence than the logical op-
erators. Intuitively, ♦Ψ means that Ψ will hold eventually, i.e., there exists a
point in the trace at which Ψ holds. For example,

♦Notify(X, n) (2.5)

specifies all traces in which client X eventually is notified about n. This predicate
holds for σ2 (Eq. 2.3). On the other hand, �Ψ means that Ψ always holds, i.e.,
for all “future” points in the trace Ψ holds.

�¬Unsub(X, F ) (2.6)

specifies all traces in which X never unsubscribes to F . Finally, dΨ means that
Ψ holds after the next step, i.e, for the trace starting with s2, op2.

�
[

Notify(Y, n) ⇒ d�¬Notify(Y, n)
]

(2.7)

specifies all traces in which if Y is notified about n then Y is never notified about
n again. Of course, it is also possible to refer to the specification variables. The
trace,

�
[

Notify(Y, n) ⇒ [∃F ∈ SY . n ∈ N(F )]
]

(2.8)

specifies all traces in which the fact that Y is notified about n implies that at
this time, i.e., in the corresponding state, there exists a subscription F in SY

that matches n. It is important to keep in mind that the temporal operators
determine the place in the trace to which the imposed conditions are applied.
As a last example,

�
[

Notify(Y, n) ⇒ [∃X. n ∈ PX ]
]

(2.9)

requires that the fact that Y is notified about n implies that there is a client
X for that n is in PX at this time. Subsequently, this implies that n has been
published by X before.
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Formally, a specification is a set of traces. Since the above formulas represent
sets of traces, they will be used as a syntax to express specifications. A system
is correct with respect to a specification Σ if it exhibits only traces that are in
Σ. Now we are prepared to specify the behavior of a publish/subscribe system.

2.4 Publish/Subscribe Systems

In the following, a specification of publish/subscribe systems is presented that
relies on the trace-based semantics introduced above. The specification defines
which traces a correct publish/subscribe system may exhibit.

Definition 2.1 (publish/subscribe system) A publish/subscribe system is
a system that exhibits only traces satisfying the following requirements:

• (Safety)

�

[

Notify(Y, n) ⇒
[

d�¬Notify(Y, n)
]

∧
[

∃X. n ∈ PX

]

∧
[

∃F ∈ SY . n ∈ N(F )
]

]

(2.10)

• (Liveness)

�

[

Sub(Y, F ) ⇒
[

♦�
(

Pub(X, n) ∧ n ∈ N(F ) ⇒ ♦Notify(Y, n)
)]

∨
[

♦Unsub(Y, F )
]

] (2.11)

The specification consists of a safety and a liveness condition [62]. A safety
condition demands that “something irremediably bad” will never happen, while
a liveness condition requires that “something good” will eventually happen. It is
known that many useful system properties can be expressed as the intersection
of safety and liveness conditions [2, 47, 46]. Here, the safety condition states that
a notification should never be delivered to a consumer more than once, that a
delivered notification must have been published by a client in the past, and that
a notification should only be delivered to a client if it matches one of the client’s
active subscriptions. The liveness condition is probably the most complicated
to understand. It describes precisely under which conditions a notification must
be delivered. The condition can be rephrased as follows: if a client Y subscribes
to F , then there exists a future time where the publishing of a notification n
matching F will lead to a delivery of n to Y . This can only be circumvented by
Y unsubscribing to F .

For example, trace σ1 (Eq. 2.2) above satisfies both safety and liveness con-
ditions, while σ2 (Eq. 2.3) satisfies the liveness condition but violates the safety
condition. As additional examples, consider the following traces where F is a
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filter and ni are notifications matching F while n′ is a notification not matching
F (the intermediate states are omitted for brevity):

σ3 = sub(Y, F ), pub(X, n1),notify(Y, n′) (2.12)

σ4 = pub(X, n), sub(Y, F ), unsub(Y, F ),notify(Y, n) (2.13)

σ5 = sub(Y, F ), pub(X, n1), pub(X, n2), pub(X, n3), . . . (2.14)

Traces σ3 and σ4 violate the safety requirement because a notification is de-
livered to Y that does not match an active subscription. In trace σ5 client Y
subscribes to F and client X starts to publish a continuous sequence of notifi-
cations matching F . Since there is no notify in σ5 it perfectly satisfies safety.
However, it violates the liveness requirement (to satisfy liveness, there must be
a point in the trace following the subscription where either Y unsubscribes to F
or Y begins to receive notifications).

Intuitively, the liveness requirement states that any finite processing delay
of a subscription is acceptable. By abstracting from physical time, a concise
and unambiguous characterization is obtained of what types of actions must be
produced by the system under which conditions. According to the specification,
delivery of a notification that match an active subscription F of a client is only
necessary if the client continuously remains subscribed to F . Because the system
cannot tell the future, it must nevertheless still make a good effort to prepare
delivery even though the client may later unsubscribe to F .

A trace is a sequence that is a total ordering of all operations that occur at
the system interface. One might argue that assuming a total order of operations
is unrealistic in a distributed system because it is not possible or desirable to
enforce total ordering of operations. Indeed, specifications can be given that
are not implementable, at least not efficiently. However, the specification of
Def. 2.1 can be implemented because it imposes ordering relations only on local
operations or on operations which intentionally should be causally related in
any sensible implementation. For example, consider the safety requirement: (1)
Whether or not Y was notified about n previously and whether Y has a matching
subscription can be detected locally. (2) Notifying Y about n does not make
sense without n having been published previously by some client. On the other
hand, Siena demands that a notification should only be delivered to a client if
the client had a matching subscription at the time the notification was published.
This requirement is difficult to realize because the publication of a notification
and the act of subscribing are generally not causally related.

A system that only satisfies the safety condition is trivial to implement. Any
system that never invokes a notify operation satisfies the imposed conditions.
Similarly, it is easy to implement a system which only satisfies the liveness
condition. Any system that delivers every notification that is published to all
clients fulfills this condition. Hence, the challenge is to implement a system that
satisfies both requirements.
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2.5 Self-Stabilizing Publish/Subscribe Systems

The specification of publish/subscribe systems (see Definition 2.1) requires that
the system is correct, i.e., exhibits the desired functionality at its interfaces,
in all circumstances. In the context of fault-tolerant systems, satisfying the
specification in the presence of faults would mean to mask the effects at the
interface. In many situations, fault masking is extremely difficult and costly
to implement. For example, the specification requires that a notification n is
never delivered to a process X that does not have a matching subscription. If
we assume that arbitrary transient faults can occur, we cannot guarantee this
property because it is easy to construct a fault that corrupts the state such
that the system “thinks” that X subscribed to n. Of course, arbitrary transient
faults are a rather strong fault assumption, but it is not unrealistic. It is quite
easy to show that building a correct publish/subscribe system in the presence
of arbitrary transient faults is impossible. The best that can be done in this
situation is to demand that the system exhibits self-stabilizing behavior.

In the following, self-stabilizing publish/subscribe systems are introduced.
Self-stabilizing systems are able to recover from arbitrary transient faults within
a finite time. Moreover, they can be realized by a number of techniques known
from the literature [98] (e.g., leases, etc.). The specification of self-stabilizing
publish/subscribe systems presented here is based on a weakened version of the
specification given in Definition 2.1.

Self-Stabilization Algorithms

The concept of self-stabilization was introduced by Dijkstra [31] in 1973. He
defined a system being self-stabilizing if “regardless of its initial state, it is guar-
anteed to arrive at a legitimate state in a finite number of steps”. In contrast
to that, a system which is not self-stabilizing may stay in illegitimate states for-
ever. A comprehensive discussion of self-stabilization is given by Dolev [32]. The
property of self-stabilization is generally viewed as a very strong fault-tolerance
property which has proved to encompass a formal and unified approach to fault
tolerance. The faults which are considered are arbitrary transient faults. A tran-
sient fault is a fault that may change the state of a system but not its behavior,
e.g., memory state perturbations, message losses or alterations, process crashes
with subsequent recovery. The property of self-stabilization models the ability
of a system to recover from transient faults within a finite time without any
intervention from the outside under the assumption that faults do not continue
to occur. Hence, if faults do not occur for a long enough period of time, the
system will start to work correctly again. Now we can formally define what it
means for a system to be self-stabilizing [113].

Definition 2.2 (self-stabilization) A system S is self-stabilizing for a speci-
fication Σ iff there exists a set L of legitimate states such that the following two
properties are satisfied:
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1. (Correctness) Starting from any state in L, the algorithm satisfies Σ.

2. (Convergence) Starting from any state, the algorithm eventually reaches a
state in L.

Roughly speaking, a system is self-stabilizing, if starting from an arbitrary
state, the system eventually starts to exhibit its intended behavior.

Self-Stabilizing Publish/Subscribe Systems

In the previous subsection self-stabilizing systems have been introduced. So the
question arises how the definition of publish/subscribe systems can be modified
to make sense under the failure model of self-stabilization, i.e, how a temporar-
ily incorrect behavior of the system can be tolerated. In general, under the
fault assumption of self-stabilization it is impossible to require any property
that prohibits certain states. What can be postulated is merely that such a
property will be satisfied eventually. Therefore, the safety condition of Defini-
tion 2.1 (Eq. 2.10) has to be weakened. In contrast to that, the liveness condition
(Eq. 2.11) can be left unchanged.

Definition 2.3 (self-stabilizing publish/subscribe system) A self-stabiliz-
ing publish/subscribe system is a system which exhibits only traces satisfying the
following requirements:

• (Eventual Safety)

♦�

[

Notify(Y, n) ⇒
[

d�¬Notify(Y, n)
]

∧
[

∃X. n ∈ PX

]

∧
[

∃F ∈ SY . n ∈ N(F )
]

]

(2.15)

• (Liveness)

�

[

Sub(Y, F ) ⇒
[

♦�
(

Pub(X, n) ∧ n ∈ N(F ) ⇒ ♦Notify(Y, n)
)]

∨
[

♦Unsub(Y, F )
]

]

(2.16)

The eventual safety condition states that the system starting from any state
will eventually begin and continue to satisfy the actual safety property.

2.6 Publish/Subscribe Systems with
Advertisements

Many implementations of publish/subscribe systems have the notion of adver-
tisements which are issued by producers to indicate their intention to publish
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certain kinds of notifications. Today, advertisements are used for two main rea-
sons: First, they are applied to optimize implementations of publish/subscribe
systems [17]. Second, consumers may want to inspect the advertisements cur-
rently available, for example, in order to issue, change, or cancel subscriptions.
Besides this, advertisements should also be used to control the notifications a
producer publishes. For example, if a notification is published by a client that
does not match any of its active advertisements, it should be discarded and not
delivered to any client.

Advertisements can easily be integrated into the formal model of publish/sub-
scribe systems presented here by adding two extra interface operations: Clients
indicate their intention to publish certain kinds of notifications by issuing ad-
vertisements via the adv operation taking a filter F as parameter. Similar to
subscriptions, each client can have multiple advertisements which are canceled
separately via the unadv operation which also takes a filter F as parameter.
Therefore, two additional interface operations adv (X, F ) and unadv (X, F ) as
well as two new predicates on traces Adv(X, F ) and Unadv (X, F ) are added.
Moreover, an additional specification variable AX is introduced which is the set
of all active advertisements of a client X (i.e., all filters which X has advertised
and not yet unadvertised).

Definition 2.4 (publish/subscribe system with advertisements) A pub-
lish/subscribe system with advertisements is a system which exhibits only traces
satisfying the following requirements:

• (Safety)

�

[(

Notify(Y, n) ⇒
[

d�¬Notify(Y, n)
]

∧
[

∃X. n ∈ PX

]

∧
[

∃F ∈ SY . n ∈ N(F )
]

)

∧
(

Pub(X, n) ∧ [∀F ∈ AX . n /∈ N(F )] ⇒
[

�¬Notify(Y, n)
]

)]

(2.17)

• (Liveness)

�

[

[

[Sub(Y, F ) ∧ ♦Adv(Z, G)] ∨ [Adv(Z, G) ∧ ♦Sub(Y, F )]
]

⇒
[

♦�
(

Pub(X, n) ∧ n ∈ N(F ) ∩ N(G) ⇒ ♦Notify(Y, n)
)]

∨
[

♦Unsub(Y, F )
]

∨
[

♦Unadv(Z, G)
]

]

(2.18)

In the above definition, the safety (Eq. 2.10) and the liveness condition
(Eq. 2.11) have been changed in order to make sense if advertisements are used.
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The safety condition has been sharpened such that if a notification is published
that does not match any of the active advertisements of the publishing client,
the notification should not be delivered to any client. The liveness condition
has been weakened and can be rephrased as follows: if a client Y subscribes to
F and a client Z advertises G (in arbitrary order), then there exists a future
time where a notification n published by Z that matches F and G will lead
to a delivery of n to Y . This can only be circumvented by Y unsubscribing
to F or by Z unadvertising G. It is necessary to apply this weaker liveness
condition in order to allow using advertisements to optimize the implementa-
tions of publish/subscribe systems. Of course it is also possible to combine
the above definition with those of self-stabilizing publish/subscribe systems by
simply weakening the safety condition to eventual safety.

2.7 Related Work

Currently, no other formal specification of publish/subscribe systems is known to
the author. For example, in the Siena system [17, 22], Carzaniga, Rosenblum,
and Wolf make an effort in defining the semantics of a notification service but
their specification remains rather vague and raises a number of problems:

For example, they demand that a notification is only delivered to a client if
the client had a matching subscription at the time the notification was published.
In contrast to that, the specification presented here requires only that the client
has a matching subscription at the time the notification is delivered. This is
much easier to detect (and to implement) in a distributed system. Moreover,
clients are required to handle race conditions. For example, notifications may be
delivered after cancellation of the respective subscriptions. With the specifica-
tion presented here the delivery stops immediately. Furthermore, advertisements
are not enforced meaning that notifications may be delivered to clients that did
not match any of the producers‘ advertisements.

Finally, in Siena, a client that unsubscribes to a filter implicitly unsubscribes
to all filters that are covered by the former filter. This approach burdens the
client to keep track of relations among the issued subscriptions. Moreover, the
treatment of a subscription that partially overlaps with an unsubscription seems
to be inappropriate because in this case the client keeps on receiving notifications
that match the unsubscription. Hence, a purely set-oriented approach has not
been realized. The interface presented here, is simpler because subscriptions
are issued and revoked independently of each other. This avoids undesired side-
effects and facilitates a simpler and more precise specification. Nevertheless, a
set-oriented approach can easily be realized on top of the presented approach by
a simple wrapper if this is desired.

In most other systems, practitioners’ approaches dominate and at most the
formal semantics of the subscription languages are given, neglecting the seman-
tics of the event service itself.



22 CHAPTER 2. FORMAL SPECIFICATION

2.8 Discussion

In this chapter a formal specification of publish/subscribe systems has been pre-
sented. It offers a number of benefits, but most importantly, it precisely defines
what it means for a publish/subscribe system to be correct. The specification is
based upon traces of state/operation pairs and uses the syntax of linear tempo-
ral logic. It reduces time to the relative ordering of operations within a trace. It
comprises safety and liveness conditions, an approach that is well known from
literature. In general, a safety condition demands that “something irremedia-
bly bad” will never happen, while a liveness condition requires that “something
good” will eventually happen. Here, the safety condition merely states that
no wrong notifications are delivered to a client, while the liveness condition re-
quires that after a client has subscribed, eventually all matching notifications
are delivered.

The specification of “normal” publish/subscribe systems is based on the as-
sumption that either no faults occur or that all faults can be masked. While the
former assumption is a rather unrealistic one, the latter one is nearly impossi-
ble to implement. The property of self-stabilization has proved to encompass a
formal and unified approach to fault tolerance. It is generally viewed as a very
strong fault-tolerance property as it allows systems to recover from arbitrary
transient faults within a finite time. Moreover, a number of techniques (e.g.,
leases, etc.) are known from literature that can be used to realize self-stabilizing
systems. Following this promising approach, the notion of self-stabilizing pub-
lish/subscribe systems has been introduced. In order to derive a specification
of self-stabilizing publish/subscribe systems, the specification of “normal” pub-
lish/subscribe systems has been weakened to make sense under the failure model
of self-stabilization. More precisely, the safety condition has been weakened to
hold only eventually, while the liveness condition has been left unchanged.
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3.1 Introduction

A formal treatment of the foundations of content-based routing is useful to gain
full insight into the behavior of publish/subscribe systems using this paradigm.
In this chapter a formal framework for content-based routing algorithms is pre-
sented building upon the formal specification of publish/subscribe systems pre-
viously introduced in Chapter 2. Starting with the fault-free scenario, fault-
tolerance in the sense of self-stabilization is added later. The novel contributions
include a formalization of routing configurations, their validity, a routing frame-
work, and a universal correctness criterion of legal framework instantiations.
A number of routing algorithms are discussed as instances of the framework
giving new insights into their detailed operation. The discussion includes new
routing algorithms like identity-based routing and merging-based routing as well
as known routing algorithms like flooding, simple routing, and covering-based
routing. While identity-based routing is a simplified version of covering-based
routing, merging-based routing is more sophisticated and exploits filter merg-
ing. Finally, it is shown how the framework can be made self-stabilizing and
how advertisements can be integrated into the framework.

This chapter is structured as follows: First, the underlying system model is
introduced that builds upon asynchronous message passing (see Sect. 3.2). After
that, a formalization of routing configurations is presented (see Sect. 3.3), and it
is shown what requirements a routing configuration must fulfill to be correct with
respect to the specification of publish/subscribe systems presented in Chapter 2.
In Section 3.4, a routing framework is introduced that defines how notifications
are routed through the broker network by using filter-based routing tables, how
control messages are exchanged among the brokers to update the routing tables,
and how to implement an instance of a concrete routing algorithm. Sufficient
conditions are given which a routing algorithm must satisfy in order to be cor-
rect. Subsequently, a number of routing algorithms is discussed as instances of
the framework (see Sect. 3.5). This includes flooding, simple routing, identity-
based routing, covering-based routing, and merging-based routing. The last two
sections of this chapter present how the routing algorithms can be made self-
stabilizing through subscription leasing (see Sect. 3.7) and how advertisements
can be used for content-based routing (see Sect. 3.6).

3.2 System Model

In the following section the system model that underlies the subsequent discus-
sions is presented. The system model assumes a distributed system consisting
of a set of processes that communicate with each other by asynchronous mes-
sage passing using reliable communication channels. It is further assumed that
messages are delivered in FIFO order with respect to the sender and that no
messages are duplicated, lost, corrupted, or erroneously sent. In Section 3.7 it
is presented how the reliable channel assumption can be avoided.
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Figure 3.1: A distributed publish/subscribe system.

The publish/subscribe system is realized by a set of cooperating processes
called brokers that are interconnected in an acyclic topology. Each broker B
acts as a local access point to the publish/subscribe system and manages an
exclusive set of local clients LB which is a subset of all clients C. Moreover, B
communicates with its neighbor brokers NB which are those brokers to which it
is directly connected (see Fig. 3.1). Hence, the brokers exchange notifications
and control messages to realize the functionality of the distributed notification
service. The exact strategy is determined by a distributed content-based rout-
ing algorithm that defines how notifications are forwarded through the broker
network and how filtering of notifications at intermediary brokers is performed.

More formally, the broker topology is modeled as a connected undirected
acyclic graph G = (V, E) with a set of nodes V = (B1, . . . , Bn) corresponding
to the brokers and a set of edges E ⊆ {(Bi, Bj) | 1 ≤ i < j ≤ n} representing
bidirectional connections among them. For notational convenience, a function
e(Bi, Bj) is defined that returns (Bi, Bj) if i < j and (Bj , Bi) otherwise.

3.3 Routing Configurations

In this section a formal model for routing configurations is presented. This
model and the derived results offer new insights into how routing configurations
can be managed. First of all, it is described how brokers forward notifications
by using filter-based routing tables (see Sect. 3.3.1). After that, valid routing
configurations are introduced in Section 3.3.2 which ensure that in a static pub-
lish/subscribe system all matching notifications are delivered to a consumer. In
dynamic publish/subscribe systems it is impossible to ensure that the routing
configuration is always valid. Therefore, weakly valid routing configurations are
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subsequently introduced (see Sect. 3.3.3). A weakly valid routing configura-
tion demands only the delivery of those notifications which are matched by a
subscription that has already been incorporated into the routing configuration.

3.3.1 Notification Forwarding based on Routing Tables

Each broker B manages a private routing table TB that comprises a set of rout-
ing entries. Each routing entry is a pair (F, U) consisting of a filter F and a
destination U ∈ NB ∪LB . The graph G together with all routing tables is called
the current routing configuration of the publish/subscribe system. The routing
configuration of a single broker B consists of two disjoint parts: the remote
routing configuration that comprises all routing entries whose destination is a
neighbor of B and the local routing configuration consisting of all routing entries
whose destination is a local client of B.

The current routing configuration induces the set of notifications that a bro-
ker forwards to a destination, i.e., the neighbors and local clients that are con-
nected to it. Formally, for a subset W of NB ∪ LB ,

νB(W) = {n | ∃(F, U) ∈ TB . n ∈ N(F ) ∧ U ∈ W} (3.1)

is the set of notifications that a broker B forwards to any member of W. From
this definition follows for two subsets A, B of NB ∪ LB that A ⊆ B ⇒ νB(A) ⊆
νB(B) and that νB(A ∪ B) = νB(A) ∪ νB(B). The destinations, local clients,
and neighbors to which a broker B forwards a given notification n are given by
FB(n), F L

B (n), and F N
B (n), respectively:

FB(n) =
{

D | D ∈ NB ∪ LB ∧ n ∈ νB({D})
}

(3.2)

F L
B (n) = FB(n) ∩ LB (3.3)

F N
B (n) = FB(n) ∩ NB (3.4)

Equipped with these definitions it is easy to define an algorithm that for-
wards notifications based on a routing table (see Fig. 3.2). The algorithm pro-
cesses incoming messages serially and fairly, i.e., in FIFO order regardless of the
sender. The brokers propagate notifications to each other by sending and re-
ceiving forward (n) messages. A broker receives pub(n) messages from and sends
notify(n) messages to its local clients (cf. Sect. 2.2). The algorithm works in
the following way:

• If a broker receives a pub(n) message from one of its local clients, it sends
a notify(n) message to all of its local clients which are in F L

B (n) and a
forward (n) message to all of its neighbors in F N

B (n).

• If a broker receives a forward (n) message from one of its neighbors U , it
sends a notify(n) message to all of its local clients which are in F L

B (n) and
a forward (n) message to all of its neighbors in F N

B (n) \ {U}.
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program StaticNotificationForwarding()
begin

initialize TB

loop

5 m← wait for and return next message
forwardNotification(m)

end

end

10 procedure forwardNotification(Message m)
begin

i f m is ”forward(n)” message from neighbor U then

send ”notify(n)” to all local clients in F L
B (n)

send ”forward(n)” to all neighbors in F N
B

(n) \ {U}
15 f i

i f m is ”pub(n)” from client X then

send ”notify(n)” to all local clients in F L
B (n)

send ”forward(n)” to all neighbors in F N
B

(n)
f i

20 end

Figure 3.2: Static notification forwarding

For example, consider the situation depicted in Fig. 3.3. Here, B1 forwards
a notification received from X1 to its local client X2 and its neighbor B2.

Now, that routing configurations and notification forwarding based on rout-
ing tables have been introduced, the question arises which conditions a routing
configuration has to fulfill in order to ensure that a publish/subscribe system
behaves correctly. This question is investigated and answered in the next two
subsections.

3.3.2 Static Publish/Subscribe Systems:
Valid Routing Configurations

In a static publish/subscribe system the set of participating brokers, the connec-
tions between them, and the subscriptions of their local consumers are constant
over time. In such a system the routing configuration should ensure that a
notification that has been published by an arbitrary client is delivered to any
client which has a matching subscription. Valid routing configurations which
are introduced below satisfy this requirement.

Informally, a broker has to distinguish between two sets of notifications:

1. the set of notifications νBY
({Y }) it forwards to a local client and

2. the set of notifications νBi
({Bj}) it forwards to a neighbor broker.

First, consider νBY
({Y }). For the system to be correct with respect to

Def. 2.1, a broker must deliver exactly those notifications to one of its local
clients which it is interested in. This means that νBY

({Y }) always has to be



28 CHAPTER 3. CONTENT-BASED ROUTING

B1

B2

(F1, X2)
(F2, X3)
(F3, B2)
(F4, B3)

X1

X3

B3

X2

FL
B1

(n) = {X2}

n ∈ F1

n ∈ F3

n /∈ F2

n /∈ F4

Routing Table TB1

FN
B1

(n) = {B2}

1. pub(n)

2. forward(n) 2. for
ward

(n)

Figure 3.3: Diagram explaining notification forwarding.

equal to ∪F∈SY
N(F ). On the one hand, if νBY

({Y }) contains more notifications,
the safety requirement would be violated. On the other hand, if νBY

({Y })
contains less notifications, these notifications would never be delivered, violating
the liveness requirement.

Now, consider νBi
({Bj}). Intuitively, νBi

({Bj}) should contain at least all
notifications which the neighbor’s clients are interested in. But as the topology
is acyclic, νBi

({Bj}) must additionally contain those notifications in which the
clients that “lie behind” this neighbor are interested in. If this is not the case,
some of these clients would not receive all interesting notifications. In contrast
to νBY

({Y }), νBi
({Bj}) is allowed to contain more notifications than necessary.

This is because final filtering is achieved through νBY
({Y }). Of course, the

surplus should be as small as possible in order to limit network bandwidth waste.
Later, it is formally proved that these requirements are necessary and sufficient
in order to ensure that static notification forwarding leads to a system that is
correct with respect to Def. 2.1.

Formally, let IB be the set of all notifications that are of interest to any of
the local clients of B, i.e,

IB = ∪X∈LB
∪F∈SX

N(F ). (3.5)

Note that IB changes instantly if a client subscribes or unsubscribes. Now,
consider a broker Bi and one of its neighbors Bj . If the edge between Bi and
Bj is removed, G is partitioned into two not connected subgraphs: one that
contains Bi and the other that contains Bj . Let GBi,Bj

= (VBi,Bj
, EBi,Bj

)
be the subgraph whose node set contains Bi. In the following, the set of all
notifications that are of interest to at least one local consumer of any broker in
VBi,Bj

is denoted by

ηBi,Bj
= ∪B∈VBi,Bj

IB . (3.6)
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GBi,Bj
Bi Bj

GBj ,Bi

νBi
({Bj}) ⊇ ηBj ,Bi

Figure 3.4: Diagram explaining remote validity of valid routing configurations.

Now, valid routing configurations can be defined:

Definition 3.1 (Valid Routing Configuration) A routing configuration is
valid iff

1. e(Bi, Bj) ∈ E ⇒ νBi
({Bj}) ⊇ ηBj ,Bi

(remote validity)
2. Y ∈ LBY

⇒ νBY
({Y }) = ∪F∈SY

N(F ) (local validity)

Remote validity formalizes the requirement placed on νBi
({Bj}) above. It

requires that the remote routing configuration of a broker Bi ensures that at least
those notifications must be sent over the link from Bi to Bj which are of interest
to at least one local client of any broker in VBj ,Bi

(see Figure 3.4). Local validity
formalizes the requirement placed on νBY

({Y }) above. It demands that the local
routing configuration ensures that exactly those notifications are delivered to a
local client Y that are matched by any subscription in SY (see Figure 3.5).

A valid routing configuration is called perfect if remote validity is also sat-
isfied when replacing the superset relation by an equality. A perfect routing
configuration ensures that no notifications are forwarded unnecessarily. Hence,
they minimize network bandwidth consumption. Imperfect valid routing config-
urations, on the other hand, may lead to smaller routing tables.

It can now be proved that if a valid routing configuration is used in conjunc-
tion with the algorithm in Fig. 3.2, then the resulting publish/subscribe system
satisfies Def. 2.1. Note that the more intricate proofs given in this chapter are

νBY
({Y }) = ∪F∈SY

N(F )

YBY

Figure 3.5: Diagram explaining local validity of valid routing configurations.
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written in a structured style similar to proof trees of interactive theorem prov-
ing environments. This approach is advocated by Lamport who promises that
this style “makes it much harder to prove things that are not true” [63]. The
proof is a sequence of numbered proof steps at different levels. Every proof step
has a proof which may be refined at lower levels by additional proof steps. For
example, proof step 〈1〉2 is the second proof step on level 1. Proofs may also be
read in a structured way, for example, by reading only the top level proof steps
and going into sublevels only when necessary. In general, it should be sufficient
to read solely the proof sketches.

In the following, it is first proved that the safety requirement of Def. 2.1 is
satisfied. This is done by proving that the three conjuncts of the safety condition
in Def. 2.1 hold (Lemmas 3.1 to 3.3) resulting in Lemma 3.4. After that, the
liveness requirement of Def. 2.1 is proved by Lemma 3.5. Together this results
in Theorem 3.1 stating the correctness.

Lemma 3.1 �
[

Notify(Y, n) ⇒ d�¬Notify(Y, n)
]

.

Proof: It has to be proved that if a client is notified about n, it is never notified
about n again. Each notification n can be published only once because notifications
are unique. From the algorithm in Fig. 3.2 (notification forwarding), the fact that
G is acyclic, and because of the reliable channel assumption, we know that n can be
delivered at most once to a client.

Lemma 3.2 If the routing configuration is valid, then �
[

Notify(Y, n) ⇒ ∃F ∈

SY . n ∈ N(F )
]

holds.

Proof sketch: Here, it is proved that a valid routing configuration implies that
only matching notifications are delivered to a client. For a valid routing configuration
Y ∈ LBY

implies νBY
({Y }) = ∪F∈SY

N(F ) because of the local validity. This together
with the reliable channel assumption and the algorithm in Fig. 3.2 ensures that only
matching notification are delivered.
Assume: 1. The routing configuration is valid.

2. Notify(Y, n)
Prove: ∃F ∈ SY . n ∈ N(F )
Let: BY be the broker that manages Y .
Proof:
〈1〉1. BY has sent a notify(n) message to Y .

Proof: by assumption 2 and algorithm in Fig. 3.2 (lines 13/17).
〈1〉2. Y ∈ F L

BY
(n)

Proof: by step 〈1〉1 and algorithm in Fig. 3.2 (lines 13/17).
〈1〉3. n ∈ νBY

({Y }).
Proof: by step 〈1〉2 and definition of F L

BY
.

〈1〉4. νBY
({Y }) = ∪F∈SY

N(F )
Proof: by definition of valid routing configuration (local validity) (see Def. 3.1) and
assumption 1.

〈1〉5. Q.E.D.
Proof: Step 〈1〉3 and 〈1〉4 imply the existence of a filter F ∈ SY that matches n.

Lemma 3.3 �
[

Notify(Y, n) ⇒ ∃X. n ∈ PX

]

.
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Proof sketch: Here, it is proved that if a client is notified about n, n has been
published by some client before. This is implied by the algorithms and the reliable
channel assumption. The detailed proof argues backwards from the delivery of n to
the publication of n using an induction on the topology.
Assume: Notify(Y, n)
Prove: ∃X. n ∈ PX

Proof:
〈1〉1. BY sent notify(n) message to Y .

Proof: by assumption and system model.
〈1〉2. BY received either pub(n) or a forward (n) message.

Proof: by step 〈1〉1 and algorithm in Fig. 3.2 (lines 12/16).
〈1〉3. Case: BY received pub(n) message from client X ∈ LBY

.
〈2〉1. n ∈ PX .

Proof: by case assumption and system model.
〈2〉2. Q.E.D.

Proof: by step 〈2〉1.
〈1〉4. Case: BY received forward(n) message m from a neighbor.

〈2〉1. m must originate from some broker B.
Proof: by reliable channels, algorithm in Fig. 3.2 (lines 14/18), and an induc-
tion.

〈2〉2. B received pub(n) message from client X ∈ LB .
Proof: by step 〈2〉1, reliable channels, and algorithm in Fig. 3.2 (line 16).

〈2〉3. Q.E.D.
Proof: Step 〈2〉2 with the system model implies that n ∈ PX .

〈1〉5. Q.E.D.
Proof: by step 〈1〉2 in conjunction with 〈1〉3, and 〈1〉4 that cover all cases.

Lemma 3.4 If the routing configuration is valid, static notification forwarding
satisfies the safety requirement of Def. 2.1.

Proof: The Lemmas 3.1, 3.2, and 3.3 proved the three individual conjuncts of the
safety requirement of Def. 2.1. Hence the safety requirement holds in its entirety.

Lemma 3.5 If the routing configuration is valid, static notification forwarding
satisfies the liveness requirement of Def. 2.1.

Proof sketch: As the subscriptions are static, it suffices to show that
�
Pub(X, n) ∧

∃F ∈ SY . n ∈ N(F ) � implies � Notify(Y, n). This is proved by induction over the
topology. First, the local delivery is proved, i.e., that BY sends a notify(n) message
to Y if it receives a forward(n) or pub(n) message, and Y has a subscription that
matches n. After that, the induction step is proved. Informally, the local delivery
directly follows from the algorithm and the local validity of the routing configuration.
The remote validity, on the other hand, implies that n is forwarded to every broker B

managing a local client with a matching subscription. This is simply because remote
validity implies that a notification is forwarded over all links representing subnets
having a broker with a client with a matching subscription.
Assume: 1. Pub(X, n)

2. ∃F ∈ SY . n ∈ N(F )
3. The routing configuration is valid.
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Prove: � Notify(Y, n)
Let: BX and BY be the broker that manages X and Y respectively.
Proof:
〈1〉1. If BY receives a forward(n) or pub(n) message, it sends notify(n) to Y .

Assume: BY receives a forward (n) or pub(n) message.
Prove: BY sends a notify(n) message to Y .

〈2〉1. BY sends a notify(n) message to Y if Y ∈ F L
B (n).

Proof: by assumption and algorithm (lines 13/17).
〈2〉2. ∃F ∈ SY . n ∈ N(F ).

Proof: by assumption 2.
〈2〉3. νBY

({Y }) = ∪G∈SY
N(G).

Proof: by assumption 3.
〈2〉4. n ∈ νBY

({Y }).
Proof: by step 〈2〉2 and 〈2〉3.

〈2〉5. Y ∈ F L
B (n).

Proof: by step 〈2〉4 and definition of F L
B (n).

〈2〉6. Q.E.D.
Proof: by step 〈2〉1 and 〈2〉5.

〈1〉2. n is delivered to Y if BX = BY .
〈2〉1. BY receives pub(n) message from X

Proof: by assumption 1, the fact that BX = BY , and algorithm.
〈2〉2. Q.E.D.

Proof: by step 〈1〉1 and 〈2〉1.
〈1〉3. Let: Bk 6= BY be an arbitrary broker on the path from BX to BY and Bl be

next broker on the path from Bk to BY .
Proof: The paths are well defined and unique because of the acyclic and connected
topology induced by the graph G.

〈1〉4. Bk forwards n to Bl.
〈2〉1. BY ∈ VBl,Bk

.
Proof: by the fact that Bl is nearer to BY than Bk and the definition of VBl,Bk

.
〈2〉2. ηBl,Bk

⊇ IBY
.

Proof: by definition of ηBl,Bk
(Eq. 3.6) and step 〈2〉1.

〈2〉3. n ∈ IBY

Proof: by assumption 2 and definition of IBY
.

〈2〉4. νBk
({Bl}) ⊇ ηBl,Bk

.
Proof: by assumption 3.

〈2〉5. Q.E.D.
Proof: by step 〈2〉2, 〈2〉3, and 〈2〉4.

〈1〉5. Q.E.D.
Proof: by step 〈1〉2 (base case) and 〈1〉4 (induction step).

Theorem 3.1 If a valid routing configuration is used in conjunction with the
algorithm in Fig. 3.2 then the resulting static publish/subscribe system satisfies
Def. 2.1.

Proof: Follows from Lemmas 3.4 and 3.5.

Interestingly, it can also be proved that both properties which a valid rout-
ing configuration must satisfy are also necessary for a static publish/subscribe
system satisfying Def. 2.1.
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Lemma 3.6 Remote validity of a routing configuration is necessary for a static
publish/subscribe system using the algorithm in Fig. 3.2 to satisfy Def. 2.1.

Proof sketch: We assume that property 1 (remote validity) of a valid routing con-
figuration is violated and show that this implies that the liveness condition of Def. 2.1
does not hold. Informally, the violation of the remote validity implies that there are
notifications that are not sent over some link although there are some clients in the
receiving subset which have a subscription that matches these notifications. Hence, if
such a notification is published, it will not be delivered to the interested clients. This
implies that the liveness condition is violated.
Assume: ∃Bi, Bj with e(Bi, Bj) ∈ E for which νBi

({Bj}) ⊇ ηBj ,Bi
does not hold.

Prove: Def. 2.1 violated.
Proof:
〈1〉1. ∃n where n ∈ ηBj ,Bi

\ νBi
({Bj}).

Proof: by assumption.
〈1〉2. ∃B ∈ VBj ,Bi

. n ∈ IB.

Proof: by definition of ηBj ,Bi
(Eq. 3.6).

〈1〉3. ∃Y ∈ LB . ∃F ∈ SY . n ∈ N(F ).
Proof: by definition of IB (Eq. 3.5).

〈1〉4. Assume: n is published by a local client of Bi.
Prove: n is not delivered to Y .

〈2〉1. Bi does not forward n to Bj

Proof: by step 〈1〉1.
〈2〉2. n is not forwarded to B.

Proof: by step 〈1〉2, 〈2〉1, and the fact that the topology is acyclic, and an
induction over the topology.

〈2〉3. Q.E.D.
Proof: Step 〈2〉2 and 〈1〉3 imply that n is not delivered to Y .

〈1〉5. Q.E.D.
Proof: step 〈1〉3 and 〈1〉4 imply that the liveness property of Def. 2.1 is violated.

Lemma 3.7 Local validity of a routing configuration is necessary for a static
publish/subscribe system using the algorithm in Fig. 3.2 to satisfy Def. 2.1.

Proof sketch: We assume that property 2 (local validity) of a valid routing configu-
ration is violated and show that this implies that the safety or the liveness condition of
Def. 2.1 does not hold. The violation of the local validity implies that to some clients
either not all interesting notification are delivered (violating liveness), or that to some
clients uninteresting notifications are delivered (violating safety). This is proved by a
case differentiation.
Assume: ∃Y. νBY

({Y }) 6= ∪F∈SY
N(F ) where BY is the broker that manages Y .

Prove: Def. 2.1 violated.
Proof:
〈1〉1. Case: ∃n ∈ ∪F∈SY

N(F )) \ νBY
({Y }).

Assume: A local client of BY publishes n.
〈2〉1. n is not delivered to Y .

Proof: by reliable channel assumption and algorithm in Fig. 3.2. .
〈2〉2. Q.E.D.

Proof: step 〈2〉1 implies that the liveness requirement of Def. 2.1 is violated.
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〈1〉2. Case: ∃n ∈ νBY
({Y }) \ ∪F∈SY

N(F ).
Assume: A local client of BY publishes n.

〈2〉1. n is delivered to Y .
Proof: by reliable channel assumption and algorithm in Fig. 3.2. .

〈2〉2. Q.E.D.
Proof: step 〈2〉1 implies that the safety requirement of Def. 2.1 is violated.

〈1〉3. Q.E.D.
Proof: step 〈1〉1 and 〈1〉2 cover all cases and therefore, they imply that Def. 2.1 is
violated in any case.

Theorem 3.2 A valid routing configuration is necessary for a static publish/sub-
scribe system using the algorithm in Fig. 3.2 to satisfy Def. 2.1.

Proof: by Lemmas 3.6 and 3.7.

Corollary 3.1 A valid routing configuration is necessary and sufficient for a
static publish/subscribe system using the algorithm in Fig. 3.2 to satisfy Def. 2.1.

Proof: Proved by Theorems 3.1 and 3.2.

Corollary 3.1 shows that valid routing configurations play an important role
in static publish/subscribe systems. They are necessary and sufficient to realize
a static publish/subscribe system that is correct with respect to Def. 2.1. In
the next section, it is shown that validity is too strong a requirement in dy-
namic publish/subscribe systems. Hence, weakly valid routing configurations
are introduced.

3.3.3 Dynamic Publish/Subscribe Systems:
Weakly Valid Routing Configurations

A dynamic publish/subscribe system must deal with new subscriptions and can-
cellation of existing subscriptions; for brevity it is assumed that the broker topol-
ogy is static. It is easy to see that a routing configuration might not ensure the
delivery of all notifications that are matched by a new subscription. The formal
definition of the correctness of a publish/subscribe system (Def. 2.1) tolerates
this as long as eventually all matching notifications are delivered to the sub-
scribing client. To reensure the delivery of all interesting notifications, it might
be necessary to update the local routing configuration of the broker of the sub-
scribing client as well as the remote part of other brokers.

In contrast to a new subscription, an unsubscription does not require the
remote part of the routing configuration to be updated. Here, it is sufficient to
instantly change the local part in order to prevent the delivery of notifications
that are no longer of interest to the unsubscribing client. Nevertheless, further
handling of unsubscriptions is desirable for efficiency reasons. Without appropri-
ate processing of unsubscriptions, the set of notifications that a broker forwards
to a neighbor is monotonically increasing. In general, this results in network re-
source waste. Hence, a sensible content-based routing algorithm will continually
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update the routing configuration in reaction to subscriptions and unsubscrip-
tions of clients either to ensure the correct semantics of the publish/subscribe
system or to optimize.

Updates to the local configuration of a broker can be carried out without any
negotiation with other brokers. In contrast to that, updates to the remote con-
figurations of brokers require complex and distributed update processes. These
may be carried out periodically at certain points in time or may be triggered ape-
riodically by messages received from local clients. Also a hybrid approach can
be used in which, for example, updates caused by subscriptions are propagated
instantly and updates caused by unsubscriptions are handled periodically. This
thesis concentrates on the aperiodic case. More precisely, in the scenario that
is investigated all changes to the routing configuration are triggered by the act
of subscribing or unsubscribing. Changes to the local configuration are carried
out instantly and updates to the remote part originate from the broker that
manages the corresponding client and extend through the broker topology until
all necessary changes have been carried out.

In general, many update processes triggered by subscribing or unsubscribing
clients may be carried out concurrently. Hence, the routing configuration may
never become valid. This is the motivation to introduce the notion of weakly
valid routing configurations that impose less restrictive requirements than valid-
ity but still ensure that the publish/subscribe system is correct. Informally, a
weakly valid routing configuration only guarantees the delivery of notifications
matching a subscription whose corresponding update process has terminated.

More formally, let S̄X be the subset of all active subscriptions SX of a client
X whose update process has terminated. This means that a new subscription
is added to S̄X at the time its update process finishes, while if the subscription
is canceled, it is removed immediately. The definition of S̄X allows “weakened”
versions of IB and ηBj ,Bi

to be defined, respectively:

ĪB = ∪X∈LB
∪F∈S̄X

N(F ), (3.7)

η̄Bj ,Bi
= ∪B∈VBj ,Bi

ĪB . (3.8)

Now, weakly valid routing configurations can be introduced:

Definition 3.2 (Weakly Valid Routing Configuration) A routing config-
uration is weakly valid iff

1. e(Bi, Bj) ∈ E ⇒ νBi
({Bj}) ⊇ η̄Bj ,Bi

(weak remote validity)
2. Y ∈ LBY

⇒ νBY
({Y }) = ∪F∈SY

N(F ) (local validity)

In the definition above, remote validity has been weakened to weak remote
validity such that a broker is only required to forward those notifications to a
neighbor which are matched by a subscription whose update process has termi-
nated. Local validity remains unchanged because necessary changes to the local
part of a routing table can be carried out instantly. From the definition it is
trivial to see that every valid routing configuration is also weakly valid because
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of η̄Bj ,Bi
⊆ ηBj ,Bi

and S̄Y ⊆ SY . Moreover, a routing configuration is weakly
perfect if it also satisfies the first property if the superset relationship is replaced
by an equality. Now, it can be proved that weakly valid routing configurations
are important to ensure a correct publish/subscribe system:

Theorem 3.3 If an algorithm ensures that the routing configuration is always
weakly valid and that every update process terminates, then the resulting pub-
lish/subscribe system satisfies Def. 2.1.

Proof: We have to prove the safety and liveness condition of Def. 2.1. These follow
from Lemmas 3.4 and 3.5: As the local validity has not been changed, and changes
to the local configuration are instantly, Lemma 3.4 can be applied directly giving the
safety requirement. The remote validity, on the other hand, has been changed to
include only those subscriptions whose update process has terminated. According to
the assumption, every update process terminates. Hence, Lemma 3.5 can be applied if S

is substituted with S̄ and “valid” with “weakly valid”, giving the liveness requirement.

The theorem above shows that weakly valid routing configurations are a use-
ful concept in dynamic publish/subscribe systems: If an algorithm ensures that
the routing configuration is always weakly valid, only interesting notifications are
delivered to clients and the delivery of notifications is guaranteed after the up-
date process of the respective subscription has terminated. In the next section,
a framework for routing algorithms is introduced and it is shown which require-
ments an instance of the framework must satisfy in order to guarantee that every
update process terminates and that the routing configuration is always weakly
valid.

3.4 Routing Algorithm Framework

In the following, a framework for content-based routing algorithms is presented.
It predefines notification forwarding and allows instances of the framework to
customize the handling of control messages. After the framework has been intro-
duced, a universal correctness criterion is elaborated in Sect. 3.4.1 that allows
to determine legal instantiations of the framework leading to a correct pub-
lish/subscribe system.

The framework uses two types of messages for the communication between
brokers: forward (n) and admin(S, U) where S and U are both sets of filters whose
elements are interpreted as subscriptions and unsubscriptions, respectively. The
clients communicate with their respective broker by sub(F ), unsub(F ), and
pub(n) messages while a broker sends its local clients notify(n) messages (cf.
Sect. 2.2). Although communication between a client and its broker is con-
ceptually treated as message passing communication, it is assumed that this
communication is local and therefore, instantaneous [42]. Moreover, it is as-
sumed that messages can only be sent by the framework algorithm. The frame-
work hardwires the processing of sub, unsub, pub, and forward messages and
the generation of notify messages. The concrete routing algorithm customizes
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the handling of admin messages by implementing an instance of an administer

procedure. This allows a wide variety of routing algorithms (see Section 3.5) as
instances of the framework to be implemented.

The complete framework algorithm is depicted in Fig. 3.6. The administer

procedure is called at a broker B if an admin message from a neighbor or, if a sub
or unsub message from a local client is received. If its execution was triggered by
an admin message, it is called with the broker S from which the admin message
was received and the two filter sets S and U that were embedded in the message
as parameters (line 19). On the other hand, sub(F ) and unsub(F ) messages
received from a local client X trigger a procedure call administer(X, {F}, ∅)
(line 22) and administer(X, ∅, {F}) (line 25), respectively. The implementation
of the administer procedure can identify whether the call was triggered by
receiving a message from a local client or from a neighbor by checking if S is in
NB or in LB. As result administer returns a set of triples M. To each neighbor
except S that is represented in the set of triples, the routing framework sends
exactly one message admin(SH , UH) where SH and UH are derived from all
tuples regarding the respective neighbors (lines 28-32).

3.4.1 Legal Instances of the Framework

In principle, the framework algorithm allows an administer procedure which ex-
hibits an arbitrary behavior to be defined. In this section a precise specification
of legal implementations of an administer procedure is given. Subsequently,
legal implementations of administer together with legal initial routing config-
urations are shown to be sufficient for an instance of the framework to satisfy
Def. 2.1. Hence, the specification can be used as a universally sufficiency criterion
that allows legal implementations of the administer procedure to be determined
by verifying the properties of the specification. This way the criterion is applied
to prove the correctness of some routing algorithms in Section 3.5.

Before a definition of legal instances of the administer procedure is given, we
need some preliminary definitions. This is necessary due to the peculiarities of
the dynamic case; we need to refer to the progress of update processes to make
correctness statements. It is assumed that each update process has a unique
identifier and that the sub or unsub message that triggered an update as well as
all constituting admin messages are marked with this identifier. The identifier
of the update process of a message m is given by id (m). We use id(m) to refer
to the state of variables at the time when a message with this identifier has been
processed by the corresponding broker or, sent or received by a specific client.
For example, we denote with νid

B the state of νB directly after the processing
of a message with the identifier id . In addition to this, we use a superscript 0
to indicate the initial state of variables. For example, we denote with ν0

B the
initial state of νB . We also need a way to refer to states of variables before
the processing of a specific message. Let lidS,B(m) be the identifier of the last
admin , sub, or unsub message that S has sent to B before S sent m to B or 0
if m was the first such message that S sent to B. Furthermore, let lidB(m) be
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program ContentBasedRoutingFramework()
begin

initialize TB

loop

5 m← wait for and return next message
i f m is ”forward(n)” or ”pub(n)” message then

forwardNotification(m)
else

adminMessages(m)
10 f i

end

end

procedure adminMessages(Message m)
15 begin�

← ∅

i f m is ”admin( � , � )” message from broker U then�
← administer(U, � , � )

20 f i

i f m is ”sub (F )” message from client X then�
← administer(X, {F}, ∅)

f i

i f m is ”unsub(F )” message from client X then

25
�
← administer(X, ∅, {F})

f i

f ora l l H ∈ NB \ {S}
� A ← { � | (H, � , � ) ∈

�
}

30 � A ← { � | (H, � , � ) ∈
�
}

send message ”admin( � A, � A)” to H

end

end

Figure 3.6: Content-Based Routing Framework

the identifier of the admin message that B processes before it processes m and
0 if m is the first admin message that B processes.

Now, we are ready to define legal initial routing configurations and legal in-
stantiations of administer. First, legal initial routing configurations are defined.
They are necessary to define a meaningful initial state for a routing algorithm.
For brevity, it is assumed that the initial routing configuration does not contain
any routing entries for local clients and that S0

Y is empty for all clients Y .

Definition 3.3 (Legal Initial Routing Configurations) An initial routing
configuration is legal iff the following properties are satisfied:

1. e(Bi, Bj) ∈ E ⇒ ν0
Bi

({Bj}) ⊇ ν0
Bj

(NBj
\ {Bi})

(Legal initial remote routing configuration)

2. ν0
Bi

(LBi
) = ∅

(Legal initial local routing configuration)
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The first property states that a broker Bi should send at least those notifi-
cations over the link to Bj which Bj in turn sends to its other neighbors. This
superset relationship among paths in the broker topology ensures that every
broker can make routing decisions locally. The second property simply demands
that no local routing entries are present in the initial routing configuration.

Now, it is defined what it means for an administer procedure to be legal:

Definition 3.4 (Legal Instantiation of �
���������	��
���

) An instantiation of
administer is legal iff there exists at least one initial legal routing configu-
ration such that always if administer is called at a broker B with a message m
received from a local client or neighbor S the following properties are satisfied:

1. It returns after a finite time.

2. When it returns, the routing configuration satisfies the following properties:

(a) If S ∈ LB, then ν
id(m)
B ({S}) = ∪

F∈S
id(m)
S

N(F ).

(b) If S ∈ NB, then ν
id(m)
B ({S}) ⊇ ν

id(m)
S (LS ∪ NS \ {B}).

(c) ν
id(m)
B (LB ∪ NB \ {S}) = ν

lidB(m)
B (LB ∪ NB \ {S}).

3. The set of returned triples M contains at least triples (H, SH , UH) for all

brokers H ∈ NB \ {S} for that ν
lidB,H (m)
H ({B}) 6⊇ ν

id(m)
B ({S}).

The above definition is a complex construct that is the basis for one of the
main theorems (see Theorem 3.4). Because of this, the meaning of the defini-
tion is described in detail. It consists of three properties. Property 1 demands
administer to terminate, property 2 imposes conditions on the routing con-
figuration, and property 3 states requirements that must be met by the set of
returned triples.

But what do these properties mean informally?

• Property 1 ensures that a legal administer returns after a finite time.

• Property 2 imposes conditions on the routing configuration. The sub-
properties have the following meaning:

– Property 2a states that exactly those notifications should be delivered
to a client which it has interest in.

– Property 2b assures that the inclusions established by a legal initial
routing configuration are maintained.

– Property 2c states that a message received from a local client or neigh-
bor can only affect the part of the routing configuration dealing with
this destination.

• Property 3 ensures that a broker sends an admin message to all neigh-
bors whose remote routing configuration does not ensure that all needed
notifications are forwarded to the respective broker.
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But what are these properties good for and why are they needed?

• Property 1 together with the framework algorithm, and fact that the topol-
ogy is acyclic ensures that each update process terminates after a finite
time. Without this property the liveness condition of Def. 2.1 could be
violated.

• Without property 2a either safety (uninteresting notification may be de-
livered to a local client) or liveness may be violated (not all interesting
notifications may be delivered to a local client).

• The inclusion assured by property 2b guarantees that B forwards at least
those notifications to S which S forwards in turn to its other neighbors or
delivers to its local clients. This enables brokers to make routing decisions
locally.

• Property 2c limits the changes that can be caused by an admin message to
the part of the routing configuration regarding S. This simplifies reasoning.

• Property 3 ensures that an update process “reaches” all neighbors whose
routing table must be updated.

In the following, it is proved that if administer is legal for a given legal initial
routing configuration, a publish/subscribe system satisfying Def. 2.1 is implied.
First, it is proved that every update process terminates if administer is legal
(see Lemma 3.8). After that, it is shown that a routing configuration is always
weakly valid if administer is legal for a given legal initial routing configuration
(Lemmas 3.9, 3.10, and 3.11). Together with Theorem 3.3 this leads finally to
Theorem 3.4 giving the desired statement.

Lemma 3.8 If the administer procedure is legal, every update process termi-
nates.

Proof sketch: The framework algorithm ensures that a broker B does not pass back
an admin message to the broker from which he got the message. This together with
the fact that each update process has a unique identifier, that administer returns after
a finite time (property 1 of legal administer), and that G is acyclic implies that each
update process terminates.

Now, we prove an important inclusion among a path of brokers leading to a
subscribing client.

Lemma 3.9 If administer is legal for a given legal initial routing configuration,
for all clients Y the following property holds:

�
[

F ∈ S̄Y ∧ �¬Unsub(Y, F ) ⇒ ∀Bk 6= BY . νBk
({Bm}) ⊇ N(F )

]

where BY is the broker that manages Y and Bm is the next broker on the path
from Bk to Y .
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Proof sketch: The property states that if administer is legal for a given legal initial
routing configuration, the update process of a still active subscription F has terminated,
and it is never unsubscribed to F , then each broker Bk 6= BY forwards at least all
notifications which are matched by F to the one neighbor which is the next broker
on the unique path leading to the subscribing client. The property is shown by an
induction over the path from Bk to BY . First, the base case is proved. After that, the
induction step is shown. The induction is valid because of the acyclic topology.
Assume: 1. administer is legal for a given legal initial routing configuration.

2. F ∈ S̄Y .
3. � ¬Unsub(Y, F ).

Prove: ∀Bk 6= BY . νBk
({Bm}) ⊇ N(F ) where BY is the broker that manages Y and

Bm is the next broker on the path from Bk to Y .
Proof:
〈1〉1. Let: Bpi

, Bpi−1 , . . . , Bp1 , BY be the path from an arbitrary broker Bpi
6= BY

to BY where BY is the broker that manages Y .
Proof: The path is well-defined and unique because of the acyclic and connected
topology defined by G.

〈1〉2. Base Case: νB1 ({BY }) ⊇ N(F )
Proof sketch: We first show that the property holds at the time the update process
of F terminates. After that, it is proved that the property continues to hold forever.
〈2〉1. Y subscribed to F and sent sub(F ) message m to BY .

Proof: by algorithm.
〈2〉2. administer is called at BY triggered by m and returns.

Proof: by step 〈2〉1, algorithm, property 1 of legal administer, and reliable
channels.

〈2〉3. After administer returned, νBY
({Y }) ⊇ N(F ) holds forever.

Proof: by step 〈2〉2, property 2a, property 2c, and assumption 3.
〈2〉4. Moreover, BY either an admin message m′ with id(m′) = id(m) is sent to Bp1

or not.
Proof: by step 〈2〉2 and algorithm.

〈2〉5. Case: BY sent an admin message m′ with id(m′) = id(m) to Bp1 .
Proof:
〈3〉1. m′ triggers call of administer at Bp1 which returns after a finite time.

Proof: by property 1 of legal administer, reliable channels, and algorithm.
〈3〉2. Q.E.D.

Proof: Property 2b of legal administer implies that νB1 ({BY }) ⊇ N(F )
holds.

〈2〉6. Case: BY sent no admin message m′ with id(m′) = id(m) to Bp1 .
Proof: νB1 ({BY }) ⊇ N(F ) holds due to property 3 of legal administer.

〈2〉7. After νB1 ({BY }) ⊇ N(F ) holds, it continuous to hold forever.
Proof: by step 〈2〉5 and 〈2〉6, and property 2b and 2c.

〈2〉8. Q.E.D.
Proof: by step 〈2〉5, 〈2〉6 , and 〈2〉7.

〈1〉3. Induction Step:
Assume: for Bpi−1 and Bpi−2 holds νBpi−1

({Bpi−2}) ⊇ N(F )

Prove: for Bpi
and Bpi−1 holds νBpi

({Bpi−1}) ⊇ N(F )
Proof sketch: We first prove that the property holds at the time at which the
update process terminates in a case distinction. After that, we argue that the
property does not stop to hold after this in the final step.
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Proof:
〈2〉1. The induction assumption either holds because it was established by some

admin message m′ sent from Bpi−2 to Bpi−1 or it holds because of the initial
routing configuration.

Proof: due to property 2c of legal administer, algorithm, and reliable channel
assumption νBpi−1

({Bpi−2}) can only change if Bpi−1 receives an admin message

from Bpi−2 .
〈2〉2. Case: The induction assumption was established by an admin message m′.

〈3〉1. m′ triggers a call of administer at Bpi−1 with S = Bpi−2 .

Proof: by reliable channels and algorithm.
〈3〉2. administer returns.

Proof: by step 〈3〉1 and property 1 of legal administer,
〈3〉3. After returning, this either causes Bpi−1 to send an admin message m′′ with

id(m′′) = id(m′) to Bpi
or not.

Proof: by step 〈3〉2 and algorithm in Fig. 3.6.
〈3〉4. Case: A message m′′ with id(m′′) = id(m′) was sent by Bpi−1 to Bpi

.
〈4〉1. Bpi

received m′′ which established the desired inclusion by triggering a
call of administer.

Proof: by property 1 (termination), property 2b of legal administer, algo-
rithm, and reliable channels.

〈4〉2. Q.E.D.
Proof: step 〈4〉1 shows that the desired inclusion holds.

〈3〉5. Case: No message m′′ with id(m′′) = id(m′) was sent by Bpi−1 to Bpi
.

Proof: property 3 of legal administer implies that the inclusion holds.
〈2〉3. Case: The induction assumption holds from the legal initial routing configu-

ration.
Proof: The definition of legal initial routing configuration implies that the desired
inclusion holds.

〈2〉4. After νBpi
({Bpi−1}) ⊇ N(F ) holds, it continuous to hold forever.

Proof: Property 2b and 2c of legal administer, assumption 4, and reliable chan-
nels.

〈2〉5. Q.E.D.
Proof: by step 〈2〉1, 〈2〉2, 〈2〉2, 〈2〉3, and 〈2〉4.

〈1〉4. Q.E.D.
Proof: Step 〈1〉2 proves the base case and step 〈1〉3 the induction step. Lemma
follows from induction over acyclic topology.

Lemma 3.10 If administer is legal for a given initial routing configuration,
�

[

Y ∈ LBY
⇒ νBY

({Y }) = ∪F∈SY
N(F )

]

.

Proof sketch: Here, it is shown that the local validity always holds. This is proved by
induction. It is shown that the property is satisfied for the initial routing configuration
and then for all subsequent configurations.
Assume: 1. administer is legal for a given initial routing configuration.

2. S0
Y = ∅

Prove: �
�
Y ∈ LBY

⇒ νBY
({Y }) = ∪F∈SY

N(F ) �
Proof:
〈1〉1. ν0

BY
({Y }) = ∪F∈S0

Y
N(F )
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〈2〉1. ν0
BY

({Y }) = ∅

Proof: by assumption 1 and definition of legal initial routing configuration.
〈2〉2. ∪F∈S0

Y
N(F ) = ∅

Proof: assumption 2.
〈2〉3. Q.E.D.

Proof: by step 〈2〉1 and 〈2〉2.

〈1〉2. Assume: ν
lidY,BY

(m)

BY
({Y }) = ∪

F∈S
lidY,BY

(m)

Y

N(F )

Prove: ν
id(m)
BY

({Y }) = ∪
F∈S

id(m)
Y

N(F )

Proof:
〈2〉1. If m is received, administer is called and returns.

Proof: by property 1 of legal administer and algorithm.
〈2〉2. Q.E.D.

Proof: by step 〈2〉1 and property 2a (can be applied because of induction as-
sumption) and 2c of legal administer.

〈1〉3. Q.E.D.
Proof: by induction; step 〈1〉1 proved the base step and 〈1〉2 proved the induction
step.

Lemma 3.11 If administer is legal for a given legal initial routing configura-
tion, the routing configuration is always weakly valid.

Assume: 1. initial routing configuration is legal.
2. administer is legal.

Prove: The routing configuration is always weakly valid.
Proof sketch: It is shown that the routing configuration is always weakly valid by
proving that both local validity and weakly remote validity always hold.
Proof:
〈1〉1. �

�
e(Bi, Bj) ∈ E ⇒ νBi

({Bj}) ⊇ η̄Bj ,Bi � .
Assume: e(Bi, Bj) ∈ E

Prove: �
�
νBi

({Bj}) ⊇ η̄Bj ,Bi �
〈2〉1. �

�
F ∈ S̄Y ∧ � ¬Unsub(Y, F ) ⇒ ∀Bk 6= BY . νBk

({Bm}) ⊇ N(F ) � where BY

is the broker that manages Y and Bm is the next broker on the path from Bk

to Y .
Proof: by assumption 1 and 2, and Lemma 3.9.

〈2〉2. νBi
({Bj}) ⊇ ∪B∈VBj ,Bi

∪X∈LB
∪F∈S̄Y

N(F ).

Proof: Step 〈2〉1 holds for all subscriptions F ∈ S̄Y of all clients Y of any broker
BY which is on a path starting with Bi, Bj .

〈2〉3. η̄Bj ,Bi
= ∪B∈VBj ,Bi

∪X∈LB
∪F∈S̄Y

N(F )

Proof: by definition of η̄Bj ,Bi
(Eq. 3.8).

〈2〉4. Q.E.D.
Proof: by Step 〈2〉2 and 〈2〉3.

〈1〉2. �
�
Y ∈ LBY

⇒ νBY
({Y }) = ∪F∈SY

N(F ) � .
Proof: by Lemma 3.10.

〈1〉3. Q.E.D.
Proof: by step 〈1〉1 and 〈1〉2.

Theorem 3.4 (Correctness of legal Framework Instantiations)
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If administer is valid for a given legal initial routing configuration, the algo-
rithm in Fig. 3.6 satisfies Def. 2.1.

Proof: follows from Lemmas 3.8 and 3.11 and Theorem 3.3.

3.5 Routing Algorithms

In this section it is described how some routing algorithms can be realized with
the content-based routing framework. The algorithms and their behavior are
discussed in detail and it is argued for their correctness by giving proofs. Each
algorithm is defined by an instantiation of the administer procedure. So only
the correctness criterion given in Def. 3.4 needs to be checked. All presented al-
gorithms except flooding ensure that the routing configuration is always weakly
perfect. Such routing algorithms are called perfect because they minimize un-
necessary forwarding of notifications.

3.5.1 Flooding

Set procedure administer(Sender S, Set � , Set � )
begin

TB ← TB ∪ {(F, S) | F ∈ � }
TB ← TB \ {(G, S) | G ∈ � }

5 return ∅
end

Figure 3.7: Flooding-Based Routing

In the following, flooding is described as an instance of the routing framework
and the correctness of flooding is proved. With flooding, the routing table
of each broker B is initialized to the constant set {(FT , U) | U ∈ NB} with
FT (n) = true at system startup. As N(FT ) = N this routing configuration
implies that F N

B (n) = NB . Hence, a broker will forward a notification received
from a local client to all neighbors and a notification received from a neighbor to
all other neighbors. This routing strategy is called flooding (see Fig. 3.7) because
it implies that any published notification is processed by every broker. As the
topology is acyclic and as no messages are duplicated, flooding also ensures that
every notification is processed at most once by every broker. Flooding is the only
routing strategy that does not require the remote routing configuration to be
updated. Therefore, no admin messages are exchanged. After the initialization,
each broker solely adds and deletes routing entries regarding its local clients as
they subscribe and unsubscribe:

• If a client X subscribes to a filter F , the corresponding broker adds (F, X)
to its routing table.



3.5. ROUTING ALGORITHMS 45

• If a client X unsubscribes to a filter F , the corresponding broker deletes
(F, X) from its routing table.

Correctness Proof. Now, the correctness of flooding is proved. First, it is
shown that the initial routing configuration is legal (see Lemma 3.12). After
that, it is proved that the administer procedure depicted in Fig. 3.7 is legal
(see Lemma 3.13). Together with the correctness of the framework this implies
the correctness of flooding (see Theorem 3.5).

Lemma 3.12 If the routing table of every broker B is initialized to {(FT , U) |
U ∈ NB}, the initial routing configuration is legal.

Proof sketch: It has to be shown that both properties, a legal initial routing config-
uration has to fulfill, are satisfied. First, we show that the initial remote configuration
is legal. After that, we show that the initial local configuration is legal. The proof
follows almost directly from the assumptions.
Assume: For all B ∈ V , TB is initialized to {(FT , U) | U ∈ NB}.
Prove: 1. e(Bi, Bj) ∈ E ⇒ ν0

Bi
({Bj}) ⊇ ν0

Bj
(NBj

\ {Bi})

2. ν0
Bi

(LBi
) = ∅

Proof:
〈1〉1. e(Bi, Bj) ∈ E ⇒ ν0

Bi
({Bj}) ⊇ ν0

Bj
(NBj

\ {Bi})
Assume: e(Bi, Bj) ∈ E

Prove: ν0
Bi

({Bj}) ⊇ ν0
Bj

(NBj
\ {Bi})

〈2〉1. ν0
Bi

(Bj) = �
Proof: by Lemma assumption and assumption of step 〈1〉1.

〈2〉2. ν0
Bj

(NBj
\ {Bi}) = �

Proof: by Lemma assumption and assumption of step 〈1〉1.
〈2〉3. Q.E.D.

Proof: by step 〈2〉1, 〈2〉2, and lemma assumption.
〈1〉2. ν0

Bi
(LBi

) = ∅

Proof: follows directly from Lemma assumption.
〈1〉3. Q.E.D.

Proof: by Step 〈1〉1 and 〈1〉2.

After we have shown that the initial routing configuration of flooding is legal,
it is now proved that the administer procedure shown in Figure 3.7 is legal for
this initial configuration.

Lemma 3.13 The administer procedure shown in Figure 3.7 (flooding) is legal
for the legal initial routing configuration of Lemma 3.12.

Proof sketch: We prove that the administer procedure shown in Figure 3.7 is legal
by showing that the properties 1 to 3 of Def. 3.4 are satisfied.
Proof:
〈1〉1. Property 1 is satisfied.

Proof: The procedure returns immediately.
〈1〉2. Property 2 is satisfied.

〈2〉1. Property 2a is satisfied.
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Proof sketch: Shown by a simple induction. After initialization, no local rout-
ing entries are present in a routing table. Hence, the equality holds. If a client
subscribes a routing entry is added. If a client unsubscribes, the corresponding
routing entry is removed. In both cases, the equality holds. Moreover, the lo-
cal routing entries of a client can only be affected by this client subscribing or
unsubscribing. This implies that always exactly the matching notifications are
delivered.
Proof: Implied by the algorithms in Fig. 3.6, Fig. 3.7, and a simple induction.

〈2〉2. Property 2b is satisfied.
Proof: As administer always returns ∅, no broker can ever receive an admin
message. Therefore, administer cannot be called with S ∈ NBi

and property 2b
is satisfied.

〈2〉3. Property 2c is satisfied.
Proof: The algorithms in Fig. 3.6 (framework) and Fig. 3.7 (flooding) imply
that the routing entries regarding a destination can only be affected by a message
received from this destination (see Fig. 3.7, lines 3/4).

〈2〉4. Q.E.D.
Proof: by step 〈2〉1, 〈2〉2, and 〈2〉3.

〈1〉3. Property 3 is satisfied.
Proof sketch: As administer never returns any triple (see Fig. 3.7, line 5), we

have to prove that ν
lidB,H(m)

H ({B}) ⊇ ν
id(m)
B ({S}) holds.

Let: H ∈ NB \ {S}

Prove: ν
lidB,H(m)

H ({B}) ⊇ ν
id(m)
B ({S})

〈2〉1. ν
lidB,H(m)

H ({B}) = � .
Proof: follows from property 2c proved in step 〈1〉2, that administer cannot be
called with S ∈ NBi

, and assumption of step 〈1〉3.

〈2〉2. ν
id(m)
B ({S}) ⊆ �

Proof: by definition of ν (Eq. 3.1).
〈2〉3. Q.E.D.

Proof: by step 〈2〉1 and 〈2〉2.
〈1〉4. Q.E.D.

Proof: by step 〈1〉1, 〈1〉2, and 〈1〉3.

Theorem 3.5 (Correctness of Flooding) The routing framework (see Fig-
ure 3.6) with the implementation of administer shown in Fig. 3.7 (flooding)
and the legal initial routing configuration of Lemma 3.12 satisfies Def. 2.1.

Proof: follows from Lemmas 3.12, 3.13, and Theorem 3.4.

Flooding is probably the simplest way to implement a distributed pub-
lish/subscribe system. It is also well suited to systems in which subscriptions are
changing at a very high rate because routing tables do not need to be updated.
The main drawback of flooding is that a lot of notifications may be forwarded
unnecessarily because a notification is sent to every broker regardless of whether
or not it has a local client with a matching subscription. This leads to the idea
of filter-based routing algorithms.
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3.5.2 Simple Filter-Based Routing

In this section simple filter-based routing is described. This routing strategy
uses filter forwarding to update the routing configuration in reaction to sub-
scribing and unsubscribing clients: new and canceled subscriptions are simply
flooded into the broker network such that they reach every broker. This allows
the brokers to update their routing tables accordingly. The only assumption
that underlies simple routing is that each filter can be uniquely identified. The
algorithm works as follows:

• Initially, the routing table TB of each broker B is initialized to ∅.

• If a client X subscribes to a filter F , the corresponding broker adds (F, X)
to its routing table and sends an admin({F}, ∅) message to all neighbors
(see Fig. 3.9).

• If a client X unsubscribes to a filter F , the broker removes (F, X) from its
routing table and sends an admin(∅, {F}) message to all neighbors.

• If a broker receives an admin({F}, ∅) message from a neighbor U , it adds
an entry (F, U) to its routing table (see Fig. 3.9). Moreover, the broker
forwards the received admin message to all of its neighbors except U .

• If a broker receives an admin(∅, {F}) message from a neighbor U , it ex-
tracts the entry (F, U) from its routing table. Moreover, the broker for-
wards the received admin message to all of its neighbors except U .

This strategy is simple but it implies that every broker has to handle a new
or canceled subscription. Moreover, the algorithm requires that every broker
has global knowledge about all active subscriptions because any routing table
contains a routing entry for every active subscription. The corresponding in-
stantiation of the administer procedure is shown in Figure 3.8.

Set procedure administer(Sender S, Set � , Set � )
begin

TB ← TB ∪ {(F, S) | F ∈ � }
TB ← TB \ {(G, S) | G ∈ � }

5
�
← {(H, � , � ) | H ∈ NB \ {S}}

return
�

end

Figure 3.8: Simple Filter-Based Routing

Correctness Proof. Following, the correctness of simple routing is proved
(Theorem 3.6) by showing that the initial routing configuration is valid (Lemma
3.14) and that the instantiation of administer (Lemma 3.18) is legal for that
initial routing configuration. This proves the correctness of simple routing (see
Theorem 3.6).
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Routing Table TB1

5. admin({F}, ∅)

5. admin({F}, ∅)

2. . . .
(F,X1)

B1X1

4.. . .
(F,B1)

4.. . .
(F,B1)

B2

B4

B5

B3

3. admin({F}, ∅)

1. sub(F)

3. ad
min(

{F
}, ∅

)

Figure 3.9: Diagram explaining simple routing (new subscription).

Lemma 3.14 (Legal Empty Routing Configuration) If for each broker Bi

the routing table TBi
is initialized to ∅, the initial routing configuration is legal.

Proof sketch: Here, it is simply shown that both requirements of legal initial routing
configurations are met. First, it is shown that the remote initial routing configuration
is legal. After that, it is proved that the local initial routing configuration is legal.
Assume: TBi

is initialized to ∅
Prove: 1. e(Bi, Bj) ∈ E ⇒ ν0

Bi
({Bj}) ⊇ ν0

Bj
(NBj

\ {Bi})

2. ν0
Bi

(LBi
) = ∅

Proof:
〈1〉1. e(Bi, Bj) ∈ E ⇒ ν0

Bi
({Bj}) ⊇ ν0

Bj
(NBj

\ {Bi})
Assume: e(Bi, Bj) ∈ E

Prove: ν0
Bi

({Bj}) ⊇ ν0
Bj

(NBj
\ {Bi})

〈2〉1. ν0
Bi

({Bj}) = ∅

Proof: Implied by Lemma assumption and assumption of step 〈1〉1.
〈2〉2. ν0

Bj
(NBj

\ {Bi}) = ∅

Proof: Implied by Lemma assumption and assumption of step 〈1〉1.
〈2〉3. Q.E.D.

Proof: by step 〈2〉1,〈2〉2, and assumption of step 〈1〉1.
〈1〉2. ν0

Bi
(LBi

) = ∅

Proof: follows directly from Lemma assumption.
〈1〉3. Q.E.D.

Proof: by step 〈1〉1 and 〈1〉2.

After we have proved that the empty initial routing configuration is legal,
it is shown that simple routing is legal for this initial configuration. Before
we prove this property we need some preparation. Let QE

B(D) (E stands for
“except”) be the set of all filters of all routing entries in the routing table of a
broker B except those regarding destination D. Moreover, let QO

B(D) (O stands
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for “only”) be the set of all filters of all routing entries in the routing table of a
broker B regarding destination D:

QE
B(D) = {F | ∃(F, D′) ∈ TB ∧ D′ 6= D} (3.9)

QO
B(D) = {F | ∃(F, D) ∈ TB} (3.10)

Now consider for a broker B and one of its neighbors H the following sets:

α = QE
B(H) (3.11)

β = QO
H(B) (3.12)

The sets α and β are those routing entries that determine νB(LB ∪ NB \ {H})
and νH({B}), respectively. More precisely, the definition of ν (Eq. 3.1) implies
that νB(LB ∪ NB \ {H}) = ∪F∈αN(F ) and νH({B}) = ∪F∈βN(F ).

Lemma 3.15 If α = β, then νH({B}) = νB(LB ∪ NB \ {H}).

Proof: The property follows directly from the Definitions of α (Eq. 3.11), β (Eq. 3.12),
and ν (Eq. 3.1).

The above Lemma states that if α and β contain the same filters, then H
forwards exactly those notifications to B that B forwards in turn to all other
destinations. This situation is depicted in Fig. 3.10. Simple routing ensures that
this property holds among corresponding versions of α and β.

β = QO
H(B)

α = QE
B(H)

=

Filter

Figure 3.10: Relation among α and β for simple routing.

The following Lemma proves that B sends an admin message to H if α
changes.

Lemma 3.16 If simple routing is used and α changes, then B sends an admin
message to H.

Proof: From the framework algorithm (see Fig. 3.6) and the algorithm in Fig. 3.8
(simple routing) we know that α can only change, if B receives a sub or unsub message
from a local client or an admin message from a neighbor except H. In all these cases,
administer is called and a triple is returned for H (see Fig. 3.8, line 5). According to
the framework this implies that an admin message is sent to H.
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Lemma 3.17 If simple routing with the empty legal initial routing configuration
is used, the following property holds: If H receives an admin message m from

B, then αid(m) = βid(m).

Proof sketch: The Lemma is proved by an induction. First, it is shown that the
property holds for the first admin message that H receives from B. Here, the fact that
the property holds initially due to the legal initial routing configuration is used. After
that, the induction step is shown that uses Lemma 3.16.

Now, we are prepared to show that simple routing is legal for the empty
initial routing configuration.

Lemma 3.18 The administer procedure shown in Fig. 3.8 (simple routing ) is
legal for the legal empty initial routing configuration.

Proof sketch: We prove that the administer procedure shown in Fig. 3.8 (simple
routing) is legal by showing that the properties 1 to 3 of Def. 3.4 are satisfied.
Proof:
〈1〉1. Property 1 is satisfied.

Proof: It is easy to see that the procedure returns.
〈1〉2. Property 2 is satisfied.

〈2〉1. Property 2a is satisfied.
Proof: As unsub and sub messages are handled in the same way, the same proof
as in Lemma 3.13 holds.

〈2〉2. Property 2b is satisfied.
Assume: S ∈ NB

Prove: ν
id(m)
B ({S}) ⊇ ν

id(m)
S (LS ∪ NS \ {B})

Proof: by Lemmas 3.15 and 3.17.
〈2〉3. Property 2c is satisfied.

Proof: The algorithms in Fig. 3.6 (framework) and Fig. 3.8 (simple routing)
imply that the routing entries regarding a destination can only be affected by a
message received from this destination (see Fig. 3.8, lines 3/4).

〈2〉4. Q.E.D.
Proof: by 〈2〉1, 〈2〉2, and 〈2〉3.

〈1〉3. Property 3 is satisfied.
〈2〉1. Q.E.D.

Proof: Properties 3 is satisfied because administer shown in Fig. 3.8 (simple
routing) returns exactly one triple for each neighbor except S (see Fig. 3.8, line
5).

〈1〉4. Q.E.D.
Proof: by 〈1〉1, 〈1〉2, and 〈1〉3.

Theorem 3.6 (Correctness of Simple Filter-Based Routing) The routing
framework with administer shown in Fig. 3.8 (simple routing) and the empty
legal initial routing configuration satisfy Def. 2.1.

Proof: by Lemmas 3.14, 3.18, and Theorem 3.4.
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3.5.3 Routing based on Filter Identity

The simple filter-based routing algorithm described in the last section enforces
that every broker has knowledge about all active subscriptions. Therefore, the
size of each routing table grows linearly with the number of active subscrip-
tions. In the next subsections, routing algorithms are presented that avoid global
knowledge by taking into account similarities among the subscriptions. These
algorithms are based on the following idea: The set of notifications that a broker
Bi forwards to a broker Bj , i.e., νBi

{Bj}, is the set of all notifications that are
matched by any routing entry (F, Bj) in TBi

. In general, a subset of these rout-
ing entries might be sufficient. For example, there can be two routing entries
(F, Bj) and (G, Bj) with N(F ) = N(G). Clearly, one of these entries is suffi-
cient as both have identical sets of matching notifications. This fact is used by
the identity-based routing algorithm to systematically avoid redundant routing
entries and unnecessary forwarding of subscriptions and unsubscriptions.

Basic Idea of Identity-Based Routing. Roughly speaking, the basic idea
of identity-routing is the following:

• A subscription is not forwarded to a neighbor if an identical subscription
that has not been canceled was forwarded to that neighbor.

• An unsubscription is not forwarded to a neighbor if there is another sub-
scription of a local client or another neighbor that is identical to the former.

Basic Definitions. Before identity-based routing is described in more detail,
some basic definitions are needed. Formally, two filters F and G are identical,
denoted by F ≡ G, if N(F ) = N(G). We denote the set of all routing entries
in a routing table of a broker B whose filter is identical to a given filter F and
whose destination equals a given destination D with CI

B(F, D) (the I stands
for “identity”). Moreover, we denote with DI

B(F ) the set of all neighbors H
for which no routing entry (G, D) in the routing table of B exists where G is
identical to F and D is distinct from H :

CI
B(F, D) = {(G, D) | (G, D) ∈ TB ∧ F ≡ G}, (3.13)

DI
B(F ) = {H ∈ NB | @G ∈ QE

B(H). F ≡ G}. (3.14)

Now, the processing of subscriptions and unsubscriptions can be described
in more detail.

Processing of Subscriptions and Unsubscriptions. If a broker B receives
a subscription or unsubscription F from a neighbor or a local client S, it does
the following:

• First, B updates its routing table:
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– If S is a neighbor, B removes all routing entries whose filter is identical
to F and that refer to the destination S, i.e., CI

B(F, S).

– If S is a local client, B removes solely (F, S). This is to ensure the
disjunctive interpretation of multiple active subscriptions of a client
(cf. Sect. 2.2) and idempotent resubscriptions (cf. Sect. 3.7).

• After that, B forwards F to all neighbors which are in DI
B(F ) except S.

• Finally, if F is a subscription, B inserts a routing entry (F, S) into its
routing table.

Examples. In Figure 3.11, broker B1 receives a new subscription F from a
neighbor S. B1 inserts (F, S) into its routing table and forwards F to its neigh-
bors B2 and B3 because they are both in DI

B(F ) \ {S}.
In the second example (see Fig. 3.12), broker B1 receives a new subscription

F from a local client S. Here, B1 also inserts (F, S) into its routing table but
forwards F only to its neighbor B3 which is the only neighbor in DI

B(F ) \ {S}.
B2 is not in that set due to the routing entry (F ′, B3) where F ′ ≡ F .

S

1. admin({F}, ∅) 3.
ad

m
in

({
F
},
∅)

B2

DI
B(F ) \ {S} = {B2, B3}

B1

3. admin({F}, ∅)

2.

B3

(F, S)

Figure 3.11: Processing a new subscription from a neighbor.

Messages regarding Subscriptions and Unsubscriptions. With identity-
based routing, a broker has to handle four types of messages regarding subscrip-
tions and unsubscriptions:

• sub(F ): a subscription received from a local client.

• unsub(F ): an unsubscription received from a local client.

• admin({F}, ∅): a new subscription received from a neighbor.
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F ′ ≡ F

DI
B(F ) \ {S} = {B3}

B1

B2

3. admin({F}, ∅)

B3S

(F, S)

(F ′, B3)
2.

1. sub(F)

Figure 3.12: Processing a new subscription from a local client.

• admin(∅, {F}): an unsubscription received from a neighbor.

These messages are converted into appropriate calls of administer according to
the framework.

Instantiation of �
��������� � 
���

. The complete code of the identity-based ver-
sion of administer is shown in Fig. 3.13. The procedure uses a helper procedure
generate (see Fig. 3.14) which takes as arguments two sets of tuples SS and SU

which are routing entries. Each entry (F, U) in SS is interpreted as a subscrip-
tion F that should be sent to U . Similar, each entry (F, U) in SU is interpreted
as an unsubscription F that should be sent to U . From these two sets the proce-
dure generates a set of triples which contains exactly one triple for each broker
to which a filter should be forwarded. In particular, each triple (H, SH , UH)
contains all the subscriptions SH and unsubscriptions UH that should be sent
to H .

Correctness Proof. In the following, the correctness of identity-based routing
is proved. It is shown that the administer procedure shown in Fig. 3.13 is legal
for the empty legal initial routing configuration. This directly gives Theorem 3.7.

Again, consider α = QE
B(H) (see Eq. 3.9) and β = QO

H(B) (see Eq. 3.10).

Lemma 3.19 If for each filter F in α there is a filter G in β such that G ≡ F ,
then νH({B}) ⊇ νB(LB ∪ NB \ {H}).

Proof: by definitions of α (Eq. 3.11), β (Eq. 3.12), and ν (Eq. 3.1).

The above Lemma states that if for each filter in α there is a filter β that is
identical, then H forwards at least those notifications to B that B forwards in
turn to all other destinations.
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Set procedure administer(Sender S, Set � , Set � )
begin

FS ← ∅
FU ← ∅

5

// handle subscriptions and unsubscriptions
f ora l l F ∈ � ∪ � do

i f S ∈ NB then

TB ← TB \ CI
B

(F,S)
10 else

TB ← TB \ {(F, S)}
f i

A← {(F, H) | H ∈ DI
B(F ) \ {S}}

15 i f F ∈ � then

FU ← FU ∪ A

else

FS ← FS ∪A

TB ← TB ∪ {(F,S)}
20 f i

end

// generate triples
M ← generate(FS , FU)

25 return
�

end

Figure 3.13: Routing based on Filter Identity

Lemma 3.20 If for each filter G in β there is a filter F in α such that G ≡ F ,
then νH({B}) ⊆ νB(LB ∪ NB \ {H}).

Proof: by definitions of α (Eq. 3.11), β (Eq. 3.12), and ν (Eq. 3.1).

The above Lemma states that if for each filter in β there is a filter in α that
is identical, then H forwards at most those notifications to B that B forwards in
turn to all other destinations. This implies that if the conditions of Lemmas 3.19
and 3.20 are satisfied, then νH({B}) = νB(LB ∪NB \{H}) holds. This situation
is depicted in Fig. 3.15. α and β are denoted identity-equivalent if (a) for each
filter in α there is a filter in β that is identical and if (b) for each filter in β
there is a filter in α that is identical. Identity-based routing ensures that this
property holds among corresponding versions of α and β.

Lemma 3.21 If identity-based routing is used with the empty legal initial routing
configuration the following properties hold:

1. If administer is called at a broker B triggered by a message m received

from a neighbor or local client S and αid(m) is not identity-equivalent to

βlidB,H (m) for a neighbor H 6= S, then a triple for H is returned.

2. If a triple was returned for a neighbor H, H receives an admin message
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Set procedure generate(Set � S , Set � U )
begin�

← ∅
f ora l l H ∈ NB do

5
�

S ← {F | (F, H) ∈ � S}�
U ← {F | (F,H) ∈ � U}

i f (
�

S 6= ∅ ∨
�

U 6= ∅) then�
←

�
∪ {(H,

�
S ,

�
U )}

f i

10 end

return
�

end

Figure 3.14: Procedure generate

Filter

≡

α = QE
B(H)

β = QO
H(B)

Figure 3.15: Relation among α and β for identity-based routing.

m′ with id(m′) = id(m) from B, administer is called at H triggered by

m′, and αid(m) is identity-equivalent to βid(m).

Proof sketch: The Lemma is proved by an induction. First, the base case is proved.
Here, it is shown that the properties hold with respect to the first time administer is
called at B. This is done in a case distinction that uses the fact that α0 and β0 are both
initially empty. After that, the induction step is shown. The induction assumption

is that αlidB(m) is identity-equivalent to βlidB,H(m). The properties are proved in a
tedious case distinction.

Now, we are prepared to show that identity-based routing is legal for the
empty initial routing configuration.

Lemma 3.22 The administer procedure shown in Fig. 3.13 (identity-based
routing) is legal for the legal empty initial routing configuration.

Proof sketch: We prove that the administer procedure shown in Fig. 3.13 is legal
by showing that the properties 1 to 3 of Def. 3.4 are satisfied.
Proof:
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〈1〉1. Property 1 is satisfied.
Prove: administer returns.

Proof: It is easy to see that the procedure returns.
〈1〉2. Property 2 is satisfied.

〈2〉1. Property 2a is satisfied.
Proof: As unsub and sub messages are handled in the same way, the same proof
as in Lemma 3.13 holds.

〈2〉2. Property 2b is satisfied.
Assume: S ∈ NB

Prove: ν
id(m)
B ({S}) ⊇ ν

id(m)
S (LS ∪ NS \ {B})

Proof: by Lemmas 3.19 and 3.21.
〈2〉3. Property 2c is satisfied.

Prove: ν
id(m)
B (LB ∪ NB \ {S}) = ν

lidB(m)
B (LB ∪ NB \ {S})

Proof: follows from algorithm in Fig. 3.13.
〈2〉4. Q.E.D.

Proof: follows from step 〈2〉1, 〈2〉2, and 〈2〉3.
〈1〉3. Property 3 is satisfied.

Assume: ν
lidB,H(m)

H ({B}) 6⊇ ν
id(m)
B ({S})

Prove: ∃(H, � H , � H) ∈ �
Proof: by Lemmas 3.19 and 3.21.

〈1〉4. Q.E.D.
Proof: follows from step 〈1〉1, 〈1〉2, and 〈1〉3.

Theorem 3.7 (Correctness of Routing based on Filter Identity) The
framework with the administer implementation shown in Figure 3.13 (identity-
based routing) and the empty initial routing configuration satisfy Def. 2.1.

Proof: by Lemmas 3.14, 3.22, and Theorem 3.4.

3.5.4 Routing based on Filter Covering

After discussing identity-based routing, an obvious idea is to exploit more com-
plex similarities among subscriptions. The next step is to take advantage of
covering among filters, a concept that was first mentioned in the area of noti-
fication services by Carzaniga [17]. A filter covers another filter if the former
matches all notifications the latter matches. Therefore, a routing entry (F, U)
is obsolete if there exists a routing entry (G, U) where G covers F . This fact is
used by the covering-based routing algorithm to systematically avoid redundant
routing entries and unnecessary forwarding of subscriptions and unsubscriptions.

Basic Idea of Covering-Based Routing. Roughly speaking, the basic idea
of covering-based routing is the following:

• A subscription is not forwarded to a neighbor if a subscription that covers
the former was forwarded to that neighbor that has not been canceled.

• If a subscription is forwarded, the receiving broker deletes all routing en-
tries whose filters are covered by the new subscription and that refer to
the same destination in order to get rid of the obsolete routing entries.
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• An unsubscription is not forwarded to a neighbor if there is a subscription
of a local client or another neighbor that covers the former.

• If an unsubscription is forwarded to a neighbor, the sending broker also for-
wards a possibly empty subset of uncovered subscriptions. This is done to
ensure the delivery of notifications that match these existing subscriptions.

The algorithm presented in the following either processes a single subscription or
a single unsubscription that comes along with a set of uncovered subscriptions.
Before these steps are described in detail, some basic definitions are needed.

Basic Definitions. Formally, a filter F covers a filter G, denoted by F w G
iff N(F ) ⊇ N(G). The pair (F,w) defines a reflexive partial order over the set
of all filters F. If F w G then n ∈ N(G) implies n ∈ N(F ). F is a real cover of
G, denoted by F A G, iff N(F ) ⊃ N(G).

We define the set CL
B(F ) (the L stands for “lower”) that comprise the set

of all routing entries in the routing table of a broker B that are covered by a
given filter F . We also define CL

B(F, D) as the restriction of CL
B(F ) to a given

destination D. Additionally, we denote with DU
B(F ) (the U stands for “upper”)

as the set of all neighbors H for which no routing entry (G, D) in the routing
table of B exists where G covers F and D is distinct from H . With DRU

B (F )
(the RU stands for “real upper”) the set of all neighbors H for which no routing
entry (G, D) in the routing table of B exists where G is a real cover of F and D
is distinct from H :

CL
B(F ) = {(G, U) | (G, U) ∈ TB ∧ F w G} (3.15)

CL
B(F, D) = {(G, D) | (G, D) ∈ CL

B(F )} (3.16)

DU
B(F ) = {H ∈ NB | @G ∈ QE

B(H). G w F} (3.17)

DRU
B (F ) = {H ∈ NB | @G ∈ QE

B(H). G A F} (3.18)

Processing of a Subscription. If a broker B receives a new subscription F
from a neighbor or a local client S, it does the following:

• First, B updates its routing table:

– If S is a neighbor, B removes all entries whose filters are covered by
F that refer to S, i.e., CL

B(F, S), to get rid of the obsolete routing
entries. This is also done to ensure idempotent resubscriptions (cf.
Sect. 3.7).

– If S is a local client, B removes solely (F, S). This is to ensure the
disjunctive interpretation of multiple active subscriptions of a client
(cf. Sect. 2.2) and idempotent resubscriptions (cf. Sect. 3.7).

• Next, B forwards F to all neighbors which are in DU
B(F ) except S.

• Finally, B inserts (F, S) into its routing table.
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Processing of an Unsubscription. An unsubscription F is first received
by a broker from a local client as unsub(F ) message. The fact that com-
plicates covering-based routing is that simply to forward an unsubscription
to some neighbors is not sufficient. Instead, to each neighbor to which F is
forwarded also a possibly empty subset of filters which are really covered by
F has to be forwarded. This is done to ensure the delivery of notifications
that match these existing subscriptions which are called uncovered in the fol-
lowing. Hence, an unsubscription F that is received from a neighbor comes
along with a possibly empty set of uncovered subscriptions {F1, . . . Fn} (where
∀i.F A Fi ∧ (∀i, j.i 6= j ⇒ Fi 6w Fj)) and may newly uncover subscriptions at the
receiving broker. It is important that the unsubscription and the corresponding
uncovered subscriptions are forwarded in a single message in order to guarantee
that the change to the routing table of the receiving broker is atomic. Otherwise,
in the intermediate time between the cancellation of the unsubscription and the
time at which the uncovered subscriptions become effective, notifications may
be lost.

Now, the processing of the unsubscription is described in detail. If a broker
B receives an unsubscription F from a neighbor or a local client S it does the
following:

• First, B updates its routing table:

– If S is a neighbor, B removes all routing entries whose filter is covered
by F and that refer to the destination S, i.e, CL

B(F, S).

– If S is a local client, B removes solely (F, S). This is to ensure the
disjunctive interpretation of multiple active subscriptions of a client
(cf. Sect. 2.2) and idempotent resubscriptions (cf. Sect. 3.7).

• Next, B forwards F to all neighbors which are in DU
B(F ) except S.

• Finally, the newly uncovered subscriptions, i.e., all filters in CL
B(F )\CI

B(F ),
are added into the set P which serves as a temporary storage.

Processing of newly uncovered Subscriptions. The uncovered subscrip-
tions are processed in the following way:

• First, the uncovered subscription that came along with the subscription
are added to P and inserted into the routing table.

• Second, for each entry (F, U) ∈ P representing an uncovered subscription
F regarding destination U , B does the following:

– B determines the number of destinations k in P with subscriptions
identical to F , i.e., k = #{H | (G, H) ∈ P ∧ G ≡ F}.

– (F, U) and all entries with identical filters are removed from P .

– Next, B forwards F to all neighbors which are in DRU
B (F ) except S,

and except U if k = 1. Note that the value of k has no effect if S = U .
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Messages regarding Subscriptions and Unsubscriptions. With cover-
ing-based routing a broker has to handle four types of messages regarding sub-
scriptions and unsubscriptions:

• sub(F ): a subscription received from a local client.

• unsub(F ): an unsubscription received from a local client.

• admin({F}, ∅): a new subscription received from a neighbor.

• admin({F1, . . . , Fn}, {F}) where ∀i. F A Fi and (∀i, j. (i 6= j ⇒ Fi 6w Fj)):
an unsubscription with uncovered subscriptions received from a neighbor.

These messages are converted into appropriate calls of administer according
to the framework.

Examples. In Figure 3.16, B1 receives a new subscription F from a local client
S. Therefore, B1 adds (F, S) to its routing table. Moreover, B1 forwards F only
to its neighbor B3 because B3 is the only neighbor in DU

B(F ) \ {S}. B2 is not
in this set because of the routing entry (G, B3) where G w F .

In the second example (see Fig. 3.17), B1 receives a subscription F from a
neighbor S. B1 removes the entry (G, S) from its routing table because the entry
is in CL

B(F, S). Moreover, B1 inserts (F, S) into its routing table. Finally, B1

forwards F to its neighbors B2 and B3 because they are both in DU
B(F ) \ {S}.

In Figure 3.18, broker B1 receives an unsubscription F from a neighbor S.
Hence, B1 removes (F, S). Furthermore, B1 forwards the unsubscription to its
neighbors B2 and B3 as both are in DU

B(F ) \ {S}.
In the next example, (see Fig. 3.19), B1 receives an unsubscription F from

a local client S. Hence, B1 removes (F, S). In this case, B1 forwards the unsub-
scription only to B3 because it is the only broker in DU

B(F ) \ {S}. B2 is not in
this set because of the routing entry (G, B3) where G w F .

In Figure 3.20, broker B1 receives an unsubscription F from a local client
S. Hence, it removes (F, S) from its routing table. In this example the unsub-
scription F uncovers a subscription G. While the subscription F is forwarded
to B2 and B3, the uncovered subscription G is solely forwarded to B3. G is not
forwarded to B2 although it is in DRU

B (G) \ {S} because k = 1.
In the last example (see Fig. 3.21), broker B1 receives an unsubscription F

that comes along with an uncovered subscription G′. Moreover, in the routing
table of B1 there is an entry (G, S) where G ≡ G′. Here, B1 removes (F, S)
from and inserts (G′, S) into its routing table. The unsubscription F and the
uncovered subscription G are sent to B2 and B3. G is forwarded to B2 and B3

because they are both in DRU
B (G) \ {S} and additionally k = 2 holds.

Instantiation of �
����� ���	� 
� �

. The complete algorithm is shown in Fig. 3.22.
The algorithm consists of two main parts (1) the processing of a subscription
(lines 9-19) and (2) the processing of an unsubscription that comes along with



60 CHAPTER 3. CONTENT-BASED ROUTING

G w F

DU
B(F ) \ {S} = {B3}

(G, B3)

S B1
B3

(F, S)2.

3. admin({F}, ∅)1. sub(F)

B2

Figure 3.16: Processing of a new subscription from a local client.

F w G

3. admin({F}, ∅)

(F, S)

S

2.

1. admin({F}, ∅)

B2

3.
ad

m
in

({
F
},
∅)

(G, S)

DU
B(F ) \ {S} = {B2, B3}

CL
B(F, S) = {(G, S)}

B1 B3

Figure 3.17: Processing of a new subscription from a neighbor.
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DU
B(F ) \ {S} = {B2, B3}

1. admin(∅, {F})

S
3.

ad
m

im
(∅

,{
F
})

2. (F, S)

B2

B1 B3

3. admin(∅, {F})

Figure 3.18: Processing of an unsubscription from a neighbor.

G w F

DU
B(F ) \ {S} = {B3}

S B1
B3

3. admin(∅, {F})

(G, B3)

2.

1. unsub(F)

(F, S)

B2

Figure 3.19: Processing of an unsubscription from a local client.
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S

1. unsub(F)

F A G

(F, S)

(G, B2)
2.

DU
B(F ) \ {S} = {B2, B3}

DRU
B (G) \ {S} = {B2, B3}, k = 1

B1

B2

B3

3. admin({G}, {F})3.
ad

m
in

(∅
,{

F
})

Figure 3.20: Processing of an unsubscription from a local client.

S B3

3. admin({G}, {F})3.
ad

m
in

({
G
},
{F

})

1. admin({G′}, {F})

F A G

(F, S)

(G, B2)

(G′, S)

B1

G ≡ G′2.

DU
B(F ) \ {S} = {B2, B3}

DRU
B (G) \ {S} = {B2, B3}, k = 2

B2

Figure 3.21: Processing of an unsubscription from a neighbor.
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a set of uncovered subscriptions and may newly uncover subscriptions (lines 20-
42). Finally, the set of triples is determined by calling the generate procedure
and returned (lines 46-47).

Correctness Proof. In the following, the correctness of covering-based rout-
ing is proved. Again, it is assumed that the initial routing configuration is
empty. First, it is shown that the administer procedure shown in Fig. 3.22 is
legal. This directly gives Theorem 3.8.

Again, consider α = QE
B(H) (see Eq. 3.9) and β = QO

H(B) (see Eq. 3.10). If
B receives a sub, unsub, or admin message, α changes.

Lemma 3.23 If for each filter F in α there is a filter G in β such that G w F ,
then νH({B}) ⊇ νB(LB ∪ NB \ {H}).

Proof: by definitions of α (Eq. 3.11), β (Eq. 3.12), and ν (Eq. 3.1).

Lemma 3.23 states that if for each filter in α there is a filter β that covers
the former, then H forwards at least those notifications to B that B forwards in
turn to all other destinations. This implies that if the conditions of Lemmas 3.20
and 3.23 are satisfied, then νH({B}) = νB(LB ∪NB \{H}) holds. This situation
is depicted in Fig. 3.23. α and β are denoted covering-equivalent if (a) for each
filter in α there is a filter in β that covers the former and if (b) for each filter
in β there is a filter in α that is identical. Covering-based routing ensures that
this property holds among corresponding versions of α and β. Additionally, it
guarantees that for each filter in β there is no other filter in β that covers the
former.

Lemma 3.24 If covering-based routing is used the following properties hold:

1. If administer is called at a broker B triggered by a message m received

from a neighbor or local client S and αid(m) is not covering-equivalent to

βlidB,H (m) for a neighbor H 6= S, then a triple for H is returned.

2. If a triple was returned for a neighbor H, H receives an admin message
m′ with id(m′) = id(m) from B, administer is called at H triggered by

m′, and αid(m) is covering-equivalent to βid(m).

Proof sketch: The Lemma is proved by an induction. First, the base case is proved.
Here, it is shown that the properties hold with respect to the first time administer is
called at B. This is done in a case distinction that uses the fact that α0 and β0 are both
initially empty. After that, the induction step is shown. The induction assumption

is that αlidB(m) is covering-equivalent to βlidB,H (m). The properties are proved in a
tedious case distinction.

Now, we are prepared to show that covering-based routing is legal for the
empty initial routing configuration.

Lemma 3.25 The administer procedure shown in Fig. 3.22 (covering-based
routing) is legal for the empty legal initial routing configuration.
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Set procedure administer(Sender S, Set � , Set � )
begin

�
S ← ∅�
U ← ∅

5 P ← ∅

i f � = ∅
// handle sub s c r i p t i on
for the filter F ∈ � do

10 i f S ∈ NB then

TB ← TB \ CL
B(F,S)

else

TB ← TB \ {(F,S)}
f i

15
�

S ←
�

S ∪ {(F, H) | H ∈ DU
B

(F ) \ {S}}
TB ← TB ∪ {(F,S)}

end

else

// handle unsubscr ip t ion
20 for the filter F ∈ � do

i f S ∈ NB then

TB ← TB \ CL
B

(F,S)
else

TB ← TB \ {(F,S)}
25 f i

�
U ←

�
U ∪ {(F,H) | H ∈ DU

B(F ) \ {S}}

P ← P ∪ (CL
B

(F ) \ CI
B

(F ))
end

30 // handle uncovered s u b s c r i p t i o n s
P ← P ∪ {(F,S) | F ∈ � }
TB ← TB ∪ {(F, S) | F ∈ � }
f ora l l (F,U) ∈ P do

k← #{H | (G, H) ∈ P ∧ G ≡ F}
35 P ← P \ {(G, H) | (G, H) ∈ P ∧ G ≡ F}

�
← DRU

B (F ) \ {S}
i f k = 1

�
←

�
\ {U}

40 f i

FS ← FS ∪ {(F, H) | H ∈
�
}

end

f i

45 // genera te t r i p l e s
M ← generate(FS , FU)
return

�

end

Figure 3.22: Routing based on Filter Covering
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β = QO
H(B)

Filter

≡

α = QE
B(H)

v

Figure 3.23: Relation among α and β for covering-based routing.

Proof sketch: We prove that the administer procedure shown in Fig. 3.22 is legal
by showing that the properties 1 to 3 of Def. 3.4 are satisfied.
Proof:
〈1〉1. Property 1 is satisfied.
Prove: administer returns.

Proof: It is easy to see that the procedure returns.
〈1〉2. Property 2 is satisfied.

〈2〉1. Property 2a is satisfied.
Proof: As unsub and sub messages are handled in the same way, the same proof
as in Lemma 3.13 holds.

〈2〉2. Property 2b is satisfied.
Assume: S ∈ NB

Prove: ν
id(m)
B ({S}) ⊇ ν

id(m)
S (LS ∪ NS \ {B})

Proof: by Lemmas 3.23 and 3.24.
〈1〉3. Property 3 is satisfied.

Assume: ν
lidB,H(m)

H ({B}) 6⊇ ν
id(m)
B ({S})

Prove: ∃(BH , � H , � H) ∈ �
Proof: by Lemmas 3.23 and 3.24.

〈1〉4. Q.E.D.
Proof: follows from step 〈1〉1, 〈1〉2, and 〈1〉3.

Theorem 3.8 (Correctness of Routing based on Filter Covering) The
routing framework with the administer implementation shown in Figure 3.22
(covering-based routing) and the empty legal initial routing configuration satisfy
Def. 2.1.

Proof: by Lemmas 3.14 and 3.25, and Theorem 3.4.

3.5.5 Routing based on Filter Merging

This section describes merging-based routing, a routing algorithm that is based
on filter merging [73] and that can be implemented on top of covering-based
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routing. First, the basic ideas underlying merging-based routing are presented
which can be used to implement many variants of merging-based routing. After
that, the main questions underlying merging-based routing are described. Fi-
nally, a concrete merging-based routing algorithm is presented that is also the
basis for the implementation described in Chapter 5.

Basic Idea of Merging-Based Routing. The basic idea of merging-based
routing is rather simple. In contrast to covering-based routing, merging-based
routing does not merely rely on the filters which have been issued by the clients.
Instead, if a merging-based routing algorithm is applied, a broker can merge
the filters of existing routing entries and forward this merger to a subset of its
neighbors.

Formally, a filter F is a merger of (or covers) a set of filters {F1, . . . , FN},
denoted by F w {F1, . . . , FN}, iff N(F ) ⊇

(

∪i N(Fi)
)

. F is a perfect merger if
the equality holds and an imperfect merger, otherwise. A merging-based routing
algorithm which only generates perfect mergers and additionally ensures that the
generated mergers are forwarded in a way such that only interesting notifications
are delivered to a broker is called perfect, otherwise the algorithm is imperfect.

Main Questions underlying Merging-Based Routing. The idea of rout-
ing based on filter merging presented above puts up a framework for possible
algorithms. In order to implement a concrete merging-based routing algorithm, a
number of questions must be answered. The main questions underlying merging-
based routing are the following:

• Which routing entries are merged and how is the merger derived from the
constituting filters?

• To which neighbors is a new merger forwarded?

• In which cases is a merger canceled?

• To which neighbors is a canceled merger forwarded?

• How are the mergers administered?

To which neighbors a merger should be forwarded either as subscription
or as unsubscription depends on the routing entries from which the merger was
generated. For example, assume that we have generated a perfect merger F from
two routing entries (F1, H1) and (F2, H2) where H1 6= H2. If we are interested
in a perfect merging-based routing algorithm only, the merger should be prefect
and should at most be forwarded to all neighbors except H1 and H2 because
otherwise non interesting events might be forwarded from either H1 that match
F1 or from H2 that match F2. More generally, a perfect merger F generated
from a set of routing entries {(F1, H1), . . . , (Fn, Hn)} can be forwarded to all
neighbors while preserving perfect merging-based routing if any notification n
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that is matched by the perfect merger F , is matched by at least one filter Fi of
a local client or by two distinct filters Fi and Fj with Hi 6= Hj .

For the other questions depicted above similar considerations can be carried
out. Instead of discussing them in full detail, a concrete merging algorithm is
presented in the following that also serves as the basis for the implementation
described in Chapter 5.

Concrete Merging-Based Routing Algorithm

Subsequently, a concrete merging-based routing algorithm is presented that is
perfect and which is implemented on top of covering-based routing. The algo-
rithm allows every broker solely to merge routing entries that refer to the same
destination. This keeps the algorithm simple enough to be applied in a dynamic
publish/subscribe system.

Generation and Forwarding of a New Merger. In order to enable filter
merging, a broker B can replace a set of routing entries {(F1, D), . . . , (Fn, D)}
with the same destination D by a single merged entry (F, D) if F is a perfect
merger of {F1, . . . , Fn}. The merged routing entries are removed from the rout-
ing table and (F, D) is added to the routing table instead. As F is a perfect
merger this does not affect the set of notifications that B is forwarding to D, i.e.,
νB({D}). The algorithm also stores what filters are associated with a merger
for the case the merger is canceled. As several routing entries are replaced by
a single one the size of the routing table of the broker that introduced the new
merger is reduced. This results in faster matching. The merger is then forwarded
exactly in the same way as a normal subscription that would have been received
from D. Every time a new subscription is received, the broker tries to generate
a new merger or to add the new subscription to an existing merger.

Cancellation of a Merger. There are three cases in which a merger has to
be canceled:

1. If a subscription arrives from D that covers the whole merger, the merger
is simply removed from the routing table.

2. If an unsubscription for a part of a merger is received from D, the merger is
removed and the merger is forwarded as unsubscription. The other entries
that constitute the merger are added to the routing table again and are
forwarded as subscriptions. This is done in a single message in order to
guarantee that the change to the routing table of the receiving broker is
atomic.

3. If a subscription arrives from D that covers one or more of the filters
that constitute a merger, the merger is removed and forwarded as unsub-
scription. The routing entries whose filters are not covered by the new



68 CHAPTER 3. CONTENT-BASED ROUTING

subscription are added to the routing table again and are forwarded as
subscriptions. Again, this is done in a single message.

In the last two cases, the algorithm tries to generate a new merger from the
remaining parts of the canceled merger.

Examples. In Figure 3.24, B1 receives a new subscription G from a local client
S. B1 merges G with the filter F of an existing routing entry (F, S) to a broader
filter H that covers F and G. Hence, B1 removes (F, S) from and inserts (H, S)
into its routing table. Moreover, it records the information that H consists of F
and G in an additional data structure. Finally, B1 forwards the new merger H
to its neighbors B2 and B3.

In the second example (see Fig. 3.25), B1 receives an unsubscription F from a
local client S where F is part of a merger H . Here, B1 removes (H, S) and adds
(G, S) instead. B1 forwards an unsubscription for H along with a subscription
for G to both its neighbors B2 and B3. The fact that k = 1 has no effect here,
since S = U .

DU
B(H) \ {S} = {B2, B3}

S B1

1. sub(G)

(F, S)

2.

H w {F,G}

{F,G}

3.
ad

m
im

({
H
},
∅)

3. admin({H}, ∅)

B2

B3

(H,S)

Figure 3.24: Forwarding a new merger.

3.6 Routing with Advertisements

In this section it is shown how advertisements can be integrated into the routing
framework. Advertisements are filters that are issued by clients to indicate their
intention to publish certain kinds of notifications and only notifications match-
ing an active advertisement of the respective producer should be delivered to
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(H, S) {F,G}

B3

B2

DU
B(H) \ {S} = {B2, B3}

S B1

1. unsub(F)

H w {F,G}

DRU
B (G) \ {S} = {B2, B3}, k = 1

2.

3.
ad

m
im

({
G
},
{H

})

(G, S)

3. admin({G}, {H})

Figure 3.25: Forwarding a canceled merger.

interested consumers (cf. Sect. 2.6). In the context of content-based routing,
advertisements can be used as an additional mechanism for further optimization
because it is sufficient to forward a subscription only into those subnets where
matching events can be produced, i.e., where a client has issued an advertise-
ment that overlaps with the given subscription [17]. The only assumption that
underlies the use of advertisements is that it can be detected whether or not a
subscription and an advertisement overlap. Formally, two filters F1 and F2 are
overlapping iff N(F1) ∩ N(F2) 6= ∅.

Basic Idea of Routing with Advertisements. If advertisements are uti-
lized for optimized routing, each broker manages two routing tables, the known
subscription-based routing table T S

B (formerly TB) and an additional advertise-
ment-based routing table T A

B . While the former is used (as described before)
to route notifications from producers to interested consumers, the latter is used
to route (un)subscriptions from interested consumers to producers. This means
that forwarding of notifications and (un)subscriptions is restricted by using the
routing tables:

• A notification n is only forwarded to a destination D if there is a routing
entry (D, F ) ∈ T S

B with n ∈ N(F ).

• An (un)subscription F is only forwarded to a neighbor H if there is a
routing entry (H, G) ∈ T A

B with N(F ) ∩ N(G) 6= ∅.
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In a dynamic publish/subscribe system both routing tables need to be updated
as clients issue or revoke subscriptions and advertisements. For this purpose all
routing algorithms described in Sect. 3.5 except flooding can be used but now
they must be applied on two levels that are partially dependent. The first level is
responsible for updating the subscription-based routing table, while the second
level keeps the advertisement-based routing table up to date. For each of the
levels one of the presented routing algorithms can be chosen independently of
the other. For example, simple routing can be used for the former, while at the
same time covering-based routing is applied to the latter.

Processing of Subscriptions and Unsubscriptions. To be more precise
regarding the dependency among the two levels, the notification forwarding re-
mains unchanged, while the (un)subscription forwarding of the routing algorithm
is changed: (un)subscriptions are only forwarded to those neighbors for which
there is an overlapping advertisement. For example, suppose that the routing
algorithm that updates the subscription routing table decides that a subscrip-
tion F should be forwarded to the neighbors H1 and H2. If there is only an
advertisement from H1 in T A

B that overlaps with F and none for H2, F is only
forwarded to H1.

Processing of Advertisements and Unadvertisement. If a broker re-
ceives an (un)advertisement it is simply forwarded according to the used routing
algorithms. Additionally, subscriptions are forwarded and existing routing en-
tries are dropped in reaction to new and canceled advertisements, respectively:

• If a broker receives a new advertisement from a neighbor H , it (potentially)
forwards all subscriptions to H which

1. come from a destination D 6= H ,

2. overlap with F , and

3. for which F is the only advertisements from H that overlaps.

• If a broker receives an unadvertisement F from a neighbor H , it drops all
routing entries of all neighbors U 6= H for whose filter there is no other
advertisement from any other destination D 6= U that overlaps.

Now, the main disadvantage of routing with advertisements becomes clear: no-
tifications which match only an advertisement that has been recently issued by
a producer, may not be delivered to all interested consumers. This was also the
main reason to apply a weakened liveness condition (see Sect. 2.6) if advertise-
ments are used. Indeed, delivery is only guaranteed after the new advertisement
has been propagated and the subscriptions that are forwarded in turn have also
been propagated. Both processes are guaranteed to terminate after a finite time.
Hence, the proposed solution satisfies Def. 2.4.
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Integration with the Routing Framework. From the explanations above
it is easy to imagine how advertisements can be integrated into the routing
framework:

• Two new messages adv(S, U) and unadv(S, U) are introduced that corre-
spond to new and canceled advertisements issued by clients.

• There are now two categories of admin messages, adminS and adminA

to distinguish among subscription and advertisement-related admin mes-
sages.

• There are now two administer procedures administerA and administerS

which are called according to the received sub,unsub and adv , unadv mes-
sages, respectively.

• From each of the triples from the set of triples returned by administerS

those filters are deleted for which there is no overlapping advertisement
issued by the intended receiver.

• In reaction to new and canceled advertisements, “activated” subscriptions
are forwarded and “unserviceable” routing entries in the subscription-
based routing table are dropped accordingly.

In the way depicted above, advertisements were integrated in the implemen-
tation of the Rebeca notification service (see Chapter 5).

3.7 Ensuring Self-Stabilization

Up to this section, it was assumed that no faults can occur. Here, it is shown
how fault-tolerance in the sense of self-stabilization can be achieved. In a system
where arbitrary transient faults (like message losses, memory perturbations) can
occur, the framework presented in the previous sections will obviously not be a
correct implementation of a publish/subscribe system with respect to Def. 2.1.
However, it is relatively easy to augment the framework so that it satisfies the
specification of self-stabilizing publish/subscribe systems (Definition 2.3) in the
presence of arbitrary transient faults. This is done by the concept of subscription
leasing. Interestingly, this approach does not only allow the publish/subscribe
system to recover from internal faults but also from certain external faults related
to the clients. For example, if a client crashes, its subscriptions are automatically
removed after their leases have expired.

3.7.1 Fault Assumption

In the following, arbitrary faults are assumed to possibly happen within the
publish/subscribe system as long as they are transient (faults do not affect the
clients). This includes for example arbitrary message corruption, deletion or
insertion, arbitrary sequences of process crashes and subsequent recoveries, and



72 CHAPTER 3. CONTENT-BASED ROUTING

arbitrary perturbations of the data structures of processes. Obviously, it must
also be assumed that the number of occurrences of these faults is finite. This
behavior is modeled by assuming that the system begins its execution in an arbi-
trary state. Then the concept of self-stabilization is applied to achieve stabilizing
publish/subscribe semantics.

3.7.2 Routing Table Entry Leasing

Self-stabilization is achieved by applying the well-known concept of leasing: sub-
scriptions of clients are only leased, i.e., to maintain a subscription, client X must
regularly renew the lease for its subscription to a filter F by “resubscribing” to
F . This is done in the same way as subscribing, i.e., X sends a sub(F ) message
to its broker. A prerequisite for making this approach work is that the routing
algorithms ensure that subsequent resubscriptions are idempotent. This means
that they should cause no change to the routing table but should cause admin
messages to be sent out properly. The algorithms presented in Sect. 3.5 exhibit
this behavior or need only small changes to do so. Therefore, brokers within the
publish/subscribe system continue to run the routing framework as usual and
the routing table is updated by the administer routine. Brokers also control
the validity of routing table entries in the following way: within the routing
table, each broker implicitly stores the lease expiration time for each individual
entry. Lease renewals, i.e., idempotent insertions of routing entries update this
timestamp. They can be caused by sub or admin message. If filter merging is
performed the resulting additional routing entries must be renewed on a regular
basis, too. Note that lease times can be adaptive but have some known maximal
lease time.

3.7.3 Lease Expiry and Timing Conditions

Periodically, brokers validate their routing table and discard entries whose lease
has expired. This must be done atomically and can be achieved by running a
concurrent task which operates in mutual exclusion to the routing framework.
This process requires some notion of global time, i.e., some synchrony assump-
tions about processes and communication. This is because clients and brokers
must be able to set and compare lease timestamps approximately within the
same time frame and communication channels must be timely enough to renew
the lease for a routing table entry before it expires. For the following analysis we
will assume a global clock and refer timing information to this clock. However,
this clock is only a fictitious device facilitating analysis.

The two main parameters in an analysis of the timing conditions for stabi-
lization are the leasing period π , i.e., the amount of time for which leases are
granted, and the refresh period ρ , i.e, the amount of time after which clients
initiate a renewal of each individual lease. Other important parameters are the
link delay δ , i.e., the amount of time taken for a link (process and communica-
tion channel) to process and forward a message. In the following, it is assumed
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that δ is between δmin and δmax. Moreover, let d be the network diameter, i.e.,
the length of the longest path in the broker network.

A critical issue here is that the timing assumptions must be conservative
enough so that clients are able to renew their leases everywhere in the network
before they expire. So how large must π be with respect to ρ in this case? To
answer this question, consider two brokers B and B′ connected by the longest
path in the network. Assume a local client X of B leases a routing table entry
of B at time t0 and renews this lease at time t1 = t0 + ρ. In the worst case,
X ’s lease causes other leases to be granted all along the path to broker B ′ (if
for example simple filter-based routing is used). Considering the best and worst
cases of the link delay, the first lease reaches B′ at time

a0 = t0 + d · δmin (3.19)

in the best case and the lease renewal reaches B′ at time

a1 = t1 + d · δmax (3.20)

in the worst case. In the worst case, i.e., if X refreshes its leases after ρ time and
if network delays are unfavorable, two lease renewals will arrive at B ′ within at
most a1 − a0 time. Hence, the leasing period π must be greater than a1 − a0:

π > ρ + d(δmax − δmin). (3.21)

If clocks are not perfectly synchronized, an additional value ∆ must be added
to π, where ∆ is a bound on the differences of clock readings throughout the
network.

3.7.4 Stabilization Proof

The timing analysis in the previous section is the basis for the proof that the
augmented framework is self-stabilizing. First, it is argued that without faults
the augmented framework satisfies Def. 2.1 (see Lemma 3.26). After, that it is
shown that starting from an arbitrary state, the system will eventually reach a
correct state within a finite time (see Lemma 3.27). Together this gives Theo-
rem 3.9 stating the self-stabilizing property.

Lemma 3.26 (Correctness) If ρ + d(δmax − δmin) < π, the system is in a
weakly valid routing configuration, and all messages in the channels have been
initiated by some client, then the system satisfies Def. 2.1.

Proof sketch: The timing condition and the condition on the channels guarantee
that leases get renewed in time everywhere. This means that we can “ignore” the
periodic leasing activity because it is transparent from a functional point of view. The
proof then follows from the original “time-free” correctness proof in Theorem 3.4.

Lemma 3.27 (Convergence) Starting from an arbitrary state, eventually the
system will reach a weakly valid routing configuration where all messages in the
channels have been initiated by some client.
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Proof sketch: The idea of the proof is rather simple and independent of real-time
timing assumptions: spurious messages will be eventually delivered to their destination
processes and may cause spurious routing table entries. These (and other) spurious en-
tries will eventually be removed from the routing table by the lease expiry mechanism.
Note that spurious entries in the local configuration temporarily affect the safety prop-
erty while spurious entries in the in the remote configuration solely degrade efficiency.
In any case, eventually, routing tables contain only entries which can be traced back to
clients requests, and the channels will only contain messages initiated by some client.
Of course, the administer should not introduce any additional state.

Theorem 3.9 If the timing conditions satisfy ρ + d(δmax − δmin) < π, the
routing framework augmented with the lease mechanism satisfies Def. 2.3 in the
presence of arbitrary transient faults.

Proof sketch: The convergence property of Lemma 3.27 implies that the system
recovers to a weakly valid routing configuration once the transient faults have stopped.
The correctness property of Lemma 3.26 implies that from this point onwards the safety
and the liveness properties of the original Def. 2.1 are satisfied forever. So overall the
system satisfies Def. 2.3 in the presence of arbitrary transient faults.

It is worth noting that a (temporary) violation of the timing assumptions can
also be considered as a transient fault. So overall stabilization can be guaranteed
even if the timing bounds only hold eventually.

3.7.5 Stabilization Time

The stabilization time ∆T , i.e., the time it takes for the system to reach a legal
state starting from an arbitrary state, depends on the value of π. In the worst
case, it must be waited until all garbage messages reach their destination nodes,
i.e. δmax . Since garbage messages can contaminate the network too, a delay
of d(δmax − δmin) time for the final garbage messages to take effect must be
assumed. Finally, after π time, the effects will be removed everywhere. Overall,
the stabilization time sums up to

∆T = δmax + d(δmax − δmin) + π. (3.22)

There is an obvious tradeoff between the values of π and ρ. To have low message
overhead, ρ (the refresh period) should be as large as possible. However, this
implies a large value of π, but π should be as small as possible to facilitate fast
recovery. Choosing the parameters in practice is difficult and out of the scope
of this thesis.

3.8 Related Work

In this section the work presented in this chapter is related to other approaches
dealing with content-based routing.
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3.8.1
���������

Siena [17, 22] is a notification service that uses covering-based routing. Two
variants of covering-based routing are presented by the authors, a hierarchical
and a peer-based variant. The peer-based variant is similar to the one presented
here. The hierarchical variant propagates subscriptions only from each broker
to its parent broker. A notification is always forwarded to the parent broker and
selectively forwarded to subordinate brokers. Other routing algorithms than
covering-based routing are not considered and fault tolerance is not discussed.

3.8.2 Gryphon

Gryphon [8, 85] uses simple routing but proposes to exploit multicast for inter-
broker communication in order to reduce the used network bandwidth. Several
multicast strategies are discussed and compared to a fictitious ideal multicast
strategy where for each permutation of consumers a multicast group exists. Nei-
ther other routing algorithms than simple routing nor fault tolerance aspects are
discussed. Nevertheless, the ideas developed in Gryphon are well suited to be
integrated with the algorithms presented here.

3.8.3 Hermes

Recently, Pietzuch and Bacon presented Hermes [90, 91], a notification ser-
vice that implements content-based notification delivery on top of a peer-to-
peer overlay network. Before this, only two subject-based notification services,
Scribe [97] and Bayeux [121], have been built in this way. In all approaches
rendezvous nodes are used. In Hermes, each rendezvous node is responsible for
a certain event-type, while in the subject-based approaches they refer to specific
topics. Similar to the approach presented here, in Hermes subscriptions are only
leased and need to be periodically refreshed. This results in the state of the
broker being “soft” and allows certain faults to be tolerated.

3.9 Discussion

In this chapter the foundations of content-based routing have been discussed in
detail. Starting with the fault-free scenario, fault-tolerance in the sense of self-
stabilization is added later on. First, a formalization of routing configurations
has been proposed that builds upon filter-based routing tables. The routing
table of a broker determines to what neighbors it forwards a notification that
it processes. Furthermore, it has been shown that valid routing configurations
are sufficient and necessary to ensure a correct static publish/subscribe system.
The sufficiency has also been proved for weakly valid routing configurations and
dynamic public subscribe systems.

Based upon the formalization of routing configurations, a framework for
content-based routing algorithms has been described. The framework hard-
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wires the notification forwarding based on routing tables and allows an abstract
function to be customized to yield a concrete routing algorithm. This approach
is flexible enough to realize a variety of routing algorithms. A universal suffi-
ciency criterion has been elaborated allowing to identify legal instances of this
abstract function that lead to a correct publish/subscribe system. The criterion
consists of a set of properties that must be satisfied. The meaning of the indi-
vidual properties has been described giving new insights into the requirements
a content-based routing algorithm has to fulfill.

As examples of framework instances, flooding, simple routing, identity-based
routing, covering-based routing, and merging-based routing have been discussed.
Treating these algorithms as instances of the framework offered new insights into
their behavior. Routing algorithms are explicitly given and it is argued for their
correctness in a more structured way than previous work did. It has also been
discussed how advertisements can be integrated into the routing framework.

In the last section of this chapter, it has been shown how the routing frame-
work can be made self-stabilizing by using subscription leasing: Subscriptions of
clients are not permanent but need to be renewed on a periodical basis. This al-
lows a publish/subscribe system to recover from arbitrary transient faults within
a finite time.
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4.1 Introduction

The content-based routing algorithms presented in Chapter 3 do not depend on
the actual underlying data/filter model. Instead they are based on abstract tests
for overlapping, identity, and covering, and on filter merging. Hence, the routing
algorithms only assume that these tests among filters can be computed and that
merging can be carried out. In this chapter it is described how these tests and
filter merging can be efficiently supported. The emphasis is on structured records
that are based on name/value pairs since this is the most prominent model for
content-based publish/subscribe systems. In addition, routing optimizations for
semistructured records and objects are discussed, too.

This Chapter is structured as follows: First, some content-based data/filter
models are described in Section 4.2 including tuples, records (which are further
divided into structured and semistructured records), and objects. After that
introductory discussion all models except tuples are discussed in more detail.
In Section 4.3 a model based on structured records is presented which relies on
conjunctive filters consisting of attribute filters. Subsequently, a powerful and
flexible filtering framework is discussed that allows new data types and filtering
predicates to be introduced easily instead of relying on a fixed set of predefined
types and predicates (e.g., used by Siena and JEDI, etc.). As examples and
to show the feasibility of the approach, covering implications and merging rules
for attribute filters are described for a set of data types with typical operators.
After that, covering, identity, overlapping, and merging of conjunctive filters are
discussed and new algorithms for identity tests and covering tests as well as for
detecting merging candidates are presented. These algorithms are necessary to
realize the routing algorithms of Chapter 3. Section 4.4 presents a model for
semistructured records which is a generalization of structured record model and
essentially builds upon XML documents and XPath expressions. It is shown
how routing optimizations can be applied to semistructured records. Section 4.5
presents how matching can be carried out, and how routing optimizations can
be applied if notifications and filters are objects.

4.2 Content-Based Data/Filter Models

This section discusses some prominent content-based data models in conjunction
with corresponding filter models. Informally, a data model defines how the con-
tent of notifications is structured while a filter model defines how subscriptions
can be specified, i.e., how notifications can be selected by applying filters that
evaluate predicates over the content of notifications. In consequence, the filter
model always depends on the underlying data model and there can be more than
one filter model for a given data model. The data/filter model has to be chosen
carefully because it has a large impact on the expressiveness and the scalability
of a content-based notification service.

Several prominent data models are discussed including tuples, records, and
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objects where records are further divided into structured and semistructured
records.

4.2.1 Tuples

In tuple-oriented models a notification is a tuple, i.e., an ordered set of attributes.
All approaches using tuples deploy some sort of templates as subscription mech-
anisms. Similar to a query-by-example mask, a template specifies matching no-
tifications by a partial tuple which can contain wildcards. The attributes in the
notification are matched to the attributes in the template according to their po-
sition. For example, the notification (StockQuote, “Foo Inc.”, 45.7) is matched
by the subscription template (StockQuote, “Foo Inc.”, ∗). “Matching by posi-
tion” is inflexible because attributes cannot be optional. Tuples in conjunction
with templates were first proposed by Gelernter in work on Linda Tuplespaces
[48] which use typed attributes. The original version of Linda, however, did not
support a subscription mechanism but newer approaches based on Tuplespaces,
e.g., JavaSpaces [110], do. Also some notification services are built upon tuples:
JEDI models a notification as a tuple of strings [28] in which the first string cor-
responds to the notification name, while the others are normal attributes. They
support the equality and the prefix operator for matching. Bates et al. [10] de-
fine notifications as instances of classes. An instance consists of a tuple of typed
attributes derived from a class definition. Here, a template either specifies the
exact value of an attribute or it does not care about the value. Concluding, tu-
ples with templates provide a simple model that is not flexible enough because
attributes of notifications and templates are matched to each other according
to their position. This disadvantage is diminished by record-oriented models
which use “matching by attribute names”. However, matching by position is
more efficient.

4.2.2 Records

In a record-oriented model a notification consists of a named set of attributes.
Record-oriented models can be divided in two categories which are structured
records and semistructured records, respectively. Roughly speaking, the models
can be distinguished by the fact that in structured records attribute names are
unique, while in the semistructured models several attributes with the same
name can exist. In the following both categories of record-oriented models are
discussed.

Structured Records

Many systems model notifications similar to structured records consisting of a
set of name/value pairs called attributes. Examples are Siena [17], Gryphon
[1, 8], Rebeca [40], JMS [111], and the Corba Notification Service [81]. In this
model filters address attributes by their unique name and impose constraints on
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the values of the respective attributes. In most models a constraint is assumed to
evaluate to false if the addressed attribute is not contained in the notification.
Therefore, each constraint implicitly defines an existential quantifier over the
notification. Besides flat records in which values are atomic types, hierarchical
records in which attributes may be nested can also be supported easily by using
a dotted naming scheme (e.g., Position .x).

Some systems (e.g., Siena) restrict constraints to depend on a single at-
tribute (e.g., {x = 1}). This class of constraints is called attribute filters. Other
systems (e.g., Elvin) allow constraints to evaluate multiple attributes which are
combined by operators (e.g., {x + y = 5}). In general, multiple constraints can
be combined to form filters by boolean operators (e.g., {y < 3∧ x = 4}). Siena

and Rebeca restrict filters to be conjunctions of attribute filters. On one hand,
this restriction reduces the expressiveness of the filter model, but on the other
hand it enables routing optimizations like covering to be applied efficiently. The
limitation is also not as serious as it seems at first. For example, a filter that
is defined by an arbitrary boolean expression can always be converted to and
treated as a collection of conjunctive filters.

Although records and tuples seem to be quite similar at first glance, records
are clearly more powerful because they allow for optional attributes in the notifi-
cations, avoid unnecessary “don’t care” constraints in the templates, and enable
the easy addition of new attributes without affecting existing filters. How to
support routing optimizations for structured records is discussed in Section 4.3.

Semistructured Records

According to Bunemann [15] semistructured data can be characterized as some
kind of graph-like or tree-like structure that is often called self-describing be-
cause the schema of the data is contained in the data itself. At the moment, the
most prominent semistructured data model is XML [118]. Similar to structured
records, a semistructured record is a set of nested attributes, but in contrast
to structured records, in semistructured records sibling attributes can have the
same name. In consequence, a single attribute can no longer be uniquely ad-
dressed by its name alone. Instead names (e.g., car.price), which are usually
called paths in this context, select sets of attributes. Therefore, filtering strate-
gies assuming that a single attribute is addressed by a given name cannot directly
be used in this scenario. One way to approach this problem is to use path expres-
sions (e.g., XPath [119]) which select a set of attributes and impose constraints
on the selected attributes.

Clearly, the semistructured model is more powerful than structured records,
but work in this area related to content-based routing is still in its early stages.
Lately, using XML and path expressions has gained increased attention. Nguyen
et al. [79] and Chen et al. [24] described approaches for XML continuous queries.
Altinel and Franklin [3] presented an efficient method for filtering XML docu-
ments using XPath expressions. All this work concentrates on efficient local
matching and does not deal with distributed content-based routing. First ideas
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on how to support routing optimizations like covering and merging for semistruc-
tured records was presented by Mühl and Fiege [75]. These ideas are discussed
in Section 4.4.

4.2.3 Objects

Using objects as notifications is widely used in GUIs (e.g., Java AWT [105]) and
visual components (e.g, JavaBeans [107]). The Java Distributed Event Specifi-
cation [109] which is built upon Java RMI also uses Objects. The difference of
this approach to a notification service is that consumers must directly register
with the source of an event. Eugster and Guerraoui [35] present an approach to
use structural reflection for content-based filtering of notifications. The object-
oriented model is most flexible and powerful, but routing optimizations like
covering and merging are difficult to achieve if filters can contain arbitrary code.
Mühl and Fiege [75] have presented first ideas on how to support routing op-
timizations like covering and merging for objects. These ideas are discussed in
Section 4.5.

4.3 Structured Records

In this section structured records are discussed in detail. A flexible and exten-
sible filtering framework is described that builds upon the model and which is
also the basis for the implementation (see Chapter 5). Finally, it is depicted
how the routing optimizations can be supported efficiently. This includes the
presentation of theoretical results and new algorithms.

4.3.1 Data Model

Notifications

A notification is a message that contains information about an event that has
occurred. Formally, a notification n is a nonempty set of attributes {a1, . . . , an}
where each ai is a name value pair (ni, Vi) with name ni and value vi. It is
assumed that names are unique, i.e., i 6= j ⇒ ni 6= nj , and that there exists
a function that uniquely maps each ni to a type Tj that is the type of the
corresponding value vi.

In the following it is distinguished between simple values that are a single
element of the domain of Tj , i.e., vi ∈ dom(Tj), and multi values that are a finite
subset of the domain, i.e., vi ⊆ dom(Tj). An example of a simple notification is
{(type ,StockQuote), (name , “Infineon”), (price , 45.0)}.
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4.3.2 Filter Model

Filters

A filter F is a stateless boolean function that is applied to a notification, i.e.,
F (n) → {true, false}. A notification matches F if F (n) evaluates to true. Con-
sequently, the set of matching notifications N(F ) is defined as {n | F (n) =
true}. Two filters F1 and F2 are identical, written F1 ≡ F2, if and only
if N(F1) = N(F2). Moreover, they are overlapping, denoted by F1 u F2, iff
N(F1) ∩ N(F2) 6= ∅. Otherwise they are disjoint, denoted by F1 6 u F2.

A filter is usually given as a boolean expression that consists of predicates
that are combined by boolean operators (e.g., and , or , not). A filter consisting of
a single atomic predicate is a simple filter or constraint. Filters that are derived
from simple filters by combining them with boolean operators are compound
filters. A compound filter that is a conjunction of simple filters is called a
conjunctive filter. In the model proposed filters are restricted to be conjunctive
filters. It is sufficient to consider conjunctive filters because a compound filter
can always be broken up into a set of conjunctive filters that are interpreted
disjunctively and can be handled independently.

Attribute Filters

An attribute filter is a simple filter that imposes a constraint on the value of
a single attribute (e.g., {name = “Foo Inc.”}). It is defined as a triple Ai =
(ni, Opi, Ci) where ni is an attribute name, Opi is a test operator and Ci is a
set of constants that may be empty. The name ni determines to which attribute
the constraint applies. If the notification does not contain an attribute with
name ni then Ai evaluates to false . Therefore, each constraint implicitly defines
an existential quantifier over the notification. Otherwise, the operator Opi is
evaluated using the value of the addressed attribute and the specified set of
constants Ci. It is assumed that the types of operands are compatible with the
used operator. The outcome of Ai is defined as the result of Opi that evaluates
either to true or false . Furthermore, an attribute filter is provided that simply
checks whether a given attribute is contained in n. For the sake of simplicity
the more readable notation {price > 10} is used instead of {(price , >, {10})}.
In contrast to most other work (e.g., Siena) constraints that depend on more
than one constant are considered in this chapter. This enables more operators
and enhances the expressiveness of the filtering model and can be done without
affecting scalability.

By LA(Ai) ⊆ dom(Tk) the set of all values is denoted that cause an attribute
filter to match an attribute, i.e., {vi | Opi(vi, Ci) = true}. It is assumed that
LA(Ai) 6= ∅. An attribute filter A1 covers an attribute filter A2, written A1 w
A2, iff n1 = n2 ∧ LA(A1) ⊇ LA(A2). For example, {price > 10} covers {price ∈
[20, 30]}. A1 and A2 are identical, denoted by A1 ≡ A2, iff n1 = n2 ∧ LA(A1) =
LA(A2). A1 and A2 are overlapping iff n1 = n2 ∧ LA(A1) ∩ LA(A2) 6= ∅,
denoted by A1 u A2. Otherwise they are disjoint, denoted by A1 6 u A2. For
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example, {price > 10} and {price < 20} are overlapping, while {price < 10}
and {price > 20} are disjoint.

In the described model a filter is defined as a conjunction of attribute filters,
i.e., F = A1∧. . .∧An. To enable efficient evaluation of routing optimizations like
covering and merging at most one attribute filter for each attribute is allowed
(see Sects. 4.3.5 to 4.3.7). A notification n matches a filter F iff it satisfies all
attribute filters of F . Moreover, a filter with an empty set of attribute filters
matches any notification. An example for a conjunctive filter consisting of at-
tribute filters is {(type = StockQuote), (name = “Foo Inc.”), (price /∈ [30, 40])}.

The limitation to at most one attribute filter for each attribute is not as seri-
ous as it seems at first glance because the proposed model provides complex data
types as attribute values and an extensible set of constraints that can be im-
posed (see Sect. 4.3.3). Moreover, it is often possible to merge several conjunctive
constraints imposed on a single attribute into a single constraint on the same at-
tribute. Especially suited for this kind of merging are constraints which are either
contradicting (if they are conjuncted) or can be replaced by a single constraint
of the same type. Such types of constraints and their corresponding attribute
filters are called conjunction-complete. For example, interval constraints and
constraints testing whether a point is in a given rectangle in a two-dimensional
plane are conjunction-complete. As an example, {x ∈ [3, 7] ∧ x ∈ [5, 8]} can
be substituted by {x ∈ [5, 7]}. If a constraint type is not conjunction-complete
it is often possible to substitute a set of such constraints by a single constraint
of a more general type. For example, a set of ordering constraints defined on
a totally ordered set (e.g., integer numbers) are either contradictory or can be
replaced by a single interval constraint. As an example, {x ≥ 3 ∧ x ≤ 5} can
be merged to {x ∈ [3, 5]}.

Subscriptions and Advertisements

Subscriptions and advertisements are simply filters that are issued by consumers
and producers of notifications, respectively. There is no difference in their model,
and hence, subscriptions and advertisements are the exact dual of each other.
This is in contrast to Siena where subscriptions and advertisements are not
exactly complementary raising a number of problems (see related work section).

4.3.3 Generic Constraints and Types

Former work dealing with content-based notification selection mechanisms often
tightly integrated the constraints that can be put on values and the types of
values supported with the matching and routing algorithms [1, 8]. An exception
is Siena where matching and routing algorithms are separated from constraints.
However, they only support a fixed set of constraints on some predefined primi-
tive types.

This thesis proposes to use a collection of abstract attribute filter classes.
Each of these classes offers a generic implementation of the methods needed
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by the matching and routing algorithms (e.g., the covering and matching test)
and imposes a certain type of constraint on an attribute that can be used with
values of all types that implement the operators needed. The appropriate im-
plementation of the operators are called by the constraint class at runtime using
polymorphism. This enables new constraints and types to be defined and sup-
ported without requiring changes to the routing and matching algorithms. Note
that although an object-oriented approach is suggested it is not mandatory to
use it.

For example, a constraint class has been implemented that realizes compar-
ison constraints on totally ordered sets (see Sect. 3.4). This class can be used
to impose comparison constraints on all kinds of ordered values (e.g., integer
numbers). Consider a type “person” that consists of first and second name, the
date of birth, and the place of birth. This type is easily supported by providing
implementations for the comparison operators which are called by the constraint
class to provide the covering and matching methods using polymorphism.

In the following subsections, some generic attribute constraints are presented
that cover a wide range of practically relevant constraints, but more importantly,
they illustrate the feasibility of the approach. Of course this collection is not
exhaustive but other constraints can be integrated easily. For example, intervals
could be used as values. In this case the same operators as for set constraints
can be used because intervals are essentially sets. The investigation of a subset
of regular expressions seems to be promising, too. Most paragraphs also present
a table that gives an overview of covering implication dealing with the discussed
type of constraint. The meaning of a single row in the Tables 1 through 6 is:
Given A1 and A2 as specified in column 1 and 2, A1 w A2 if and only if the
condition in column 3 is satisfied. In order to test whether a filter covers another,
covering must hold for all attributes as will be shown later.

General Constraints

Two general constraints are considered that can be imposed on all attributes
regardless of the type of their value: exists(n) tests whether an attribute with
name n is contained in a given notification, i.e., whether ∃Ai. ni = n. The exists
constraint covers all other constraints that can be imposed on an attribute.

Constraints on the Type of Notifications

Most work on notification services has a notion of types or classes of notifica-
tions. Usually, the type of a notification is specified by a textual string that
can be tested for equality and prefix. If a dot notation is used, a type hierarchy
with single inheritance can be supported allowing for the automatic propaga-
tion of interest in sub-classes [10]. Unfortunately, multiple inheritance cannot
be supported by a dotted naming scheme. In contrast to that, a direct sup-
port of notification types has a number of advantages. Such an approach can
enable multiple inheritance and achieve a better programming language integra-
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tion [34]. Moreover, type inclusion tests can be evaluated more efficiently than
the corresponding string operation (i.e., whether the string starts with a given
prefix) [116].

Consequently, a separate constraint that evaluates to true if n is an instance
of type T and false otherwise, written n instanceof T , is defined. A constraint
n instanceof T1 covers a constraint n instanceof T2 if and only if T1 is either the
same type or a supertype of T2 (see Table 4.1). Naturally, it is assumed that the
set of attributes that can be contained in a notification of type T is a superset
of the union of all attribute names of all supertypes of T .

A1 A2 A1 w A2 iff
n instanceof T1 n instanceof T2 T1 = T2 ∨ T1 supertype of T2

Table 4.1: Covering among notification types

Equality and Inequality Constraints on Simple Values

The simplest constraints that can be imposed on a value are tests for equality
and inequality. Covering implications among these tests can always be reduced
to a simple comparison of their respective constants (see Table 4.2).

A1 A2 A1 w A2 iff
x = c1 x = c2 c1 = c2

x 6= c1
x = c2 c1 6= c2

x 6= c2 c1 = c2

Table 4.2: Covering among (in)equality constraints on simple values

Comparison Constraints on Simple Values

Another common class of constraints are comparisons on values for which the
domain and the comparison operators define a totally ordered set (e.g., integers
with the usual comparison operators). Again, covering among these tests can
be reduced to a simple comparison of their respective constants. Table 4.3
depicts covering implications of inequality and greater than, for brevity the other
comparison operators are left out.

Interval Constraints on Simple Values

Interval constraints make it possible to test whether a value x is within a given
interval I or not, i.e., x ∈ I and x /∈ I respectively, where I is a closed interval
[c1, c2] with c1 ≤ c2. Here, computing coverages involves two comparisons (see
Table 4.4).
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A1 A2 A1 w A2 iff
x < c2 c1 ≥ c2

x ≤ c2 c1 > c2

x 6= c1 x = c2 c1 6= c2

x ≥ c2 c1 < c2

x > c2 c1 ≤ c2

x = c2 c1 < c2

x > c1 x > c2 c1 ≤ c2

x ≥ c2 c1 < c2

Table 4.3: Covering among comparison constraint on simple values

A1 A2 A1 w A2 iff
x ∈ I1 x ∈ I2 I1 ⊇ I2

x /∈ I1 x /∈ I2 I1 ⊆ I2

Table 4.4: Covering among interval constraints on simple values

Constraints on Strings

In addition to the comparison operators based on the lexical order, a prefix, a
substring, and a postfix operator is defined. Constraints on strings can be used
to realize subjects. Computing coverages among them requires a single test (see
Table 4.5).

A1 A2 A1 w A2 iff
s prefix S1 s prefix S2 S1 prefix S2

s postfix S1 s postfix S2 S2 postfix S1

s substring S1 s substring S2 S1 substring S2

Table 4.5: Covering among constraints on strings

Set Constraints on Simple Values

Set constraints on simple values test whether a value is or is not a member of
a given set. In order to compute a coverage among two of these constraints a
single set inclusion test is sufficient (see Table 4.6). Its complexity depends on
the characteristics of the underlying set. Set constraints can also be combined
with comparison constraints if the domain of the value is a totally ordered set.
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A1 A2 A1 w A2 iff
x ∈ M1 x ∈ M2 M1 ⊇ M2

x /∈ M1 x /∈ M2 M1 ⊆ M2

Table 4.6: Covering among set constraints on simple values

Set Constraints on Multi Values

The idea of multi values is to allow a value to be a set of elements. This enables
set-oriented operators which are defined on a multi value X = {v1, . . . , vn}. For
example, the following common operators can be defined:

X subset M ⇔ X ⊆ M

X superset M ⇔ X ⊇ M

X contains a1 ⇔ a1 ∈ X

X notcontains a1 ⇔ a1 /∈ X

X disjunct M ⇔ X ∩ M = ∅

X overlaps M ⇔ X ∩ M 6= ∅

To determine covering with respect to these constraints either the evaluation of
a set inclusion test or of a set membership test is needed (see Table 4.7).

A1 A2 A1 w A2 iff
X subset M1 X subset M2 M1 superset M2

X contains a1 X superset M2 a1 ∈ M2

X superset M1 X superset M2 M1 subset M2

X notContains a1 X disjunct M2 a1 ∈ M2

X disjunct M1 X disjunct M2 M1 subset M2

X overlaps M1 X overlaps M2 M1 superset M2

Table 4.7: Covering among set constraints on multi values

4.3.4 Identity of Conjunctive Filters

In the following it is shown how identity of conjunctive filters can be reduced
to the respective attribute filters. An identity test among filters is necessary to
implement identity-based routing (see Sect. 3.5.3) and covering-based routing
(see Sect. 3.5.4).

Lemma 4.1 Given two filters F1 = A1
1 ∧ . . . ∧ A1

n and F2 = A2
1 ∧ . . . ∧ A2

m that
are conjunctions of attribute filters, the following holds: the fact that F1 and F2

contain the same number of attribute filters and that ∀A1
i ∃A2

j . A1
i ≡ A2

j implies
that F1 and F2 are identical.
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Proof: The proof is rather trivial. A notification that matches F1 satisfies all
attribute filters A1

i . For each of these A1
i there is an identical A2

j . Hence, A2
j

is matched, too. As F1 and F2 contain the same number of attribute filter this
implies that all attribute filters of F2 are matched, too. Therefore, F2 is also
matched. As the same argumentation can be applied to notifications that match
F2 this implies that F1 and F2 match identical sets of notifications, i.e., they are
identical.

It is necessary to restrict filters to contain at most one attribute filter for
each attribute in order to strengthen Lemma 4.1 to an equivalence. As a simple
example, {x > 5 ∧ x < 5} is identical to {x 6= 5} although neither {x > 5} ≡
{x 6= 5} nor {x < 5} ≡ {x 6= 5}.

Lemma 4.2 Given two filters F1 = A1
1 ∧ . . . ∧ A1

n and F2 = A2
1 ∧ . . . ∧ A2

m

that are conjunctions of attribute filters with at most one attribute filter for each
attribute, the following holds: F1 ≡ F2 implies ∀A1

i ∃A2
j . A

1
i ≡ A2

j .

Proof sketch: The proof is by contradiction.
Assume: 1. F1 ≡ F2.

2. ∀A1
i ∃A2

j . A1
i ≡ A2

j does not hold.
Prove: false
Proof: The second assumption implies that there is an A1

i for that no identical
A2

j exists. This means that either no attribute filter with the same name is

contained in F2 or that L(A1
i ) 6= L(A2

j ). In the first case, a notification can be
constructed that does not contain the respective attribute and which matches
F2 but does not match F1. Hence, F1 and F2 cannot be identical and the first
assumption is violated. In the second case, a notification can be constructed
where the value of the respective attribute is in L(A1

i ) but not in L(A2
j ) if

L(A1
i ) ⊃ L(A2

j ). This notification matches F1 but not F2. The other way around,
a notification can be constructed where the value of the respective attribute is
in L(A2

j ) but not in L(Aj
2) if L(A1

i ) ⊂ L(A2
j ). This notification matches F2 but

not F1. At least one of these two cases need to occur because L(A1
i ) 6= L(A2

j ).
Hence, F1 and F2 cannot be identical and the first assumption is violated. The
above cases cover all possible cases.

Lemma 4.3 Given two filters F1 = A1
1 ∧ . . . ∧ A1

n and F2 = A2
1 ∧ . . . ∧ A2

m

that are conjunctions of attribute filters with at most one attribute filter for each
attribute, the following holds: F1 ≡ F2 implies that F1 and F2 contain the same
number of attribute filters.

Proof: by Lemma 4.2 and the fact the identity relation among filters is sym-
metrical.

Corollary 4.1 Two filters F1 = A1
1 ∧ . . . ∧ A1

n and F2 = A2
1 ∧ . . . ∧ A2

m that
are conjunctions of attribute filters with at most one attribute filter for each
attribute are identical iff they contain the same number of attribute filters and
∀A1

i ∃A2
j . A

1
i ≡ A2

j .
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Proof: by Lemmas 4.1, 4.2, and 4.3.

The above corollary essentially states that two filters are identical iff they
constrain the same attributes and iff the attribute filters of each constrained
attribute are pairwise identical (see Fig. 4.1).

F1 = {x ≥ 2} ∧ {y > 5}
| | |
≡ ≡ ≡
| | |

F2 = {x ≥ 2} ∧ {y > 5}

Figure 4.1: Identity of filters consisting of attribute filters.

4.3.5 Covering of Conjunctive Filters

In the following it is shown how covering of conjunctive filters can be reduced
to the respective attribute filters. A covering test among filters is necessary to
implement covering-based routing (see Sect. 3.5.4).

Lemma 4.4 Given two filters F1 = A1
1 ∧ . . . ∧ A1

n and F2 = A2
1 ∧ . . . ∧ A2

m that
are conjunctions of attribute filters, the following holds: ∀i∃j. A1

i w A2
j implies

F1 w F2.

Assume: ∀i∃j. A1
i w A2

j

Prove: F1 w F2

Proof: If an arbitrary notification n is matched by F2 then n satisfies all Aj
2.

This fact together with the assumption implies that n also satisfies all Ai
1. There-

fore, n is matched by F1, too. Hence, F1 w F2.

If several attribute filters can be imposed on the same attribute then ∀i∃j.A1
i w

A2
j is not a necessary condition for F1 w F2 (see also Fig. 4.2). For example,

{x ∈ [5, 8]} covers {x ∈ [4, 7] ∧ x ∈ [6, 9]} although {x ∈ [5, 8]} covers neither
{x ∈ [4, 7] nor {x ∈ [6, 9]}. If conjunctive filters are restricted to have at most
one attribute filter for each attribute then Lemma 4.4 can be strengthened to
an equivalence:

Lemma 4.5 Given two filters F1 = A1
1 ∧ . . . ∧ A1

n and F2 = A2
1 ∧ . . . ∧ A2

m

that are conjunctions of attribute filters with at most one attribute filter for each
attribute, the following holds: F1 w F2 implies ∀i∃j. A1

i w A2
j .

Assume: ¬(∀i∃j. A1
i w A2

j )
Prove: ¬(F1 w F2)
Proof: A notification n is constructed that matches F2 but not F1 to prove that
F1 does not cover F2. The assumption implies that there is at least one A1

k that
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Figure 4.2: F1 w F2 although neither F 1
1 w F 1

2 nor F 1
1 w F 2

2 (two examples).

does not cover any A2
j . If there exists an A2

l that constrains the same attribute

as such an A1
k then choose for this attribute a value that matches A2

l but not A1
k.

Such a value exists because LA(A1
k) 6= ∅ and A1

k 6w A2
l . Add name/value pairs

for all other attributes that are constrained in F2 such that they are matched
by the appropriate attribute filters of F2. The constructed notification matches
F2 but not F1. Therefore, F1 does not cover F2.

Corollary 4.2 Given two filters F1 = A1
1∧ . . .∧A1

n and F2 = A2
1∧ . . .∧A2

m that
are conjunctions of attribute filters with at most one attribute filter per attribute,
the following holds: F1 w F2 is equivalent to ∀i∃j. A1

i w A2
j .

Proof: by Lemmas 4.4 and 4.5.

The above corollary essentially states that a filter F1 covers a filter F2 iff for
each attribute filter in F1 there is an attribute filter in F2 that is covered by the
former (see Fig. 4.3).

F1 = {x ≥ 2} ∧ {y > 5}
| | |
w w w
| | |

F2 = {x = 4} ∧ {y = 7} ∧ {z ∈ [3, 5]}

Figure 4.3: Covering of filters consisting of attribute filters.

4.3.6 Overlapping of Conjunctive Filters

In the following it is shown how overlapping of conjunctive filters can be reduced
to the respective attribute filters. An overlapping test among filters is necessary
to implement advertisements.

Lemma 4.6 Given two filters F1 = A1
1 ∧ . . . ∧ A1

n and F2 = A2
1 ∧ . . . ∧ A2

m that
are conjunctions of attribute filters, ∃A1

i , A
2
j .

(

n1
i = n2

j ∧ LA(A1
i )∩LA(A2

j ) = ∅
)

implies that F1 and F2 are disjoint.
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Proof: Suppose that F1 and F2 contain attribute filters A1
i and A2

j such that
(

n1
i = n2

j ∧ LA(A1
i ) ∩ LA(A2

j ) = ∅
)

. This means that both filters require

the existence of an attribute with name n1
i and that the value of this attribute

must match LA(A1
i ) in order to make a notification match F1 and LA(A2

j ) in

order to match F2. As LA(A1
i ) and are LA(A2

j ) disjoint this implies that a
given notification can be matched either by F1 or by F2. Hence, F1 and F2 are
disjoint.

It is necessary to restrict filters to contain at most one attribute filter for
each attribute in order to strengthen Lemma 4.6 to an equivalence. As a simple
example, {x ∈ {3, 5} ∧ x ∈ {4, 5}} is disjoint with {x ∈ {3, 5} ∧ x ∈ {3, 4}}
although there are no disjoint attribute filters.

Lemma 4.7 Given two filters F1 = A1
1 ∧ . . . ∧ A1

n and F2 = A2
1 ∧ . . . ∧ A2

m

that are conjunctions of attribute filters with at most one attribute filter for
each attribute, the fact that F1 and F2 are disjoint implies that ∃A1

i , A
2
j .

(

n1
i =

n2
j ∧ LA(A1

i ) ∩ LA(A2
j ) = ∅

)

.

Proof: The proof is by contradiction. Suppose that F1 and F2 are disjoint
and that there are no A1

i , A
2
j such that n1

i = n2
j ∧ LA(A1

i ) ∩ LA(A2
j ) = ∅.

We construct a notification that matches F1 and F2 to imply a contradiction in
following way: For each attribute that is constrained in F1 or F2 add an attribute
whose value satisfies the attribute filters contained in F1 and F2 regarding this
attribute. This value must exist because there are no A1

i , A
2
j such that n1

i =

n2
j ∧ LA(A1

i ) ∩ LA(A2
j ) = ∅. Hence, the constructed notification matches F1

and F2, and therefore, F1 and F2 are not disjoint.

Corollary 4.3 Two filters F1 = A1
1 ∧ . . .∧A1

n and F2 = A2
1 ∧ . . .∧A2

m that are
conjunctions of attribute filters with at most one attribute filter for each attribute
are disjoint, i.e., not overlapping, iff ∃A1

i , A
2
j .

(

n1
i = n2

j ∧ LA(A1
i )∩LA(A2

j ) = ∅
)

.

Proof: by Lemmas 4.6 and 4.7.

F1 = {x ≥ 2} ∧ {y > 5}
| | |
6u 6u u
| | |

F2 = {x < 1} ∧ {y < 7}

Figure 4.4: Disjoint filters consisting of attribute filters.

The above corollary essentially states that two filters are disjoint iff for an
attribute that is constrained in both filters the corresponding attribute filters
are disjoint (see Fig. 4.4). Hence, two filters are overlapping iff no such attribute
filters exist (see Fig. 4.5).



92 CHAPTER 4. MODELS AND ROUTING OPTIMIZATIONS

F1 = {x ≥ 2} ∧ {y > 5}
| | |
u u u
| | |

F2 = {x < 5} ∧ {y < 7}

Figure 4.5: Overlapping filters consisting of attribute filters.

4.3.7 Merging of Conjunctive Filters

In Chapter 3 merging-based routing algorithms were presented which used ab-
stract merging operations. In this section merging of conjunctive filters is dis-
cussed for the current model of structured records. The aim of filter merging is
to determine a filter that is a merger of a set of filters. Merging of filters can be
used to drastically reduce the amount of subscriptions and advertisements that
have to be stored by the routing algorithm.

Perfect Merging

A set of conjunctive filters with at most one attribute filter for each attribute
can be perfectly merged into a single conjunctive filter if for all except a single
attribute their corresponding attribute filters are identical and if the attribute
filters of the distinguishing attribute can be merged into a single attribute filter.
For example, the two filters F1 = {x = 5 ∧ y ∈ {2, 3}} and F2 = {x = 5 ∧ y ∈
{4, 5}} can be merged to F = {x = 5 ∧ y ∈ {2, 3, 4, 5}}. Moreover, a set of
attribute filters imposed on the same attribute with name n can be merged to
an exists(n) test if at least one of them is satisfied by any value. Note that an
existence test is equivalent to no constraint if the attribute is mandatory for the
corresponding type of notification.

An algorithm that determines the possibly empty set of filters which are
candidates to be merged with a given filter is depicted later in Section 4.3.8.
From the set of merging candidates the set of attribute filters to be merged can
easily be extracted. This set is used as input of a merging algorithm which has a
specialized implementation for each type of constraint. In the general case purely
algebraic merging techniques have exponential time complexity. Alternatively,
a predicate proximity graph can be used to implement a greedy algorithm [61].
For many practical cases (e.g., set operators) efficient algorithms exist. Only
in rare cases it is necessary to use an exhaustive combinatorial or a suboptimal
greedy algorithm.

The characteristics of the constraints that are used to define attribute filters
are important for merging. Constraints which only exist in a normal and a
negated form can be directly merged by using some basic laws of boolean algebra.
For example, the filters F1 = (y = 3 ∧ x = 5) and F1 = (y = 3 ∧ x 6= 5) can be
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merged to F = (y = 3∧ ∃x). In general, constraints are not restricted to be the
negated form of each other and hence, better merging can be achieved by taking
the specific characteristics of the imposed constraints into account.

A class of constraints that is complete under disjunction allows to merge a set
of constraints of this class into a single constraint of the same class. Examples
for disjunction-complete constraints are set inclusions (e.g., x ∈ {2, 3, 7}) and
set exclusions (e.g., x /∈ {2, 3, 7}) while comparison constraints (e.g., x < 4)
are not disjunction-complete. If a constraint class is not disjunction-complete it
may still be possible to carry out merging if a specific merging condition is met.
For example, a set of interval tests (e.g., x ∈ [2, 4] and x ∈ [3, 5]) can be merged
into a single interval test (here, x ∈ [2, 5]) if the intervals form a connected set.
Otherwise, merging may be possible if a more general constraint is considered
as merging result. For example, two comparison constraints (e.g., x < 4 and
x > 7) can be merged to an interval test (here, x /∈ [4, 7]).

Merging on the level of attribute filters is implemented by each generic at-
tribute filter class. Table 4.8 below presents some versatile perfect merging rules.
The meaning of a single row is that A1 and A2 can be perfectly merged to the
indicated merger (column 4) if the given merging condition (column 3) holds.

A1 A2 Condition A1 ∪ A2

x ∈ M1 x ∈ M2 - x ∈ M1 ∪ M2

x /∈ M1 x /∈ M2
M1 ∩ M2 = ∅ ∃x

M1 ∩ M2 6= ∅ x /∈ M1 ∩ M2

X overlaps M1 X overlaps M2 - X overlaps M1 ∪ M2

X disjunct M1 X disjunct M2
M1 ∩ M2 = ∅ ∃X

M1 ∩ M2 6= ∅ X disjunct M1 ∩ M2

x = a1 x 6= a1 a1 = a2 ∃x

x < a1
x > a2 a1 > a2 ∃x
x ≥ a2 a1 ≥ a2

x ≤ a1
x > a2

a1 ≥ a2 ∃x
x ≥ a2

Table 4.8: Some versatile perfect merging rules for attribute filters

The first two rules can also be applied to equality and inequality tests because
x = a1 ⇔ x ∈ {a1} and x 6= a1 ⇔ x /∈ {a1}.

Imperfect Merging

At a first glance, imperfect merging seems to be less promising but in situations
in which perfect merging is either too complex or not computable it is a good
compromise. Clearly, there exists a trade-off between filtering overhead and
network resource consumption. Imperfect merging may result in notifications
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being forwarded that do not match any of the original subscriptions, but on
the other hand, it reduces the amount of subscriptions and advertisements that
must be dealt with.

In order to use imperfect merging heuristics are necessary that define in what
situations and to what degree imperfect merging should be carried out. For
example, filters that differ in few attribute filters could be merged imperfectly
by imposing on each attribute a constraint that covers all original constraints.
In order to decide whether two given filters should be merged a heuristic that
allows the amount of introduced imperfection to be estimated is needed. This
could also be accomplished by explicitly replacing an attribute filter with another
that only tests for the existence of the given attribute or by simply dropping the
attribute filter. Statistical online evaluation of filter selectivity would be also
a good basis for merging decisions that enables adaptive filtering strategies.
Imperfect merging requires further investigation.

4.3.8 Algorithms

In this section algorithms are presented that are superior to the naive algo-
rithms. They use the generic approach presented in Section 4.3.3: Each generic
constraint class (e.g., constraints on ordered values) offers specialized indexing
data structures to efficiently manage constraints on attributes. For example,
hashing is used for equality tests. In the following algorithms for matching, cov-
ering, and for detecting merging candidates are described that are all based on
the predicate counting algorithm. Algorithms for detecting identity and over-
lapping among filters can be derived similarly.

Matching Algorithm

The naive algorithm separately matches a given notification against all filters
to determine the set of matching filters. This implies that the same attribute
filter may be evaluated many times. More advanced algorithms (see related
work section for a detailed overview) avoid this. Some of these more advanced
matching algorithms require a costly compilation step (e.g., [50]) that makes
them less suitable for publish/subscribe systems in which subscriptions change
dynamically. In contrast to that, the algorithm presented here allows filters to be
added or removed at any time. The algorithm is based on the idea of predicate
counting [89, 120] and makes use of the generic approach. The algorithm is
depicted in Fig. 4.6. It determines all filters that match a given notification.

Covering Algorithm

Covering-based routing is built upon two tests: a first test that determines all
filters that cover a given filter and a second one determines all filters that are
covered by a given filter. The naive implementation simply tests each filter
against all others sequentially. The algorithms presented here are more efficient.
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Matching Algorithm

Input: notification n, set of filters F

Output: the set M of all filters in F that match n.

{

<For each filter in F a counter is initialized to zero.>

for <each Ai contained in n> {

for <each filter S in F that has a constraint on Ai that

is satisfied by the value of the corresponding

attribute of n> {

<Increment the counter of S>

}

}

M :=< all filters in F whose counter is equal to their number

of attribute filters >

}

Figure 4.6: Matching algorithm based on counting satisfied attribute filters

They are derived from the matching algorithm presented above (see Fig. 4.7
and 4.8).

Covering Algorithm I

Input: filter F1, set of filters F

Output: the set C of all filters in F that cover F1.

{

<For each filter in F a counter is initialized to zero.>

for <each Ai contained in F1> {

for <each filter S in F that has a constraint Aj that

covers Ai> {

<Increment the counter of S>

}

}

C:=< all filters in F whose counter is equal to their number

of attribute filters >

}

Figure 4.7: Covering algorithm that determines all covering filters.

Merging Algorithm

Here, an algorithm is presented that determines all possible merging candidates
which are those filters that are identical to a given filter in all but a single
attribute. The algorithm avoids testing all filters against all others. It counts
the number of identical attribute filters to find merging candidates (see Fig. 4.9).

The further handling of the set of merging candidates depends on the con-
straints involved. For all constraints discussed in section 3 (e.g., set constraints
on simple values) there exists an efficient algorithm which outputs a single
merged filter and a set of filters not included in the merger. For other con-
straints, an optimal algorithm requires exponential time complexity [27]. In this
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Covering Algorithm II

Input: filter F1, set of filters F

Output: the set C of all filters in F that are covered by F1.

{

<For each filter in F a counter is initialized to zero.>

for <each Ai contained in F1> {

for <each filter S in F that has a constraint Aj that

is covered by Ai> {

<Increment the counter of S>

}

}

C:=< all filters in F whose counter is equal to the number

of attribute filters of F1>

}

Figure 4.8: Covering algorithm that determines all covered filters.

case the use of greedy algorithms or heuristics (e.g., using a predicate proximity
graph) seem to be promising.

Merging Algorithm

Input: filter F1, set of filters F

Output: set M of all merging candidates

{

<For each filter in F a counter is initialized to zero.>

for <each Ai contained in F1> {

for <each filter S in F that has a constraint Aj that is

identical to Ai> {

<Increment the counter of S>

}

}

M :=< all filters in F whose counter is one smaller than or

equal to their number of attribute filters >

}

Figure 4.9: Merging algorithm based on counting identical attribute filters.

4.4 Semistructured Records

In the last section structured records have been discussed in detail. In this
section a model for semistructured records is presented. The structured and
the semistructured model are mainly distinguished by the following fact: In the
structured model attribute names are unique, and hence, an attribute name
uniquely addresses a single attribute. On the contrary, in the semistructured
model sibling attributes can have the same name, and therefore, names address
sets of attributes.

In the following, a model for semistructured records is presented in which
notifications are essentially XML [118] documents. The filtering mechanisms
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are similar to but less powerful than XPath [119]. After the model has been
introduced, how routing optimizations can be achieved is discussed.

4.4.1 Data Model

In the semistructured data model a notification is a well-formed XML document
[118] and consists of a set of elements that are arranged in a hierarchy with a
single root element uniquely named “notification”. Each element consists of a
set of attributes whose names must be distinct and a set of subordinate child
elements which are named but whose names must not necessarily be distinct.
An attribute A is a pair (ni, vi) with name ni and value vi. Names of attributes
must be unique with respect to elements. A simple notification that describes
an auction is shown in Fig 4.10. In this example, the element auction has two
subelements which are named item . Furthermore, the element cpu contains an
attribute clock whose value is 800. Note that XML documents can contain free
text between the opening and the closing tag of an element. Here, this text is
simply ignored.

<notification>

<auction

endtime ="05/18/02 22:17:42"

minprice ="$50">
<seller

name=" Smith"

id ="1234"/>

<item>

<board

manufacturer=" Elitegroup "

type =" K7S5"

socket =" Socket A"/>

</item>

<item>

<cpu

manufacturer="AMD "

type=" Athlon "

socket =" Socket A"

clock ="800"/>

</item>

</ auction >

</ notification>

Figure 4.10: A simple notification

4.4.2 Filter Model

In the semistructured filter model a filter is a conjunction of path filters. Each
of the path filters selects a subset of the elements in a notification by an element
selector and places constraints on the attributes of the selected elements by an
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element filter which consists of a set of attribute filters. In the following, this
model is described in full detail.

Element Selectors. An element selector selects a subset of the elements of
a notification and is specified by an attribute path. It is distinguished between
absolute and abbreviated paths. An absolute path is a slash separated string
that starts with a single slash (e.g., /notification/auction). An abbreviated path
is a slash separated string that starts with two slashes (e.g., //cpu). An abso-
lute/abbreviated path selects all elements whose path is equal to/ends with the
given path. For example, //item selects both item elements of the notification
in Fig. 4.10.

Attribute Filters. An attribute filter is a pair A = (n, Q) consisting of a
name n (e.g., manufacturer) and a constraint Q (e.g., = “AMD”). An el-
ement matches an attribute filter if the element contains an attribute, e.g.,
(manufacturer , “AMD”), with name n whose value v satisfies Q. This means
that an attribute filter evaluates to false if the element does not contain an
attribute with name n. Therefore, an attribute filter implicitly defines an exis-
tential quantifier over an element.

Element Filters. An element filter C is a conjunction of a nonempty set A
of attribute filters {A1, . . . , Ai}, i.e., C =∧i Ai. Hence, an element matches an
element filter iff all attribute filters are satisfied. An example of an element filter
based on the syntax of XPath is [@manufacturer = “AMD” ∧ @clock ≥ 700].
Note that in this notation attribute names are prefixed by an “@”.

Path Filters. A path filter P = (S, C) consists of an element selector S and an
element filter C. A notification n matches a path filter P if at least one element
of n is selected by S that matches C. It is possible to extend this model in such a
way that an interval constraint can be imposed on both the number of elements
that match an element filter and the number of elements that must not match.
These extensions are excluded for brevity. An example of a complete path filter
based on an absolute path is: /notification/auction/item/cpu[@manufacturer =
“AMD” ∧ @clock ≥ 700].

Filters. A filter F is a conjunction of path filter {P1, . . . , Pn}. Hence, a notifi-
cation matches a filter if all path filters are satisfied. The set of all notifications
that match a given filter F is N(F ).

4.4.3 Covering

This subsection shows how covering among filters in the semistructured model
can be detected. Similar results can easily be obtained for identity and overlap-
ping, too. These are left out for brevity.
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Covering of Attribute Filters. Let LA(A) be the set of all values that
cause an attribute filter A to match an attribute. An attribute filter A1 =
(n1, Q1) covers an attribute filter A2 = (n2, Q2), denoted by A1 w A2, iff n1 =
n2 ∧ LA(A1) ⊇ LA(A2). For example, [@clock ≥ 600] covers [@clock ≥ 700].

Covering of Element Filters. Let LE(C) be the set of all elements that
match an element filter C. An element filter C1 covers an element filter C2,
denoted by C1 w C2, iff LE(C1) is a superset of LE(C2). For example, [@clock ≥
600] covers [@manufacturer = “AMD” ∧ @clock ≥ 700].

Furthermore, C1 is disjoint with C2 with respect to the constrained attributes
if there exists no attribute that is constrained in both element filters. For exam-
ple, [@minprice < $100] is disjoint with [@name = “Pu”] with respect to their
constrained attributes.

Corollary 4.4 Given two element filters C1 and C2, which do not contain two
attribute filters with the same name, the following holds: C1 w C2 is equivalent
to ∀j∃i. A1

i w A2
j .

Covering of Element Selectors. Let LS(S) be the set of all elements that
are selected by an element selector S. An element selector S1 covers an element
selector S2, denoted by S1 w S2, iff LS(S1) ⊇ LS(S2). Furthermore, S1 is
disjoint with S2, iff LS(S1) ∩ LS(S2) = ∅.

In the model presented here, an absolute path covers another absolute path
iff both are identical. An absolute path only covers an abbreviated path iff the
former is /notification and the latter is //notification as the root element has
a unique name. An abbreviated path covers another (abbreviated or absolute)
path iff the former is a suffix of the latter (without the leading // or /). For
example, //cpu covers //item/cpu because the former path selects all elements
named cpu , while the latter only selects those elements named cpu which are a
subelement of an element with name item .

Covering of Path Filters. Let LP (P ) be the set of all elements that match
a path filter P . A path filter P1 = (S1, C1) covers another path filter P2 =
(S2, C2), written P1 w P2, if and only if LP (P1) ⊇ LP (P2). For example, the
path filter //cpu[@manufacturer = “AMD”] covers //cpu[@manufacturer =
“AMD” ∧ @clock ≥ 700]. P1 is disjoint with P2, iff either S1 is disjoint with
S2 or if C1 is disjoint with C2 with respect to their constrained attributes.

Corollary 4.5 Given two path filters P1 = (S1, C1) and P2 = (S2, C2) the
following holds: P1 w P2 is equivalent to S1 w S2 ∧ C1 w C2.

Covering of Filters. A filter F1 covers a filter F2, denoted by F1 w F2, iff
N(F1) ⊇ N(F2).
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Corollary 4.6 Given two filters F1 = P 1
1 ∧ . . . ∧ P 1

n and F2 = P 2
1 ∧ . . . ∧ P 2

m

which are conjunctions of disjoint path filters the following holds: F1 w F2 is
equivalent to ∀i∃j. P 1

i w P 2
j .

For example, the filter {//cpu[@type = “Athlon”]} covers {//seller [@name =
“Pu”] ∧ //cpu[@type = “Athlon” ∧ @clock ≥ 600]} .

4.5 Objects

A purely object-oriented approach models notifications and filters as objects. A
clear advantage of such a model is that it can easily be integrated with object-
oriented programming languages. In contrast to that, models that are based on
e.g., name/value pairs, can only operate on serialized instances of objects violat-
ing object encapsulation. Unfortunately, routing optimizations and in particular
covering and merging are difficult to achieve if filters can contain arbitrary code.
In this section three scenarios for that covering and merging can be supported
are described.

4.5.1 Calling Methods on Attribute Objects

Regardless whether the data models depends structured or on semistructured
records it is possible to embed objects in notifications. In this case public mem-
bers can be accessed and public inspector methods can be invoked on the embed-
ded object after it has been instantiated. The returned member or the return
value of the inspector method can either be a boolean value that is directly
interpreted as result of the attribute filter or a value that is used in order to
evaluate the actual constraint.

For example, suppose that an instance of a class StockQuote has been em-
bedded in a notification as an attribute with name quote. Then an attribute
filter that evaluates this attribute could be specified like this {quote.id() =
“IBM”}. For example, this filter covers {quote.isRealTime() ∧ quote.id() =
“IBM” ∧ quote .Price() > 45.0}. Moreover, it could be merged with a filter
{quote.id () = “MSFT”} to a filter {quote.id() ∈ {“IBM”, “MSFT”}}. As stated
in [33, 35] structural reflection (e.g., supported by Java) can be used to invoke
the specified methods. Unfortunately, the model does not allow to detect all cov-
ering relations among filters. For example, a filter {quote.Volume() > $10, 000}
covers a filter {quote.Price() > $100 ∧ quote.Quantity() > 100} because the
volume is defined as the product price multiplied by the quantity.

4.5.2 Filtering on Notification Classes

Here, notifications are objects and consequently they are an instance of some
class. Hence, class filters can be used that evaluate the class of a notification:
a notification matches a filter if it is assignable to the specified class. It is also
possible to support covering and merging. A class filter covers another class filter
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if an instance of the latter class can be assigned to an instance of the former one.
A set of class filters can be merged perfectly if they either contain a class which
covers all other classes or if they represent all direct subclasses of their common
superclass. Figure 4.11 shows the implementation of a ClassFilter in Java.

class ClassFilter {

protected Class _class ;

public boolean covers (ClassFilter filter ) {

return _class .isAssigneableFrom(filter ._class );

}

public static ClassFilter merge(ClassFilterSet filters ) {

Class superClass =filters .getCommonSuperClass ();

i f ( superclass != null ) {

i f ( filters .contain (superClass ))

return new ClassFilter (superClass );

i f ( filters . containAllSubclasses( superClass ))

return new AllSubclassesFilter (superClass );

}

return null;

}

public boolean match( Notification n){

return _class .isInstance (n);

}

}

Figure 4.11: Implementation of a ClassFilter in Java

The integration with content-based filtering can be achieved by supporting
filters that are conjunctions of a class filter and a specialized filter object whose
match method is invoked if the class filter returned true.

4.5.3 Specialized Filter Objects

Another possibility is to use specialized filter objects, an approach that can also
be combined with class filters. Such a filter implements a match method that
evaluates whether a notification matches this filter instance or not. Moreover,
it can also implement methods for covering and merging. Figure 4.12 shows the
implementation of a QuoteFilter in Java. Note that the filters can also be
built upon a more generic filter library which offers, for example, set-oriented
filters.

4.6 Related Work

Support of Routing Optimizations. Elvin [101] supports quenching in
which notifications are first evaluated against a broader subscription that covers
the disjunction of all subscriptions but no algorithms for quenching are described.
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public class QuoteFilter {

public boolean covers (QuoteFilter qf){

return getSymbolSet(). isSuperSet (qf. getSymbolSet());

}

public static QuoteFilter merge(QuoteFilter [] qf){

return new QuoteFilter (QuoteFilter . unionOfSymbolSets(qf));

}

public boolean match(Event e) {

i f (!(e instanceof QuoteEvent ))

return false ;

return (qf.getSymbolSet(). contains (

(( QuoteEvent )e). getSymbol ()));

}

}

Figure 4.12: Implementation of a QuoteFilter in Java

Siena [19, 17] exploits covering among filters, and uses overlapping of filters
to support advertisements. The data/filter model of Siena is similar to struc-
tured records but allows for multiple attribute filters on the same attribute. If
multiple attribute filters are imposed on an attribute, they are interpreted dif-
ferently with respect to subscriptions and advertisements. In the case of a sub-
scription they are interpreted conjunctively, while for advertisements they are
interpreted disjunctively. Hence, their model is not symmetrical. This choice
causes no problems with the simple types and operators supported in Siena,
but it inhibits supporting routing optimizations for more complex types and
operators. Algorithms that determine coverage or overlapping among filters are
not presented.

Matching Algorithms. Yan and Garcia-Molina [120] describe several match-
ing algorithms including the predicate counting, the key, and the tree algorithm
in the context text documents which are matched against keyword-based profiles.
In this paper they also present performance results obtained from simulation.

Fabre et al. [37] and Pereira et al. [89] present matching algorithms which
exploit similarities among predicates. In a first step the satisfied predicates are
computed and after that the number of predicates satisfied by a subscription are
counted using an association table. Two variants of this algorithm are described
which incorporate special treatment of equality tests and of constraints having
only inequality tests.

A predicate matching algorithm for database rule systems is presented by
Hanson et al. [54] that indexes the most selective predicate that is determined
by the query optimizer. They use a special indexing data structure called interval
binary search tree to support the efficient evaluation of interval tests.

Gough and Smith [50] present a matching algorithm that is based on au-
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tomata theory. They show how a set of conjunctions of predicates, each depen-
dent on exactly one attribute, can be transformed to a deterministic finite state
automaton. In the paper different types of test predicates are considered and
complexity results are obtained. Their algorithm is very efficient, but its worse
case space complexity is exponential. The proposed solution is also not suited
for dynamic environments as the automaton has to be newly constructed from
scratch if subscriptions change.

Pu et al. [70, 112] present indexing strategies for continual queries based on
trigger patterns. In particular, a strategy which uses an index on the most selec-
tive predicate is described. More complex indexing strategies exploit similarities
among trigger patterns to reduce the processing costs. They restrict optimiza-
tions to constraints which place a constraint on a single attribute involving at
most one constant.

Gryphon uses the content-based matching algorithm presented by Aguilera
et al. [1]. This algorithm traverses a parallel search tree where non-leaf nodes
correspond to simple tests and edges from non-leaf nodes represent results. Leaf-
nodes are associated with matched subscriptions. Banavar et al. [8] present a
multicast routing algorithm that executes the matching algorithm at each broker.
The algorithm presented is limited to equality tests.

Answering Queries using Views. Covering relations are known from data-
base theory and in particular from the area of answering queries using views
[53, 115]. There, the question is whether the result set of a given query Q can be
solely obtained from a set of predefined views V whose elements can be combined
by the usual relational operators, i.e., whether Q is covered by some combination
of the views in V . Answering this question for relational expressions is NP-hard
even without comparison operators. If only the union operator is allowed, this
is still a more general scenario than the one presented here. Although special
cases have been investigated, an approach that is closely related does not seem
to exist.

Semantic Caching. Lee and Chu [65] describe a semantic caching algorithm
for conjunctive point queries that exploits covering between conjunctive predi-
cates to find cache entries which cover a given query. However, this work is re-
stricted to point queries involving the equivalence and the like operator. Godfrey
and Gryz [49] depict an architecture for predicate-based caching that is similar
to answering queries using views. Therefore, it is not surprising that their al-
gorithms are NP-complete, too. Keller and Basu [61] propose a predicate-based
caching scheme for client/server database architectures. They perfectly merge
predicates in the cache to obtain a more compact cache description and to speed
up query processing. Their algorithm has exponential time complexity.

Query Merging. Crespo et al. [27] propose merging of queries that are evalu-
ated periodically against a database. As example, they use geographical queries
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represented by a rectangle. Before the queries are processed a merging algo-
rithm is run that combines similar queries and outputs a set of merged queries
whose answers contain all tuples of the original query. Their aim is to find a
set of mergers which is cost optimal. They show that in the general case query
merging is NP -complete and discuss optimal and heuristic algorithms.

Geometrical Algorithms. In the context of geometrical algorithms [95], for
example, polygon inclusion, intersection, and containment of convex polygons
are investigated. These algorithms can be integrated with the work presented
here to support efficient matching, covering, and merging of notifications contain-
ing geometric objects. Such objects are, for example, prevalent in geographical
information systems.

4.7 Discussion

In this chapter several data/filter models have been discussed and it was shown
how the routing optimizations that are used by the content-based routing algo-
rithm described in Chapter 3 can be mapped to the actual data and filter model.
The emphasis was placed on structured records consisting of name/value pairs
because this is currently the most prominent model. Additionally, routing op-
timizations for semistructured records and objects have been discussed. This
discussion should be seen as a first step towards a more complete treatment of
these models.

For structured records, first detailed data and filter models have been pre-
sented that addressed some shortcomings of previous approaches. The filtering
model builds upon conjunctive filters that consist of attribute filters. To enable
efficient evaluation of the tests used by the routing algorithms and to facilitate
filter merging, only at most one attribute filter for each attribute is allowed.
Subsequently, a generic filtering framework has been described that is separated
from the routing and matching algorithms, supports the proposed routing opti-
mizations, and that is not restricted to specific data types or operators. Instead,
new data types and operators can be added easily. As examples, covering impli-
cations and merging rules for a set of relevant data types with typical operators
have been described. Based on the model, matching, covering, and merging
algorithms that support the generic approach have been presented.

For semistructured records, a data model in which notifications are essen-
tially XML documents has been proposed. The filter model builds upon path
expressions being a subset of XPath. Roughly speaking, the model for semistruc-
tured records is a generalization from the one of structured records because sets
of attributes instead of single attribute are selected by a path, i.e., a partial
attribute name. After the model has been described, some initial ideas on how
to support covering and merging have been presented.

For the object-oriented model, three scenarios in which covering and merging
can be supported have been described. The first one relies on extending the
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record-oriented models by allowing to call methods on attribute objects. The
second and the third dealt with filters on notification classes and specialized
filter objects, respectively.
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5.1 Introduction

This chapter describes the implementation that has been carried out as part
of this thesis. The implementation has been realized in Java and consists of
two major parts which are a content-based notification infrastructure, called
Rebeca, and two example applications which serve as proof of concept.

Rebeca is a recursive acronym that stands for Rebeca Event-Based Elec-
tronic Commerce Architecture. The system can be distinguished among other
notification service prototypes by a number of characteristics:

• Instead of relying on a single routing scheme, a set of routing algorithms
has been implemented. Moreover, new routing algorithms can be added
easily. This allows to test and to compare various routing algorithms to
each other in a uniform environment.

• While other notification services only support a fixed set of primitive fil-
tering constraints, Rebeca relies on a powerful, flexible, and extensible
filtering framework that supports routing optimizations.

• Rebeca supports replay of past notifications and service factories. In order
to enable these features, subscription and unsubscription events, as well as
corresponding subscriptions for these notifications have been introduced.
Subscription and unsubscription events are automatically published by the
infrastructure if a client subscribes or unsubscribes.

• Rebeca has also served as the basis for the evaluation that is described
in Chapter 6.

Two example applications (see Sect. 5.4) have been implemented, an infras-
tructure for self-actualizing web pages (see Sect. 5.4.1) and a stock trading plat-
form (see Sect. 5.4.2). The discussion of these applications also shows how event-
based applications can be engineered. Note that a demo of the self-actualizing
web pages can be accessed on-line [39].

In the following, first the design and the concept that underly the Rebeca

notification infrastructure are described. This includes a description of the most
important classes. After that, it is depicted how the Rebeca infrastructure can
be used to build a simple event-based application. Subsequently, the function-
ality and the design of the implemented example applications are described.

5.2 The Rebeca Notification Infrastructure

In this section the design and the concepts of the Rebeca Notification Infras-
tructure are described.
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5.2.1 General Architecture

The Rebeca infrastructure consists of a set of interconnected event brokers.
Brokers are divided into two categories: Local brokers are the access points of
the publish/subscribe system and therefore, they manage the clients. Each of
them is connected to exactly one router. The routers, on the other hand, do not
manage clients. They solely concentrate on forwarding incoming notifications
to their respective neighbors. Currently, brokers are connected to routers and
routers are interconnected by communicating serialized Java Objects over TCP
sockets or by local queues.

5.2.2 Available Routing Algorithms

The infrastructure can be configured to use one of the following routing algo-
rithms that have been described in Section 3.5:

• Flooding (cf. Sect. 3.5.1),

• Simple Routing (cf. Sect. 3.5.2),

• Identity-Based Routing (cf. Sect. 3.5.3),

• Covering-Based Routing (cf. Sect. 3.5.4), and

• Merging-Based Routing (cf. Sect. 3.5.5).

Additionally, it can be chosen whether or not advertisements are used for routing
(cf. Sect. 3.6). The routing algorithms are built upon a filter framework that
uses the name/value pair data model (cf. Sect. 4.3) and offers an extensible set
of attribute filters. For more details please refer to Chapter 4.

5.2.3 Replay Mechanism

The Rebeca infrastructure includes a replay mechanism which allows consumers
to subscribe to and to receive past notifications that have been recorded on their
behalf. This is often necessary to initialize new components. For example, if a
watch list that displays current stock quotes is initialized, the user normally does
not want to wait until for each monitored stock a new quote arrives. Instead the
watch list should display the current prices immediately.

In order to support replay of events, histories can be connected to the Re-

beca infrastructure. A history is responsible for recording and replaying certain
kinds of notifications. Therefore, a history issues corresponding subscriptions
and saves the notifications it receives in an internal storage. On a regular basis
or triggered by some event, the history investigates the recorded notifications
and removes those notifications which are no longer needed. A consumer indi-
cates its wish to receive past notifications by attaching a replay description to
the subscription it issues. In order to notify histories about new subscriptions,
for each new subscription a corresponding subscription event is automatically
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published by the infrastructure that contains the subscription and the replay
description. Hence, a history subscribes to those subscription events whose em-
bedded subscription and replay description concern the notifications it records.
If a history receives such a subscription event, it determines those of the stored
notifications that match both the subscription and the replay description. After
that, each of the corresponding notifications is embedded in a replay event and
published by the history. The infrastructure makes sure that a replay event is
delivered to the specific consumer only.

5.2.4 Factory Concept

In large-scale publish/subscribe systems it might be impossible to produce all no-
tifications to which consumers may subscribe. Therefore, a mechanism is needed
that on one hand ensures the production of all notifications that are currently
needed and that on the other hand suppresses the production of notifications for
which there are currently no subscribers. This is especially important when con-
sidering multi-step information flows. If a producer stops to publish notifications,
it may also unsubscribe to the notifications it consumes. Hence, the producer
of these events might also be deactivated if there are no further consumer of
them. As a first step towards automatic instantiation and de-instantiation of
producers, Rebeca introduces the concept of factories.

The factory concept relies on subscription and unsubscription events that are
automatically published by the Rebeca infrastructure if a consumer subscribes
or unsubscribes. A factory manages a set of service instances and subscribes
to those subscription and unsubscription events whose embedded subscription
overlaps with the notifications its service instances are responsible to publish. If a
service factory receives a subscription event whose subscription is not completely
served by the active services, it either activates an existing service or creates a
new service that produces the desired notifications. If a service factory receives
an unsubscription event, it checks whether there are any service instances that
could be deactivated or de-instantiated and does so. Of course, these policies
must be handled in a flexible way. Often, factories need the help of histories at
the time a service is created or an existing service is reactivated.

5.2.5 Reference of Essential Classes

The implementation of the Rebeca notification infrastructure consists of classes
and interfaces. This section shortly describes the most important classes in
form of an enumerative reference. The relation among the classes is visualized
by a set of UML (unified modeling language) [84] diagrams. The usage of the
infrastructure is discussed in Section 5.3.
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LocalEventBroker

#RoutingEngine _engine

interface
EventBroker

+void publish(Event e)
+void subscribe(Subscription s, EventProcessor proc)
+void unsubscribe(Subscription s)
+void advertise(Advertisement a)
+void unadvertise(Advertisement a)

RemoteEventBroker

EventTransport _transport

EventTransport

+Event readEvent()
+void writeEvent(Event e)

LocalQueueTransport EventSocketTransportTCPEventBroker

EventRouterConnection

EventRouter

#RoutingEngine _engine

Figure 5.1: Infrastructure Classes

���	� � 


The Event class (see Fig. 5.2) is the base class of all notifications. AdminEvent

is an important subclass of the Event class that is used to communicate control
messages inside of the infrastructure.

� ����
���

The Filter class (see Fig. 5.3) is the abstract base class of all filters. Each
filter has a unique id which is used by the routing algorithms. All sub-classes of
Filter must implement the boolean match(Event e) method.
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Event

AdminEvent

AdminSubsEvent AdminAdvsEvent

SubscriptionEvent

#Subscription sub

UnsubscriptionEvent

#Subscription sub

ReplayEvent

+ReplayEvent(Event e, SubcriptionEvent se)

 Event event

Figure 5.2: Important Event Classes
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Filter

+boolean match(Event e)

Advertisement

+Advertisement(Filter f)

 Filter _filter

Subscription

+Subscription(Filter f)
+Subscription(Filter f, ReplayDescription rd)

 ReplayDescription _rd
 Filter _filter

Figure 5.3: Filtering Classes



5.2. THE REBECA NOTIFICATION INFRASTRUCTURE 113
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The Subscription class extends Filter and is the base class of all subscrip-
tions. A new Subscription is created from a given Filter and an optional
ReplayDescription (see Fig. 5.3).

�� ����
 � � ��� � �


Advertisement is a subclass of Filter that serves as the base class of all ad-
vertisements (see Fig. 5.3). A new Advertisement is constructed from a given
Filter.

���	� � 
��	�� 
���

The functionality of an event router is implemented by the EventRouter class
(see Fig. 5.1). A RoutingEngine is responsible for notification forwarding and
routing table actualization. An EventRouter has a RoutingEngine and a Serv-

erSocket. The ServerSocket is used to accept connections from EventBro-

kers and EventRouters. If a connection is established, an EventRouterConnec-

tion is created that handles all communication regarding this connection. At
creation time, an EventRouter can connect to another EventRouter which is
specified by its IP address and port number. Currently, no other methods to
establish connections are supported. Although, it is possible to have multiple
EventRouter instances in a single Java VM this is in general not useful.

��	�� 
 ����� ����� ��� �

RoutingEngine is the base class of all routing algorithms (see Fig. 5.4). Each
RoutingEngine has two RoutingTables which are the subscription routing table
and the advertisement routing table, respectively. While the former is used
to route notifications from producers to consumers, the latter is used to route
subscriptions from consumers to producers.

A RoutingEngine processes incoming notifications serially and in FIFO-
order. If the processed notification is an AdminEvent, the RoutingEngine up-
dates its routing tables accordingly and hands out proper AdminEvents to some
of the connected EventRouterConnections according to the applied routing al-
gorithm. If the notification is not an AdminEvent, the RoutingEngine hands it
out to the EventRouterConnections with matching subscriptions.

The RoutingEngine class is extended by the following classes that implement
the corresponding routing algorithms: Flooding, SimpleRouting, Identity-
Routing, CoveringRouting, and MergingRouting (see Fig. 5.4).

���	� � 
��	�� 
�����	 �	� ��� 
 �
	��

An EventRouterConnection (see Fig. 5.1) encapsulates the communication be-
tween an EventRouter and an EventBroker or another EventRouter. An
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RoutingEngine

#RoutingTable subEntries
#RoutingTable advEntries

SimpleRouting IdentityRouting CoveringRouting MergingRoutingRoutingTable

Flooding

Figure 5.4: Routing Algorithm Classes

EventRouterConnection has a pointer to the RoutingEngine of its associated
EventRouter. To this RoutingEngine an EventRouterConnection hands out
incoming notifications for further processing. Similar, the RoutingEngine calls
the void process(Event e) method of an EventRouterConnection to send out
notifications. An EventRouterConnection has also an EventTransport which
is responsible for carrying out the actual low-level communication.

���	� � 
�� ��	�� ���

EventBrokers (see Fig. 5.1) are the access points of the publish/subscribe sys-
tem. Hence, the EventBroker interface offers an API with the usual semantics:

public interface EventBroker {

void publish (Event e);

void subscribe (Subscription s, EventProcessor p);

void unsubscribe ( Subscription s);

void advertise (Advertisement a);

void unadvertise ( Advertisement a);

}

��	�
�
� ���	� � 
�� ��	�� ���

A LocalEventBroker is an EventBroker that is not connected to any Event-

Router (see Fig. 5.1). Therefore, this class alone is only useful to realize a
local publish/subscribe system. A LocalEventBroker has a RoutingEngine

that implements the applied routing algorithm.

���� 	�
� � �� � 
���� 	�� ���

A RemoteEventBroker (see Fig. 5.1) is a LocalEventBroker that additionally
establishes a connection to an EventRouter. Over this connection Events are
exchanged according to the used routing algorithm. The connection itself is
implemented by an EventTransport.
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� �������� �
�� � 	�� ���

A TCPEventBroker (see Fig. 5.1) is a RemoteEventBroker that uses an Event-

SocketTransport to connect to an EventRouter specified by its IP address and
port number.

� ���
�
� ��
 ���� � 
 � � 	�� � �

The DefaultEventBroker is an EventBroker that encapsulates an instance of
an EventBroker. It is usually initialized by DefaultEventBroker.init(args);

in the main method.

���	� � 
�� �
�
��� � 	 �


An EventTransport (see Fig. 5.1) realizes a bidirectional connection over which
Event instances are exchanged:

public abstract class EventTransport {

public Event readEvent ()}

public void writeEvent (Event e)}

}

Currently, there are two implementations available which are described in the
following.

���	� � 
��	� � � 
����
�
��� ��	 �


An EventSocketTransport (see Fig. 5.1) is an EventTransport that uses a
Socket to communicate Events as serialized Java objects by an ObjectInput-

Stream and an ObjectOutputStream.

���	� � 
���� �
� ��� �
�
��� � 	 �


An EventQueueTransport (see Fig. 5.1) is an EventTransport that uses a local
queue to communicate events. Therefore, it can only be used to connect partners
that reside in the same Java VM.

��	�� 
 �������
�
� � �

A RoutingTable (see Fig. 5.4) implements the functionality of a routing ta-
ble that is needed by the filtering-based routing algorithms. Essentially, a
RoutingTable consists of a set of RoutingEntry instances that can be added,
removed, and queried. For example, the set of destinations that match a given
notification can be determined by the Set getDestinations(Event e) method.
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���	� � 
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The EventProcessor interface (see Fig. 5.5) is essentially a callback that is im-
plemented by a consumer to define an endpoint for notification delivery. If a
matching notification arrives, the method process(Event e) is called with the
notification as parameter.

public interface EventProcessor {

public void process (Event e);

}

EventProcessor

+void process(Event e)

EventQueue

+Event tryConsume()
+Event consume()
+int size()

Figure 5.5: Event Processor Classes

���	� � 
���� �
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An EventQueue (see Fig. 5.5) is an EventProcessor that queues incoming no-
tifications. The topmost notification can be extracted either by the blocking
Event consume() or by the non-blocking Event tryConsume() method.

��������� � ��� 
 �
	 � ���� � 


If a consumer issues a new subscription, automatically a SubscriptionEvent

(see Fig. 5.2) is generated that contains the corresponding Subscription. Cur-
rently, this is done by the corresponding LocalEventBroker.

�	� � ������ � � � 
 ��	 � ���� � 


If a consumer cancels an active subscription, automatically an Unsubscription-

Event (see Fig. 5.2) is generated that contains the corresponding Subscription.
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Currently, this is done by the corresponding LocalEventBroker.

��������� � ��� 
 �
	 � ���������� � �	
 ��	 �

A SubscriptionSubscription is a Subscription that matches Subscription-
Events whose embedded Subscription overlaps with a given Filter. Addi-
tionally, it can be tested whether the optional ReplayDescription of the sub-
scription overlaps with a given ReplayDescription, too. UnsubscriptionSub-
scriptions are used by histories and factories.

�	� � ������ � � � 
 ��	 � ���� ��� � � �
 ��	 �

An UnsubscriptionSubscription is a Subscription that matches Unsub-

scriptionEvents whose embedded Subscription overlaps with a given Filter.
SubscriptionSubscriptions are used by factories.

���� �
��� � �� � 


A ReplayEvent (see Fig. 5.2) is published by histories in reaction to the receipt
of a SubscriptionEvent. It is created from a given Event and the received
SubscriptionEvent. The infrastructure ensures that a ReplayEvent is only
delivered to the consumer that has subscribed to the subscription that is em-
bedded in the SubscriptionEvent.

5.3 Using the Infrastructure

In this section it is shortly described how one can use the Rebeca notifica-
tion infrastructure to build a simple distributed application that is based on
publish/subscribe.

Suppose we have potential consumers of ExampleEvents that are published
by a respective producer. Moreover, the producer should only be active if there
is at least one consumer subscribed, and the last ten occurrences of published
ExampleEvents should be delivered to a consumer that has newly subscribed.
This application consists of a factory that manages the producer, a history, and
at least a single consumer. In the following, the classes that are necessary to
realize this example are described and it is depicted how the example can be run.
All mentioned classes are part of the Rebeca distribution and can be found in
the Events.example package.

5.3.1 Implementing a Sub-Class of �������
	

The ExampleEvent class extends the Event class and provides a method to print
some information (see Fig. 5.6).
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public class ExampleEvent extends Event {

ObjectId _id ;

public ExampleEvent() {

_id=new ObjectId ();

}

public String toString () {

return "Events .example . ExampleEvent: {" + _id + "}";

}

}

Figure 5.6: A simple user-defined event

5.3.2 Implementing a Consumer

The ExampleConsumer class (see Fig. 5.7) realizes a consumer that is inter-
ested in ExampleEvents. It implements the EventProcessor interface by provid-
ing an implementation of the public void process(Event e) method. This
endpoint is then bound to a subscription that matches ExampleEvents. An
ExampleConsumer can be started by:

java Events.example.ExampleConsumer

public class ExampleConsumer implements EventProcessor {

private EventBroker _broker ;

private Subscription _sub;

public ExampleConsumer () {

_broker = DefaultEventBroker. getEventBroker();

_sub = new Subscription(

new EventClassFilter(ExampleEvent. class ));

_broker .subscribe (_sub, this );

}

public void process (Event e) {

System .out.println (e.toString ());

}

public stat ic void main(String args []) {

DefaultEventBroker.init(args );

ExampleConsumer consumer = new ExampleConsumer ();

}

}

Figure 5.7: A simple event consumer
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5.3.3 Implementing a Producer

The ExampleProducer class (see Fig. 5.8) extends the DefaultEventProducer

class. First, it issues an advertisement that indicates that it will publish Exam-

pleEvents, and after that it publishes an ExampleEvent every 3 seconds. This
is done in a separate thread to avoid blocking the calling thread. An Example-

Producer can be started by invoking

java Events.example.ExampleProducer

in a shell.

public class ExampleProducer extends DefaultEventProducer {

boolean _b=true;

Advertisement _adv;

public ExampleProducer () {

super.setEventBroker(

DefaultEventBroker.getEventBroker ());

_adv = new Advertisement(

new EventClassFilter(ExampleEvent. class ));

advertise (_adv );

Thread th = new Thread () {

public void run () {

while (_b) {

publish (new ExampleEvent());

try {

Thread .sleep (3000);

}

catch ( InterruptedException e) {}

}

}

};

th.start ();

}

public void shutdown () {

_b= fa l se ;

unadvertise (_adv );

}

public stat ic void main(String args []) {

DefaultEventBroker.init(args );

ExampleProducer producer = new ExampleProducer ();

}

}

Figure 5.8: A simple event producer
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5.3.4 Implementing a History

An ExampleHistory (see Fig. 5.9) is a simple history that records and replays
ExampleEvents. More precisely, it subscribes to ExampleEvents and continually
keeps track of the last ten occurrences it has received. Furthermore, it subscribes
to SubscriptionEvents whose embedded subscription matches ExampleEvents.
If it receives such a SubscriptionEvent, it publishes each of the recorded events
as ReplayEvent. The code of the example also shows how to use an anonymous
subclass of EventProcessor to dispatch matching event to a specific method.
An ExampleHistory can be started by:

java Events.example.ExampleHistory

5.3.5 Implementing a Factory

The ExampleFactory (see Fig. 5.10) is a simple factory managing a single
ExampleProducer. The factory subscribes to SubscriptionEvents and Unsub-

scriptionEvents that deal with ExampleEvents. If the factory receives a Sub-

scriptionEvent, it activates a producer that publishes ExampleEvents if it is
not already active, and adds the id of the specific subscription to its set of ac-
tive subscriptions. If it receives an UnsubscriptionEvent, it deletes the specific
subscription id from its set of active subscriptions and deactivates the producer
if there are no subscribers left. The code of this example also shows how to use
the instanceof operator for event demultiplexing. An ExampleFactory can be
started by:

java Events.example.ExampleFactory

5.3.6 Starting an �������
	������ 	 ���
An EventRouter is created with the following command:

java Events.EventRouter [-lport <portnumber>]

[-rport <portnumer>] [-rhost <hostname>]

The lport option specifies on which port the router listens for incoming
connections. If omitted the router listens on port 8020. If the rport or the
rhost option is present, the EventRouter tries to connect itself to a parent
EventRouter which resides on the specified host (or the local host if the rhost

option is omitted) and listens for incoming connections on the given port (or on
port 8020 if the rport option is omitted).

5.3.7 Running the Example

In the following, it is described how to run our simple example. First, we have
to select the routing algorithm that is used. Currently, this is done by editing
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public class ExampleHistory {

EventBroker _broker ;

Subscription _sub;

SubscriptionSubscription _subSub ;

int _n=0;

Event [] history =new Event [10];

public ExampleHistory () {

_broker = DefaultEventBroker. getEventBroker();

_sub = new Subscription(

new EventClassFilter( ExampleEvent. class ));

_broker .subscribe (_sub, new EventProcessor () {

public void process (Event e) {

processExampleEvent (( ExampleEvent)e);

}

});

SubscriptionSubscription _subSub =

new SubscriptionSubscription (

new EventClassFilter(ExampleEvent. class ));

_broker .subscribe (_subSub , new EventProcessor () {

public void process (Event e) {

processSubEvent(( SubscriptionEvent)e);

}

});

}

protected void processExampleEvent(ExampleEvent ee) {

history [_n%10]=ee;

_n++;

}

protected void processSubEvent(SubscriptionEvent se ) {

ReplayEvent re;

ExampleEvent ee;

for ( int i=0;i<10;i++) {

ee=( ExampleEvent)history [i];

i f (ee!=null ) {

re=new ReplayEvent (ee,se);

_broker .publish (re);

}

}

}

public stat ic void main(String args []) {

DefaultEventBroker.init(args );

ExampleHistory history = new ExampleHistory();

}

}

Figure 5.9: A simple event history
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public class ExampleFactory implements EventProcessor {

EventBroker _broker ;

ExampleProducer _producer ;

SubscriptionSubscription _subSub ;

UnsubscriptionSubscription _unsubSub ;

HashSet _subs=new HashSet ();

public ExampleFactory () {

_broker = DefaultEventBroker. getEventBroker();

_subSub = new SubscriptionSubscription (

new EventClassFilter(ExampleEvent. class ));

_broker .subscribe (_subSub , this );

_unsubSub = new UnsubscriptionSubscription (

new EventClassFilter(ExampleEvent. class ));

_broker .subscribe (_unsubSub , this);

}

protected void addSubscription(SubscriptionEvent se ) {

i f ( _producer ==null ) {

System .out.println ("ExampleFactory: Starting

Service");

_producer =new ExampleProducer ();

}

_subs .add(se.getSubscription (). getId ());

}

protected void removeSubscription(UnsubscriptionEvent ue) {

_subs .remove (ue.getSubscription (). getId ());

i f ( _subs.size ()==0 && _producer !=null ) {

System .out .println ("ExampleFactory: Stopping

Service");

_producer .shutdown ();

_producer =null;

}

}

public void process (Event e) {

i f (e instanceof SubscriptionEvent ) {

addSubscription(( SubscriptionEvent)e);

return;

}

i f (e instanceof UnsubscriptionEvent ) {

removeSubscription (( UnsubscriptionEvent )e);

return;

}

}

public stat ic void main(String args []) {

DefaultEventBroker.init(args );

ExampleFactory ef=new ExampleFactory ();

}

}

Figure 5.10: A simple service factory
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and compiling the Config class. It can be chosen among flooding and the follow-
ing filter-based routing algorithms: simple, identity-based, covering-based, and
merging-based routing, each with or without advertisements.

After selecting the routing algorithm, we have to start an EventRouterwhich
is done by the command:

java Events.EventRouter

Subsequently, we start the factory

java Events.example.ExampleFactory

and the history

java Events.example.ExampleHistory

Finally, we start the consumer by:

java Events.example.ExampleConsumer

The consumer starts to output ExampleEvents after a short delay. If we start a
second consumer after some time, it receives the last (at most) 10 instances of
ExampleEvents that have been recorded by the history, too. Of course, it is also
possible to directly start the producer instead of using the factory:

java Events.example.ExampleProducer

5.4 Example Applications

In this section two example applications are described, a stock trading appli-
cation and an infrastructure for self-actualizing web pages. The implemented
applications are typical examples of information-driven applications that benefit
from an event-based approach. Each of the applications has been implemented
in Java by exclusively using the Rebeca event notification infrastructure. In
the following, the example applications are described in detail.

5.4.1 Self-Actualizing Web Pages

In this subsection an infrastructure for self-actualizing web pages is described.
A demo of the infrastructure can be accessed on-line on the Internet [39].

Self-actualizing web pages include two important aspects: Firstly, the content
of static web pages can be actualized in reaction to the occurrence of specific
notifications, and secondly, notifications can be used to trigger clients to update
the pages that they display. These two parts are called the server-side and the
client-side, respectively. They are described in detail below.
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Server-Side

On the server-side, static web pages are updated in reaction to the occurrence of
specific events. For example, a page whose content depends on the current price
of a stock should be updated if the price changes. This can easily be realized
by using the Rebeca infrastructure: The component that is responsible for
updating certain web pages subscribes to those notifications on which the pages
depend and updates the affected pages accordingly if a notification arrives.

Client-Side

In the preceding subsection, the server-side of self-actualizing web pages has been
discussed. To update the pages on the web server does not cause the browser of
a web client to update the pages they display. A simple but inefficient approach
is to use the HTML REFRESH directive to periodically reretrieve the displayed
page. To update the displayed page efficiently, a mechanism to notify web clients
about the change is needed. There are three basic approaches to achieve that a
client always displays the current version of a web page:

• Pull. In this scenario the client periodically issues page requests in order
to get the current web page.

• Push. Here, the client is asynchronously notified about page updates.
The complete page or equivalent information to construct it, e.g., from the
previous version, is embedded in the notification.

• Push-Triggered Pull. The client is asynchronously notified about a page
update, but the page is retrieved by a conventional HTTP page request,
i.e., a pull.

To realize the push and the push-triggered pull approach, Rebeca has been
integrated with standard Internet browsers: A lean and invisible Java applet is
embedded into the HTML code of the web page. If a page is loaded into a browser
window, the applet is activated. In this case it connects to a remote event broker
and subscribes to interesting events. To which host and port the applet should
connect and which events are of interest is configured by a set of <PARA> tags.
After issuing the subscription(s), all matching events are subsequently delivered
to the client. Triggered by the receipt of such a notification either the displayed
page is directly updated (push) or a new version of the page is retrieved (push-
triggered pull). The next two paragraphs describe how this is achieved.

Push. When using the push-based approach, only a single page request occurs
to retrieve the initial version of the page to be displayed. Subsequent updates of
the page or new pages to be displayed are extracted from the received notifica-
tions. For example, either the whole HTML code of the page can be embedded
in the notification or the embedded information can be used by the client to con-
struct the page. In the latter case, the client must know how to derive the page.
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The pure push approach is realized by calling Javascript from Java by using the
netscape.javascript package that is a part of LiveConnect that is shipped
with newer version of the SUN JRE or JDK. As underlying Java platform the
Java Plug-in from SUN is used because this plug-in is supported by current
versions of both Netscape Communicator and Microsoft Internet Explorer.

Push-Triggered Pull. Here, the notification that has arrived triggers the
client to pull a new version or a new page from a web server by a standard
HTTP request. For example, the URL of the page to be loaded can be extracted
from the received notification. The actual request is achieved by calling the
showDocument() method on the class Applet with the appropriate URL. One
problem with push-triggered pull is that many clients may by notified at nearly
the same time. Therefore, these clients will almost simultaneously request the
same page. This may overload the web server and cause longer response times. A
simple solution to this that better shapes the traffic is to use client specific delays
that are applied before retrieving the new page. A more advanced approach is
to use snoopy caches that act as web proxies and offer the current versions of
the web pages to be retrieved. Which proxy should be used is encoded in the
URL that is delivered to the client.

5.4.2 Stock Trading Platform

As second and more complex example, a stock trading platform has been im-
plemented which allows users to monitor stocks in real-time without requiring
continuous attention. The fact that distinguishes its realization among others is
that it is engineered in a completely event-driven way.

The stock trading applications consists of three main parts which are a trig-
ger list (see Fig. 5.11), a portfolio (see Fig. 5.12), and charts (see Fig. 5.13). All
information that is displayed inside of their corresponding windows is real-time
and self-actualizing. Commands to buy and sell stocks can be input on a com-
mand line prompt. Moreover, the user can be notified by a SMS (short message
service) that is sent to its mobile phone if a certain situation occurs.

In the following, the functionality of the main parts of the application is
explained. After that, the overall architecture of the application is described.

Trigger List

The most important part of the stock trading application is a self-actualizing
real-time trigger list, which is depicted in Fig. 5.11. This comfortable tool allows
a user to monitor a large set of stocks without requiring continuous attention
by defining two kinds of triggers which are called absolute and relative limits,
respectively. An absolute limit monitors whether the price of a certain stock is
within a given range. Therefore, it is triggered if the price of the respective stock
is either below or above this range. A relative limit monitors whether the price
of a given stock has increased or decreased a given number of percents within a
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given time interval. Here, the user can choose among a set of predefined relative
limits. If at least one absolute limit is triggered, the program beeps twice.
Otherwise, the program beeps once if at least one relative limit is triggered.

In Fig. 5.11 a screen-shot of a trigger list is shown. The triggered absolute
limits are shown in the upper part of the window, the non-triggered absolute
limits are depicted in the middle, and the triggered relative limits are shown in
the lower part of the window. For both types of limits, the first two columns refer
to the name of the respective stock, its id, and its current price, respectively.
For an absolute limit, the fourth and the fifth column refer to the lower and the
upper limit of the range, respectively. For a relative limit, on the other hand,
the fourth and the following columns refer to the relative change in percent, the
minimum price, the maximum price, and the applied rule.

Figure 5.11: A self-actualizing real-time trigger list

Portfolio

The second important feature of the stock trading application is a self-actualizing
real-time portfolio which depicts detailed information about the stocks that a
user currently holds (see Fig. 5.12). For each stock the quantity the user holds,
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the purchase price of the stock, and its current price is shown. Besides this, the
purchase price of each position and its current value are also given. Finally, the
overall profit (or loss) is shown at the bottom of the portfolio.

Figure 5.12: A self-actualizing real-time portfolio

Charts

The stock trading application also provides self-actualizing real-time charts that
visualize the price of a certain stock over time (see Fig. 5.13). If a new real-time
chart is created, the evolution of the stock price of, for example, the last two
hours is shown, and if a new quote arrives, the diagram is updated instantly.

Figure 5.13: A self-actualizing real-time chart
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Overall Architecture
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Figure 5.14: The architecture of the stock trading application

In order to get the current stock quotes, every minute a set of web pages
is retrieved from which the quotes are extracted. If the price of a stock has
changed, a corresponding QuoteEvent is published. To avoid a burst of quotes
occurring every minute, all quotes of a certain period are uniformly distributed
over this period.

Fig. 5.14 depicts the overall architecture of the stock trading application. To
realize the functionality in a completely event-driven way, a set of histories and
factories is used. For example, the QuoteHistory records QuoteEvents that are
needed by the real-time charts, as well as by the absolute and the relative limits.

5.5 Related Work

In this section implementations of other notification services are related to the
Rebeca notification infrastructure.
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5.5.1
���������

Currently, Siena [17, 18, 20, 21, 22, 23, 96, 117] offers two prototypes, one
written in C++ that implements the peer-to-peer variant and a second one im-
plemented in Java that realizes the hierarchical version of the covering-based
routing algorithm. Currently, the use of advertisements is not supported. More-
over, the C++ version is no longer supported and incompatible with the Java

version. This means that, in contrast to Rebeca, Siena currently does not
allow different routing algorithms to be compared. On the other hand, Siena

includes a mechanism to efficiently recognize sequences of events that is currently
missing in Rebeca. At the moment, Siena is limited to name/value pairs, be-
cause this data/filter model is hard-coded in the base classes of, for example,
the notifications. Moreover, Siena uses its own restricted data format for seri-
alization/deserialization. In contrast to this, it is possible by using Rebeca to
experiment with various data/filter models, serialization/deserialization mech-
anisms, and routing algorithms. The Siena prototypes are publicly available,
but currently no implemented example applications exist.

5.5.2 JEDI

The current implementation of JEDI [13, 14, 28, 29, 30] uses the hierarchical
version of covering-based routing described by Carzaniga [17]. Other routing
algorithms are not looked at. Moreover, the expressiveness of their data/filter
model is rather limited because notifications and filters are ordered sets of strings
and matching is solely based on equality and prefix tests. Cugola, Di Nitto, and
Fuggetta also depicted how JEDI can be used to engineer an application called
OPSS (ORCHESTRA Process Support System) which is essentially a WFMS
(Work Flow Management System) [29].

5.5.3 Gryphon

The Gryphon prototype [1, 9, 8, 85, 59, 86, 103] developed at the IBM T. J.
Watson Research Center offers an implementation of the Java Message Service
(JMS) API [111] through. Gryphon uses simple routing without advertisements
and its matching algorithm (which is based on a parallel search tree) is fast but
restricted to simple tests. Alternative routing algorithms are not considered,
and currently, no example applications are available. Moreover, the prototype
is currently not publicly available.

5.5.4 �����
� �

Elvin is a content-based publish/subscribe middleware developed at the Dis-
tributed Systems Technology Center (DSTC) [44, 100, 101]. It uses a subscrip-
tion language that is very expressive but probably inhibits routing optimizations.
Elvin exploits a federation of event brokers, but unfortunately, the routing al-
gorithms are not described. Interestingly, a concept called quenching is offered
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by Elvin which allows producers to detect whether there are no consumers cur-
rently subscribed to the notifications they produce. Affected producers can cease
production of those events in this case. This approach is somewhat related to
the factory concept of Rebeca. Unfortunately, it is not described how quench-
ing in Elvin is achieved. The Elvin project is rather advanced and a couple of
example applications exist. Both, the prototype and the example applications
are publicly available.

5.5.5 Hermes

Recently, Bacon and Pietzuch presented Hermes [90, 91], a notification service
that implements content-based notification delivery on top of a peer-to-peer
overlay network. The prototype uses rendezvous nodes for event types and
supports advertisements. Hermes is implemented in Java and communication
between the components takes place by passing XML-defined messages. XML
Schema is used to define message formats and event types allowing for a rich
type system including user-defined types. In order to hide the complexity of
XML messages from the client, a mapping between XML Schema and Java is
performed.

5.6 Discussion

The implemented content-based notification infrastructure Rebeca is a con-
tribution to the area of publish/subscribe systems for several reasons. Firstly,
and in contrast to most other work, Rebeca offers a whole set of routing algo-
rithms. This allows routing algorithms to be compared to each other in a uniform
environment. The implemented routing algorithms include flooding and diverse
filter-based routing algorithms with and without advertisements. Moreover, new
routing algorithms can be added easily.

Secondly, instead of carrying out simulations the prototype also served as the
basis for the experiments that are described in the next chapter. This increases
the validity of the results compared to simulation based results (see Chapter 6).
Moreover, Rebeca provides basic support for replaying past events and service
factories. The necessity of these concepts became evident while implementing
the stock trading application which uses histories and factories.

Finally, the implemented example applications, a stock trading platform and
an infrastructure for self-actualizing web pages show that reasonable applications
can be realized by using the implemented notification infrastructure.
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6.1 Introduction

This chapter presents an evaluation of the implemented filter-based routing al-
gorithms, giving a detailed insight into their behavior. The evaluation focuses
on the inherent characteristics of routing algorithms (routing table sizes and fil-
ter forwarding overhead) instead of system-specific parameters (CPU load etc.).
Moreover, it is based on an implemented prototype (cf. Chapter 5) instead of
simulations, increasing the validity of the results. Besides the comparison of the
implemented routing algorithms, the effects of locality among the interests of
consumers and imperfection when carrying out filter merging are also investi-
gated. At appropriate places analytical results are also derived and compared
to the outcome of the experiments to corroborate their validity.

To the author’s knowledge, the evaluation described here is the first that
presents a detailed investigation of the routing table sizes and the filter for-
warding overhead. These fundamental characteristics of content-based routing
algorithms have been neglected by previous evaluations (e.g., in the context of
Siena [17, 22], JEDI [13, 14], and Gryphon [8, 85]); instead they mainly concen-
trated on system-specific parameters (e.g., the load induced on brokers) which
depend on further assumptions, like the available network bandwidth and pro-
cessing power (and their costs), as well as the used matching algorithm. These
magnitudes should be reinvestigated after the inherent tradeoffs and parameter
relations of content-based routing algorithms are well understood.

The derived results offer new and detailed insights into the behavior of
content-based routing algorithms: First, using advanced routing algorithms in
large-scale publish/subscribe systems can be considered valuable. They signifi-
cantly reduce both the routing table sizes and the filter forwarding overhead.
Second, the use of advertisements can considerably improve the scalability.
Third, advanced routing algorithms operate efficiently in more dynamic environ-
ments than was previously thought. Fourth, the good behavior of the algorithms
even improves if the interests of the consumers are not evenly distributed, which
can be expected in practice. Finally, the evaluation of imperfect merging shows
that it further reduces the routing table sizes. Altogether, the evaluation shows
that advanced content-based routing algorithms extend the application domains
in which publish/subscribe can be applied significantly.

This chapter is structured as follows: Sect. 6.2 describes the general setup of
the experiments. After that, the experiments themselves and their results are
explained in detail. Sect. 6.3 and 6.4 investigate the routing table sizes and the
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filter forwarding overhead, respectively. The effects of locality and the evaluation
of imperfect merging is presented in Sect. 6.5. Finally, the results of this chapter
are related to previous work (see Sect. 6.6).

6.2 General Setup

This section describes the general setup of the experiments which were performed
in the context of a stock trading information system (see Section 5.4.2) where
clients can subscribe and unsubscribe to certain stock information and a central
publisher of this information (e.g., a stock exchange) exists. Besides the used
routing algorithm, the results are influenced by the characteristics of the broker
topology, the consumers, and the producers. Investigating the relations among
all parameters that are involved is beyond the scope of this work. Therefore, this
evaluation varies some main parameters (e.g., the number of active subscriptions
x) and assumes a simple but meaningful scenario in which the other parameters
remain constant (see Table 6.1). In the following subsections, the setup with
respect to the mentioned parameters is described in more detail.

Number of consumers per local broker 1 − 200
Number of subscriptions per consumer 10
Number of stocks 1000
Number of notification sources 1
Number of event routers 40
Number of local event brokers 67
Number of neighbor broker fix
Number of hierarchy levels 5
Distribution of clients to brokers random
Distribution of stocks to clients random
Degree of locality none

Table 6.1: Fixed and varied parameters of the setup

6.2.1 Broker Topology

The broker topology that is used has a major impact on any experiment. The
main parameters that characterize a broker topology are:

• the number of brokers,

• the number of neighbor brokers which may be constant or vary,

• the existence or absence of connectivity cycles, and

• the diameter of the network which is the longest path connecting two
arbitrary brokers.
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In line with most previous work, this work concentrates on a hierarchical, sym-
metrical, and acyclic, i.e. tree-like, topology. To use a symmetrical topology
facilitates the interpretation of the findings, and the hierarchical structure is
justified by the hierarchical structure of real networks, like the Internet. Future
work will include topologies with cycles to diminish single points of failure. Due
to implementation reasons, brokers which have local clients and those that have
not are distinguished. The former are called local brokers while the latter are
called routers. A local broker is connected to exactly one router.

The investigated topology has 5 levels of brokers. Starting from a single
router, called the root router, all routers except the leaves are connected to 3
subordinate routers. To each non-leaf router a single local broker is connected,
while to each leaf router two local brokers are connected. Therefore, the used
topology consists of 40 routers and 67 local brokers. In Fig. 6.1 a topology of
the same type with only 4 levels is shown. The circles refer to routers while the
squares refer to local brokers.

Figure 6.1: Broker topology with 4 levels.

6.2.2 Characteristics of the consumers

The characteristics of its consumers have a large impact on the performance of
a publish/subscribe system. Here, the main parameters are

• the number of consumers,

• the number, type, and distribution of the subscriptions,
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• the assignment of the subscriptions to the consumers (e.g. locality of
interests),

• the assignment of the consumers to the local brokers, and

• the rate of subscribing and unsubscribing.

In the experiments the consumers are equally distributed among the local bro-
kers. It is distinguished between active clients that are subscribed, i.e., that have
issued their subscriptions, and inactive clients that have no active subscriptions.
If the size of the routing tables is investigated, all clients are active, while, when
investigating the filter forwarding overhead, on average only half of them are
active; this has to be kept in mind when interpreting the figures. In the latter
case, a large number of iterations is carried out: Each time an arbitrary client
is picked and its state is toggled from active to inactive or vice versa.

Each consumer has 10 random but distinct subscriptions. As the basis
for the investigations quote subscriptions, which are borrowed from the imple-
mented stock trading application (see Sect. 5.4.2), are used. A quote subscription
matches all quotes of a specific stock that is specified by its unique symbol. For
simplicity it is assumed that the number of different stocks m equals 1000. This
choice may seem to be arbitrary, but indeed, the used subscriptions cover a wider
range of subscription types than it seems at a first glance. For example, if m
is different, findings can be derived by scaling. Moreover, if subscriptions have
more than one attribute, results can be obtained by assuming that m equals the
product of the number of distinct values each attribute can have. For example,
subscriptions with three attributes where each attribute has 10 possible values
would lead to the same results. In order to compare covering-based with merg-
ing based-routing additionally quote interval subscriptions are applied which are
slightly more complex. This type of subscription matches all quotes of a certain
stock whose price is within a certain range, e.g. $10− $20. The rational for this
distinction will become clear later.

6.2.3 Characteristics of the producers

The characteristics of the producers also influence the behavior of a publish/sub-
scribe systems. The main parameters of a set of producers are

• the absolute number of producers,

• the number, type, and distribution of the advertisements,

• the assignment of the advertisements to the producers,

• the assignment of the producers to the local brokers, and

• the rate of advertising and unadvertising.
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In the experiments the root daemon serves as a single source of notifications,
denoted by S . At system start-up this ‘producer’ issues an advertisement that is
never revoked and overlaps with all possible subscriptions. This simple scenario
is sufficient to deduce the effects of static advertisements. Facts about the adver-
tisement routing tables that would arise if more than one producer is present can
also be inferred from the experiments because the advertisement routing tables
are managed by the same algorithms as subscription routing tables. Of course,
the factor by which the use of advertisements reduce the size of the subscription
routing tables in such a scenario depends on the characteristics of the advertise-
ments, e.g., their number and the degree of overlap. In the worst case, if at each
local broker a producer issues an advertisement that overlaps with all subscrip-
tions, advertisements would be completely useless. Fortunately, the probability
for this case is very low. Instead, it can be expected that advertisements are
only partly overlapping.

Scenarios with dynamic advertisements are out of the scope of this thesis
and are left for future work. Indeed, the filter forwarding overhead induced by
dynamic advertisements is difficult to predict and depends, for example, on the
rate of advertising and unadvertising, but it seems reasonable to assume that
compared to subscriptions this rate will be rather low.

6.3 Routing Tables Sizes

The first key characteristic of any routing algorithm is the evolvement of the
size of the routing tables with respect to the number of active subscriptions.
The results of these experiments are described in the subsequent subsections,
separately for each individual routing algorithm. The routing table size is an
indication of the space complexity of the algorithms in the “size” of the system.
Note that only remote routing entries are counted here to concentrate on the
behavior of filtering-based routing algorithms. The number of local routing
entries in the system equals the number of active subscriptions; they also exist
if flooding is performed.

6.3.1 Simple Routing

If simple content-based routing without advertisements is used, the size of a rout-
ing table (local and remote entries) is equal to the number of active subscriptions
x. In particular, the characteristics of the subscriptions have no impact on the
size of the routing tables. The sum of all remote routing table entries Σ|R| is
given by (|V | − 1) · x. Therefore, Σ|R| grows linearly with both the number of
active subscriptions and the number of brokers (see Fig. 6.2). This is due to the
fact that each subscription is stored on every broker.
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6.3.2 Simple Routing with Advertisements

The use of advertisements significantly reduces the size of the routing tables
because in this case a subscription is only stored on brokers that are on a path
from the respective consumer to the sources of the notifications of interest. This
means that a local broker can only have remote routing entries if at least one of
its clients has issued an advertisement. Therefore, local brokers have no remote
routing entries at all while the size of the routing table of a router depends
on the level to which it belongs (see Tab. 6.2). The root router might become
overloaded first, because it has the largest routing table whose size equals the
number of active subscriptions. Hence, the use of advertisements has not reduced
the routing table size of the root router. The routing tables of the brokers on
the lower levels are much smaller. Their size corresponds to the number of
subscriptions that are active in the respective subnet.

Level Number of Routers Size of Routing Table
1 1 1.00 · x
2 3 0.33 · x
3 9 0.10 · x
4 27 0.03 · x

Table 6.2: Routing Table Size for Simple Routing with Advertisements

The sum of all remote routing entries Σ|R| is given by Pavg · x where Pavg is
the average path length from a consumer to the notification source, i.e., the root
router. This means that the routing tables still grow linearly with the number
of active subscriptions (see Fig. 6.2) but logarithmically instead of linearly in
the number of brokers. The average path length depends on the topology and
the positioning of the notification source. For the given topology Pavg with the
source at the root router Pavg is minimal and equals (54 · 4 + 9 · 3 + 3 · 2 + 1 ·
1)/67 = 3.73. Therefore, the use of advertisements reduces Σ|R| by a factor of
(|V |−1)/Pavg = 28.4 which is independent of the number of active subscriptions
(see Fig. 6.4). If the source is positioned at a local broker of a leaf router (which
is the worst case), Pavg would be equal to (1·2+1·3+5·4+3·5+14·6+6·7+36·
8)/67 = 6.78. Importantly, if the hierarchy has more levels, the factor by which
advertisements reduce the routing table sizes would drastically increase because
the number of brokers grows exponentially in the number of levels. Therefore,
advertisements increase the scalability of large publish/subscribe systems.

6.3.3 Routing based on Identity

Due to the identity-based routing algorithm, routing table entries that have
identical filters and destinations are diminished. In consequence, the size of the
routing table of a broker B is limited by the number of stocks multiplied by the
number of its neighbors, i.e., m · |NB |. This means that, in contrast to simple
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routing, the size of a routing table does not grow unboundedly with respect to
the number of active subscriptions. Since no advertisements are used, this limit
is approached for all brokers at equal speed.

For relatively small numbers of active subscriptions the sum of all remote
routing tables entries grows as in the case of simple routing, i.e., nearly lin-
early, while for only slightly larger numbers the gradient monotonically decreases
(Fig. 6.2). This is because for larger numbers of subscriptions the probability
increases that subscriptions are identical. In the investigated scenario, Σ|R| con-
verges to 212, 000 for large numbers of subscriptions. More generally, if G is an
arbitrary acyclic graph Σ|R| converges to

Σ|R| =
∑

B∈V

(|NB | · m)

= 2 · m · |E|

= 2 · m · (|V | − 1)

6.3.4 Routing based on Identity with Advertisements

The use of advertisements offers similar benefits for identity-based routing as in
simple routing, e.g., only the routers have remote routing entries. For all routers
B except the source, the size of a routing table is limited by m · (|NB |−1), while
for the source it is limited by m · |NB |. These limits are reached for a relatively
small number of subscriptions for the topmost router, while for the routers on
the lower levels a larger number is necessary to reach the saturation point.

For relatively small numbers of subscriptions the sum of all remote routing
entries approximates that of simple routing with advertisements, but the gradi-
ent decreases rapidly and the sum finally converges to 106, 000. Indeed, if G is
an arbitrary acyclic graph, the sum of all remote routing entries is limited by

Σ|R| = m · |NS | +
∑

B∈V \{S}

(

(|NB | − 1) · m
)

= m ·
(

∑

B∈V

(|NB | − 1)
)

+ m

= m ·
(

∑

B∈V

|NB |
)

+ m(1 − |V |)

= 2 · m · |E| + m(1 − |V |)

= 2 · m · (|V | − 1) + m(1 − |V |)

= m · (|V | − 1)

Hence, the use of advertisements halves the limit without advertisements. In-
terestingly, this limit does not depend on the positioning of the source.

The factor by which the use of advertisements reduces Σ|R| depends on
the number of issued subscriptions (see Fig. 6.4). The factor is near to (|V | −
1)/Pavg = 28.4 for very small numbers of subscriptions but it quickly decreases
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for larger numbers of subscriptions. Finally, it converges to 2 meaning a mini-
mum improvement of 50%.

6.3.5 Routing based on Covering

Covering-based routing behaves exactly like identity-based routing if quote sub-
scriptions are used because a quote subscription covers another quote subscrip-
tion iff they are identical. Therefore, quote interval subscriptions have been used
to investigate the behavior of covering-based routing. The following type of quote
interval subscriptions has been used: symbol = stock ∧ price ∈ [50− t1, 50+ t2]
with t1, t2 ∈ [0, 50] randomly selected. This choice seems to be justified because
in practice it can be expected that most quote interval subscriptions that refer
to the same stock share a common price which is near to the current price of
the stock. For two given quote interval subscriptions the probability that one of
them covers the other is 50%. Of course, the benefits of covering-based routing
would be less evident if this probability was lower.

Interestingly, the size of routing tables and the sum thereof are larger and
converge more slowly for covering-based routing with quote interval subscriptions
than for identity-based routing with quote subscriptions (see Fig. 6.3). This
is due to the fact that, opposed to quote subscriptions, several quote interval
subscriptions can exist that refer to the same stock and that do not cover each
other. On the other hand, identity-based routing would nearly degrade to simple
routing if it was applied to quote interval subscriptions. Therefore, the use of
covering inherently improves the scalability if these more complex subscriptions
are applied.

6.3.6 Routing based on Covering with Advertisements

Compared to identity-based routing with advertisements, the size of the routing
tables and the sum thereof are larger and converge more slowly (see Fig. 6.3).
The rational for this has already been presented in the preceding subsection.
Interestingly, the difference is not as great as if advertisements are not used.

The curve of the factor by which advertisements reduce the sum of all remote
routing entries is depicted in Fig. 6.4. It looks similar to that of identity-based
routing but it declines more slowly and therefore, the use of advertisements offers
even more advantages if covering-based routing is used.

6.3.7 Routing based on Merging

The implemented merging-based routing algorithm leads to a routing table that
has at most one remote entry for each neighbor if quote subscriptions are used.
Hence, the sum of all remote routing entries Σ|R| is limited by

∑

B∈V |NB | =
2 · |E| = 2 · (|V | − 1). Because of that, and in order to compare it with covering-
based routing, quote interval subscriptions have been used to evaluate merging-
based routing. The resulting curve is shown in Fig. 6.3. It is identical to that
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of identity-based routing with quote subscriptions. This is because two given
quote interval subscriptions of the used form can always be merged if they refer
to the same stock. Of course, the effect of filter merging would be smaller if the
merging probability was lower than 100%, but imperfect merging can moderate
this (see Sect. 6.5.2). In any case, the use of merging improves the scalability if
quote interval subscriptions are used.

6.3.8 Routing based on Merging with Advertisements

If merging with advertisements is used in conjunction with quote subscriptions,
the routing table of the source contains at most one remote routing entry for
each neighbor while those of the other brokers contain at most the number of
neighbors minus one. The limit of the sum of all remote routing entries can be
derived in the following way:

Σ|R| = |NS | +
∑

B∈V \{S}

(|NB | − 1)

=
(

∑

B∈V

(|NB | − 1)
)

+1

=
(

∑

B∈V

|NB |
)

−|V | + 1

= 2 · |E| − |V | + 1

= 2 · (|V | − 1) − |V | + 1

= |V | − 1

Due to this fact and to achieve comparability, quote interval subscriptions have
been used. Fig. 6.3 shows the resulting curve. Again, it is identical to that of
identity-based routing for quote subscriptions because of the same reason that
has been stated in the preceding subsection.

6.4 Filter Forwarding Overhead

In this section the second key characteristic of a routing algorithm, namely the
filter forwarding overhead, is investigated with respect to the number of active
subscriptions. As a realistic measure of this overhead the number of control
messages that are processed by the brokers has been chosen so the measurements
offer an insight into the message complexity of the protocols. The following
subsections discuss the behavior of the implemented routing algorithms with
respect to the filter forwarding overhead in detail.

6.4.1 Simple Routing

If simple routing is used every new or canceled subscription is forwarded to any
broker and hence, all routing tables are affected by an update. Therefore, the
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Figure 6.2: Simple vs. identity-based routing (routing table size).
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Figure 6.4: Relative effect of the use of advertisements (routing table size).

number of control messages that is necessary to update the routing tables is
equal to the number of brokers minus one, i.e., |V | − 1, and does not dependent
on the number of active subscriptions (see Fig. 6.5).

6.4.2 Simple Routing with Advertisements

Interestingly, the use of advertisements reduces not only the size of routing
tables but also the filter forwarding overhead. This is because a subscription
is only stored in the routing tables of those brokers that lie on the path from
the respective consumer to the notification source. In consequence, Pavg =
3.73 control messages are necessary on average (see Fig. 6.5). This means that
compared to simple routing without advertisements, the number of necessary
control messages is reduced by a constant factor of (|V | − 1)/Pavg = 28.4 (see
Fig. 6.7). In consequence, advertisements reduce the filter forwarding overhead
significantly, especially for large systems because for the investigated type of
topology Pavg grows only logarithmically in the number of brokers V .

6.4.3 Routing based on Identity

If identity-based routing is used the filter forwarding overhead depends on the
number of active subscriptions. From Fig. 6.5 it can be inferred that, for small
numbers of active subscriptions, the majority of routing tables are affected by



6.4. FILTER FORWARDING OVERHEAD 143

a new or canceled subscription. This number decreases very quickly at first
and still nearly exponentially afterwards. This is due to the fact that a new or
canceled subscription is only forwarded to a neighbor if there is no other active
subscription that has been received from a distinct neighbor which is identical
to the subscription considered. The probability for this to occur decreases with
an increasing number of active subscriptions.

6.4.4 Routing based on Identity with Advertisements

Here, the average number of control messages that is necessary to update the
routing tables starts at the level of simple routing with advertisements (see
Fig. 6.5). Interestingly, the resulting curve quickly approximates that of identity-
based routing without advertisements. This effect is caused by the uniform
distribution of interests. Hence, the factor by which the number of control
messages is reduced by using advertisements is quite large for a small number of
subscriptions but this advantage quickly disappears (see Fig. 6.7). In fact, for
large numbers of subscriptions, the use of advertisements does not reduce the
filter forwarding overhead at all.

6.4.5 Routing based on Covering

If quote subscriptions are used covering-based routing behaves exactly like i-
dentity-based routing. If quote interval subscriptions are used the number of
necessary control messages decreases much more slowly (see Fig. 6.6). This is
because two quote interval subscriptions that refer to the same stock do not
need to cover each another. This also implies that sometimes a subscription is
forwarded that does not cause any additional notifications to be received. This
disadvantage is diminished by merging-based routing.

6.4.6 Routing based on Covering with Advertisements

Here, the filter forwarding overhead starts at the level of simple routing with
advertisements but decreases afterwards (see Fig. 6.6). If quote subscriptions are
used, covering-based routing behaves exactly like identity-based routing. If quote
interval subscriptions are used the curve drops much more slowly. Interestingly,
the curves with and without advertisements approach one another only slowly
and therefore, advertisements remain useful for larger numbers of subscriptions,
too (see Fig. 6.7). This fact becomes even more evident for larger systems.

6.4.7 Routing based on Merging

The filter forwarding overhead that is induced by merging-based routing is sim-
ilar to that of covering-based routing but it decreases more slowly (see Fig. 6.6).
In fact, the gradient of the curve is smaller in all areas of the graph. The reasons
for this behavior still need to be investigated, but it can be expected that it is
caused by the perfectness of the merging-based routing algorithm.
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6.4.8 Routing based on Merging with Advertisements

Here, the filter forwarding overhead is very similar to that of covering-based
routing with advertisements. In fact, the overhead induced by merging-based
routing is only slightly larger. This is interesting because the difference is much
bigger if advertisements are not used.

The filter forwarding overhead without advertisements is clearly larger than
that with advertisements, even for larger numbers of subscriptions. Therefore,
the use of advertisements offers an advantage in this case, too (see Fig. 6.7).
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Figure 6.5: Simple vs. identity-based routing (filter forwarding overhead).

6.5 Supplementary experiments

This section describes two supplementary experiments dealing with aspects that
are not covered by the experiments that have been described in the preceding
sections: The first experiment investigates the effect of varying locality, while the
second presents an investigation of imperfect merging. This additional material
allows to extend the validity of the results presented.

6.5.1 Effects of Locality

In the experiments of Sections 6.3 and 6.4, it has been assumed that the interests
of the clients are uniformly distributed over the entire system. In this experiment
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Figure 6.6: Covering- vs. merging-based routing (filter forwarding overhead).
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the effects that are caused by varying the degree of locality among the interests
of the consumers have been investigated. In particular, it has been studied how
locality influences the sum of all remote routing entries, the saved proportion
of the payload traffic, the relative routing table size, and the filter forwarding
overhead. The identity-based routing algorithm has served as the basis for these
investigations; the findings for the other routing algorithms would be similar.
In order to capture the behavior, the degrees of locality of the three subnets
that are induced by the subordinate routers of the root router have been varied.
The local broker that is connected to the root router has been left without any
subscriptions.

The parameter d is a measure of the amount of locality among the sets of
clients of the respective subnets. For d = 1/3 the interests are disjoint and for
d = 1.0 they are identical (see Table 6.3). The resulting curves vary d stepwise

d Subnet 1 Subnet 2 Subnet 3
1/3 0-333 333-666 666-999
0.4 0-400 300-700 600-1000
0.5 0-500 250-750 500-1000
0.6 0-600 200-800 400-1000
0.7 0-700 150-850 300-1000
0.8 0-800 100-900 200-1000
0.9 0-900 50-950 100-1000
1.0 0-1000 0-1000 0-1000

Table 6.3: Relation between d and the corresponding subnet interests

from 1/3 to 1. It is important to note that the depicted effects would be even
more evident if the probability that a subscription refers to a specific stock was
not uniformly distributed.

From the Figures 6.8, 6.9, 6.10, and 6.11 it can be inferred that the degree
of locality has a great impact on the size of the routing tables and the filter
forwarding overhead. An interest distribution without locality results in the
largest routing tables and the highest filter forwarding overhead. For smaller
values of d the routing tables and the filter forwarding overhead monotonically
decrease and reach their minimum for d = 1/3. Interestingly, the sum of all
remote routing entries is limited by d · m · (|V | − 2) if advertisements are used,
and by 2 · 2+d

3 ·m · (|V | − 2) if advertisements are not used. Here again, the use
of advertisements shows its advantages.

The degree of locality also influences the amount of traffic that is saved when
filtering is compared to flooding (see Fig. 6.12). For perfect routing algorithms
the amount of saved payload traffic does not dependent on the underlying routing
algorithm; it only depends on the type and number of issued subscriptions. For
uniform interests (d = 1.0) and large numbers of subscriptions the saved amount
of traffic slowly converges to 0. Opposed to that, for 1/3 ≤ d < 1.0 a constant
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Figure 6.8: Routing table size.
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Figure 6.9: Filter forwarding overhead.
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amount of traffic which equals 1− d is saved for large numbers of subscriptions.
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Figure 6.12: Amount of saved payload traffic compared to flooding.

A simple measure of the usefulness of filtering is the relative routing table size
which is given by the sum of all remote routing entries divided by the amount of
saved traffic. Fig. 6.13 depicts the relative routing table size if advertisements
are used and Fig. 6.14 if they are not used. From these figures it can be inferred
that the relative routing table size is largely dependent on the degree of locality.
For d = 1.0 the relative routing overhead converges to infinity because the saved
traffic converges to 0. If 1/3 ≤ d < 1.0 it converges to d ·m · (|V | − 2)/(1− d) if
advertisements are used (see Fig. 6.15).

The results about the saved traffic and the filter forwarding overhead can
be combined in a way such that the scenarios in which filtering is advantageous
can be estimated. In fact, it is possible to determine the ratio of the event
production rate to the subscription change rate for which the number of payload
messages per time unit that is saved (by applying filtering) equals the number
of control messages (that are necessary to update the routing tables). This gives
an indication on the “break even point”, i.e., up to how much dynamic activity
the outing schema still saves messages.

Surprisingly, the minimum ratio for which filtering is advantageous decreases
for increasing numbers of subscriptions and degrees of locality if identity-based
routing is used. This becomes evident by comparing, for example, Figures 6.16
and 6.18. In simple routing (Fig. 6.18), the system must be increasingly static
in order for the routing scheme to still save messages. In identity-based routing
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Figure 6.13: Relative routing table size (with adv.).
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Figure 6.15: Normalized worst case relative routing table size (with adv.).

(Fig. 6.16), the gradient is negative meaning that the dynamics of the system
can even “get worse” (i.e., increase) while still saving messages through filter-
based routing. In particular, the degree of locality determines the gradient with
which the minimum ratio decreases (see Fig. 6.16 and 6.17). Apparently, the
use of filtering is advantageous in scenarios which are more dynamic than was
previously thought if advanced routing algorithms are applied.

6.5.2 Evaluation of Imperfect Merging

In the experiments of Sections 6.3 and 6.4 a merging algorithm has been evalu-
ated that generates perfect mergers, i.e., mergers that do not match any addi-
tional notifications than the filters it was generated from. This experiment inves-
tigates an imperfect merging algorithm that can be configured to use different de-
grees of imperfectness. As a basis for the evaluation, quote interval subscriptions
of the form symbol = stock ∧ price ∈ [p1, p2] with p1, p2 ∈ [0, 100] ∧ p2−p1 = 20
are used. In consequence, there can be at most 4 subscriptions that refer to the
same stock that cannot be perfectly merged. Let [p1, p2] and [p3, p4] be the
intervals of two subscriptions that refer to the same stock. The implemented
imperfect merging algorithm merges these subscriptions iff

max{p2, p4} − min{p1, p3}

p2 − p1 + p4 − p3
≤ f

is satisfied. For f = 1 the merging algorithm is perfect while for larger values of
f the grade of imperfectness increases. If f = 2.5 the algorithm merges any two
subscriptions that refer to the same stock.
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Figure 6.16: Maximum degree of dynamics (identity with adv.).
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Figure 6.17: Maximum degree of dynamics (identity without adv.).
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Figure 6.18: Maximum degree of dynamics (simple with adv.).
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The evolution of the sum of all remote routing table entries and the filter
forwarding overhead is shown in Fig. 6.20 and 6.21 where f is varied from 1 to 2.5.
It can be inferred that the routing table size decreases with increasing degrees
of imperfectness while the filter forwarding overhead decreases only very slowly.
This is because the implemented merging algorithm has not been optimized for
imperfect merging. It can be expected that future imperfect merging algorithms
will diminish this disadvantage. Imperfect merging appear to be very promising
and requires further investigation.
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Figure 6.20: Effect of varying imperfectness (routing table size).

6.6 Related Work

This section discusses previous evaluations of notification services and relates
them to the results of this chapter. Interestingly, none of them has investigated
the routing tables sizes or the filter forwarding overhead.

6.6.1
���������

Carzaniga, Rosenblum, and Wolf [17, 22] presented performance results which
are based upon a simulation framework. Their work investigated two variants of
covering-based routing, a peer-based and a hierarchical version. The simulated
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Figure 6.21: Effect of varying imperfectness (filter forwarding overhead).

algorithms are also incorporated into their publish/subscribe prototype called
Siena. Other routing algorithms are not considered.

The simulations investigated the total cost induced by the notification ser-
vice, the cost induced on individual brokers (and its variance), the average cost
per subscription (and its worst case), and the per notification cost. Unfortu-
nately, it is not easy to interpret their results because the setup of main parame-
ters influencing the results are not described. This includes the metric underlying
their cost analysis, the structure of the notifications, subscriptions, and adver-
tisements, the rate of subscribing/unsubscribing and advertising/unadvertising.

6.6.2 JEDI

The current implementation of JEDI exploits a hierarchy of event brokers in
conjunction with the hierarchical version of covering-based routing [17]. The
algorithm implies that a notification is always propagated to the root broker
regardless of the interests of the consumers. Moreover, an improved version is
suggested that extends the hierarchical algorithm by using advertisements, and
simulations have been carried out to compare the original with the improved ver-
sion [13, 14]. Bricconi, Di Nitto, and Tracanella [14] also presented the analytical
model that underlies their simulations and which allows the average number of
notifications that is processed by an event broker to be estimated.
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6.6.3 Gryphon

Performance results related to the prototype of the Gryphon notification service
are presented by Banavar et al. [8] and Opyrchal et al. [85]. The routing algo-
rithm exploited by Gryphon is similar to simple routing without advertisements.
Their work concentrates on the use of multicast and efficient matching of events
to subscriptions [1]. The matching algorithm clearly outperforms the simple se-
quential algorithm, but it depends on and supports only a few types of attribute
filters, limiting its usability. Moreover, updating the matching data structure if
clients subscribe and unsubscribe is costly.

The load caused at the individual brokers was investigated in the first article
mentioned above [8]. The results presented show that flooding overloads at the
same publishing rate regardless of the percentage of matches or the number of
active subscriptions. Filtering-based routing on the other hand can handle much
higher publication rates if subscriptions are highly selective or highly local, which
can be expected in large scale publish/subscribe systems.

The second article [85] concentrates on bandwidth utilization. It compares
flooding to four multicast-enabled routing algorithms and ideal multicast which
assumes that for each event a perfect multicast group exists. The authors state
that filtering-based routing is superior to flooding under conditions of high se-
lectivity and high locality of subscriptions. This opinion supports the findings
of this Thesis. Nevertheless, it can be expected that their results are still too
pessimistic because their work depends on simple routing, i.e., the routing al-
gorithm does not exploit covering and merging. They also assume that event
brokers are not placed nearby to the multicast routers and therefore, the use
of multicast may even introduce a bandwidth penalty. Moreover, they did not
investigate the use of advertisements.

6.7 Discussion

The evaluation has shown that for the investigated scenarios the advanced rout-
ing algorithms are clearly superior to the simple routing algorithm. Both the size
of the routing tables and the filter forwarding overhead are significantly reduced
by applying the proposed routing optimizations.

It also became evident that the use of advertisements further reduces the
routing table sizes and the filter forwarding overhead by a large factor that
depends on the average path length in the given topology. This is because if
advertisements are used, a subscription is only forwarded to and stored in the
routing table of those neighbors that are on a path from the respective consumer
to a producer that has issued an overlapping advertisement. In general, the aver-
age path length increases logarithmically in the number of brokers and therefore,
advertisements are especially advantageous in content-based publish/subscribe
systems with many brokers.

The above findings hold for the worst case that subscriptions are uniformly
distributed. If this is not the case (i.e., if locality among the interests of the
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consumers exists and increases), the performance improves drastically. In this
case the routing table sizes and the filter forwarding overhead are reduced sub-
stantially, and a constant amount of payload traffic is saved even for very large
numbers of subscriptions. Furthermore, the results about the filter forwarding
overhead and the saved traffic were combined. This allowed to derive the ratio
of the event production rate to the subscription change rate for that the num-
ber payload messages that is saved (by applying filtering) equals the number of
control messages (that is necessary to update the routing tables). This showed
that, by using advanced routing algorithms, filtering is advantageous in even
more dynamic environments than was previously thought.

In addition to the experiments whose results have been described above, an
evaluation of a simple imperfect merging algorithm has been carried out. The
evaluation showed that the use of imperfect merging can keep the routing tables
small compared to perfect merging if subscriptions are more complex. Currently,
imperfect merging is still in its early stages, and hence, it can be expected that
future algorithms can improve these results.

In conclusion, advanced routing algorithms improve the scalability of content-
based publish/subscribe systems. Future work can build upon these results, e.g.,
by considering other and also more general scenarios. For example, the effects of
several producers and of dynamic advertisements should be investigated. More-
over, algorithms that can adapt to changing environments are especially inter-
esting.



158 CHAPTER 6. EXPERIMENTAL RESULTS



Chapter 7

Conclusions and
Future Work

Conclusions

Today, the architecture of distributed computer systems is dominated by cli-
ent/server platforms relying on synchronous request/reply. This architecture
is not well suited to implement information-driven applications like news de-
livery, stock quoting, air traffic control, and dissemination of auction bids due
to the inherent mismatch between the demands of these applications and the
characteristics of those platforms. In contrast to that, publish/subscribe di-
rectly reflects the intrinsic behavior of information-driven application because
communication is indirect and initiated by producers of information. Therefore,
publish/subscribe should be the first choice for implementing such applications.

The expressiveness of the notification selection mechanism is crucial for the
flexibility of a notification service. Content-based notification selection is most
expressive because it allows filtering predicates to be evaluated over the whole
content of a notification. The advantage in expressiveness compared to channel-
or subject-based selection results in increased flexibility facilitating extensibil-
ity and change. On the other hand, scalable implementations of content-based
notification services are most difficult to realize. Indeed, the expressiveness of
notification selection must be carefully chosen in large-scale systems because
expressiveness and scalability are interdependent. Hence, the most fundamen-
tal problem in the area of content-based publish/subscribe systems is probably
the scalable routing of notifications. This thesis concentrated on mechanisms to
improve the scalability of publish/subscribe systems which are based on content-
based routing algorithms.

This thesis consists of a theoretical and a practical part. The theoretical
part presented a formal specification of publish/subscribe systems (Chapter 2), a
routing framework and novel routing algorithms (Chapter 3), and discussed how

159
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the routing optimizations (that rely on identity- and covering-tests as well as on
filter merging) can be broken down to the actual data/filter model (Chapter 4).
Altogether, the theoretical part gave a number of new insights into the theory
of content-based publish/subscribe systems. The practical part presented the
implementation of the Rebeca notification service prototype which includes all
discussed routing algorithms (Chapter 5), and a detailed practical evaluation
of the implemented routing algorithms based upon the prototype (Chapter 6).
Hence, this thesis captures the theory, the implementation, and the evaluation
of content-based publish/subscribe systems. In the following, the content of the
individual chapters is summarized.

Chapter 2: Formal Specification of Publish/Subscribe Systems.
Chapter 2 presented a formal specification of publish/subscribe systems. It is
based on sequential traces of state/operation pairs and uses the syntax of linear
temporal logic. The specification offers a stable basis for any further reason-
ing about the behavior (e.g., the correctness) of publish/subscribe systems and
allows deficiencies in the description of the semantics of current systems to be
pointed out. The specification consists of safety and liveness conditions which
are known to be suited for specifying any useful system behavior. Here, the
safety condition states that only matching notifications should be delivered to
consumers and that a notification should never be delivered to a consumer more
than once. The liveness condition demands that if a consumer has subscribed
to a filter, eventually, i.e., after a finite time, all matching notifications which
are published afterwards must be delivered to this consumer. The same spec-
ification applies to systems which require to mask internal faults. Since this
is not always possible, the notion of stabilizing publish/subscribe systems was
introduced that is based on a weakened version of the specification of fault-free
publish/subscribe systems. Stabilizing systems can be realized by a number of
techniques known from the literature. They are able to recover from arbitrary
transient faults within a finite time.

Chapter 3: Content-Based Routing. A formal framework for content-
based routing algorithms was described in Chapter 3. A formalization of routing
configurations was introduced that is based on the notion of valid routing con-
figurations. A valid routing configuration ensures that all matching notifications
are delivered to a consumer. In dynamic publish/subscribe systems it is impos-
sible to ensure that the routing configuration is always valid. Therefore, weakly
valid routing configurations were introduced. A weakly valid routing configu-
ration demands only the delivery of those notifications which are matched by
a subscription which has already been incorporated into the routing configura-
tion. After the formalization of routing configurations, a routing framework was
described in which an abstract function must be instantiated to yield concrete
routing algorithms. Sufficient conditions were given which the abstract func-
tion must satisfy in order for a routing algorithm to be correct. This routing
framework was subsequently used to describe a set of routing algorithms and to



161

discuss their correctness by applying the above correctness criterion. The rout-
ing algorithms discussed include flooding, identity-based routing, covering-based
routing, and routing based on filter merging. While identity-based routing is a
simplified version of covering-based routing, merging-based routing is even more
sophisticated. It is based upon filter merging reducing the number of filters
that must be dealt with. The last two sections of this chapter presented how
advertisements can be integrated into the routing framework and how the given
routing algorithms can be made stabilizing by using subscription leasing.

Chapter 4: Models and Routing Optimizations. In Chapter 4, it was
shown how the proposed routing optimizations can be broken down to the un-
derlying data/filter model. The focus of this investigation was on structured
records that consist of name/value pairs. In the name/value pair model, a no-
tification is essentially a record consisting of attributes being name/value pairs.
Subsequently, a filtering model was introduced that builds upon conjunctive fil-
ters consisting of attribute filters, each of which imposing a constraint on a single
attribute. To enable the efficient evaluation of identity- and covering tests as
well as filter merging, at most one attribute filter per attribute is allowed. After
defining the data/filter model, a generic filtering framework was proposed that
is not restricted to specific data types or operators. As examples, covering im-
plications and merging rules for a set of data types with typical operators were
described. Furthermore, new algorithms for identity tests and covering tests as
well as for detecting merging candidates were presented. These algorithms are
necessary to realize the routing algorithms presented in Chapter 3. Moreover,
some preliminary ideas how to support semistructured data (e.g., XML) and
objects were described.

Chapter 5: Implementation. The implementation that had been carried
out as part of this thesis was described in Chapter 5. It consists of the Rebeca

notification service and two example applications. Instead of relying on a single
routing scheme, a set of routing algorithms was implemented, and new routing
algorithms can be added easily. This allows various routing algorithms to be
tested and compared in a uniform environment. Rebeca relies on a filtering
framework instead of a fixed set of primitive filtering constraints. Moreover,
it supports replay of past notifications and service factories. Finally, Rebeca

has also served as the basis for the evaluation that was described in Chapter 6.
As proof of concept two example applications had been implemented, a stock
trading platform and an infrastructure for self-actualizing web pages. These
applications show that the basic functionality of the prototype is working.

Chapter 6: Experimental Results. In Chapter 6, a detailed practical evalu-
ation of the implemented content-based routing algorithms was presented giving
new and detailed insights into the behavior of these algorithms. In contrast to
previous evaluations, the one presented here focused on the inherent character-
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istics of routing algorithms (routing table sizes and filter forwarding overhead)
instead of system-specific parameters (CPU load etc.). Moreover, it is based
on a working prototype (Rebeca) instead of simulations, and several routing
algorithms are included in the comparison. Besides the routing table sizes and
the filter forwarding overhead, the effects of locality among the interests of the
consumers was investigated and a preliminary evaluation of imperfect merg-
ing was carried out. The evaluation revealed a number of interesting facts:
Firstly, advanced routing algorithms are useful in large-scale publish/subscribe
systems. Secondly, the use of advertisements considerably improves the scala-
bility. Thirdly, advanced routing algorithms operate efficiently in more dynamic
environments than was previously assumed. Fourthly, the good behavior of the
algorithms further improves if the interests of the consumers are not evenly dis-
tributed, which can be expected in practice. Finally, the evaluation of imperfect
merging shows that it is suited to further reduce routing table sizes.

Future Work

Large-scale content-based publish/subscribe systems exhibit a lot of interesting
challenges. Today, the state of the art in most of the respective areas is not
satisfactory. This is mainly because of the indirect addressing scheme that makes
publish/subscribe far more complex than standard request/reply. Hence, a lot
of interesting research problems still exist in different areas:

Scalable Routing. In the area of content-based routing a lot of open issues
still exist. For example, imperfect routing algorithms should be investigated
in more detail. In particular, this includes more advanced imperfect merging
algorithms. It is also promising to use statistical on-line evaluation to adapt
routing algorithms to changing environments. There is also room for new evalu-
ations, but more information about the typical design and the actual work load
of event-based applications should be gathered first.

Formal Semantics of Publish/Subscribe Systems. The work presented
in Chapter 2 can be seen as a starting point for discussing the formal semantics
of publish/subscribe systems. Future work should investigate variations of the
specifications presented and should relate different specifications to each other.
For example, ordering policies could be incorporated into the specification. Alto-
gether, the area of formally treating the semantics of publish/subscribe systems
offers a wide range of future research possibilities.

Event Composition. Event composition is about generating new events by
detecting patterns (e.g., sequences) of occuring events. There has been a lot of
work regarding composite events in the area of active databases [87] and in the
area of monitoring and debugging of distributed systems [99]. One of the main
problems with composite events in distributed systems is the absence of a global
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time base [67]. Another problem is the efficient recognition of composite events
which can only be achieved if it is properly supported by the underlying routing
algorithms. Today, the relation between event composition and efficient routing
is not clear at all, only some preliminary work on simple sequences exists [17].

Fault-Tolerance. In large-scale systems it is a severe restriction to assume
that the system is fault-free. In a publish/subscribe system, clients (i.e., the
producers and the consumers), event brokers, and the connecting network can
be faulty. Currently, most work assumes fault-free systems and contains sin-
gle points of failure. Hence, mechanisms for implementing fault-tolerant pub-
lish/subscribe systems should be investigated in more detail. The presented
leasing-based scheme for self-stabilizing publish/subscribe systems can only be
regarded as a first step.

Quality of Service. Quality of service includes, for example, reliability (e.g.,
best-effort or guaranteed) [11, 58], ordering [67] (e.g., causal), real-time con-
straints [55], and transactions [68, 69]. It is known from research on multi-
cast and other related areas that realizing some of these features is non-trivial.
It would be rewarding to identify useful quality of service attributes of pub-
lish/subscribe systems and show approaches to evaluate real systems with re-
spect to these attributes.

Heterogeneity. A large-scale system, regardless whether it is based on
request/reply or on publish/subscribe, must be able to cope with heterogeneity.
This includes, for example, the support of various transport protocols (which
have a direct impact on notification routing), as well as ambiguity in the syn-
tax and the semantics of notifications [25, 26]. First approaches to tackle these
problems exist [38, 42] but their practical impact is not yet clear.

Security. Security is a problem that is difficult to tackle in any large-scale
system. Especially, this is true for publish/subscribe systems where clients com-
municate only indirectly. For example, publishing and consuming of notifications
should be controlled by security policies. Today, there is only few work on se-
cure publish/subscribe systems [86, 117]. Considering that security is a special
property with many intricate research questions, a lot of work also remains to
be done in this area.
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Springer-Verlag.

[39] L. Fiege and G. Mühl. Webevents.
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