Channel-based Unidirectional Stream Protocol (CUSP)

Wesley W. Terpstra Christof Leng

Max Lehn Alejandro Buchmann

Databases and Distributed Systems, TU Darmstadt, Germany
{terpstra,cleng,max_lehn,buchmann} @dvs.tu-darmstadt.de

Abstract—This paper presents a novel transport protocol,
CUSP, specifically designed with complex and dynamic network
applications in mind. Peer-to-peer applications benefit in par-
ticular, as their requirements are met by neither UDP nor TCP.
While other modern transports like SCTP or SST have also tried
to combine the advantages of TCP and UDP, CUSP overcomes
their technical and conceptual shortcomings.

CUSP makes it possible to directly express application logic
in the message flow. Modern applications need a mixture of
request-response, request-multiple-response, publish-subscribe,
and message-passing. All of these operations can be conveniently
implemented using CUSP’s unidirectional streams.

We separate low-level packet management from streams into
reusable channels. A channel connects two applications providing
negotiation, congestion control, and cryptography. Developers
operate on the stream level, sending messages as reliable and
ordered byte-streams. Although they may share a common
channel, a stall or loss in one stream does not block the others.

I. INTRODUCTION

CUSP is a reliable and secure general purpose transport
designed with peer-to-peer (P2P) networking in mind. While
many transport protocols have been proposed in the past, we
believe ours is the first systematically designed to address the
specific requirements of P2P applications. We designed CUSP
for P2P partly because we believe that P2P covers the require-
ments of many modern network applications. P2P applications
exhibit asynchronous, dynamic, and complex interactions with
a large number of communication partners. We believe that
many (if not most) existing Internet applications would have
benefited from a protocol like CUSP during their design.

Building upon ideas from SST [1] and SCTP [2], CUSP
divides the transport into channels which are responsible
for low-level packet management and streams which are
multiplexed inside of channels. The stream interface allows
application designers to directly express application logic in
the message flow. Streams are cheap, created without a round
trip and thus need not be used sparingly. As not all messages
expect an immediate or direct answer, streams in CUSP are
unidirectional; bidirectional streams are modelled on top of
this primitive. Applications prioritize streams individually,
allowing high priority streams to cut in line.

CUSP is implemented on top of UDP making it easy to
deploy and reuse established NAT traversal mechanisms [3].
The protocol also offers mobile networking, seamlessly rene-
gotiating channels and resuming streams. The channel layer
has built-in cryptography; assured authenticity simplifies its
design and cryptographic negotiation is streamlined into chan-
nel creation. Though feature-rich, CUSP is a simple protocol
and can be implemented in comparably few lines of code.

Traditionally an application designer had to pick either UDP
or TCP. Yet, neither fits modern applications. P2P applications
especially have several important new requirements also ap-
plicable with varying degree to other application domains.

A. Connection-oriented

In the past, P2P overlays aiming for low latency used
unreliable UDP datagrams. The main advantage is that UDP
has no connection handshake. Of course, it consequently does
not have reliable exactly-once delivery, congestion control,
authenticity, or privacy. If an application requires any of the
above, and thus a round-trip handshake, it might as well use
CUSP to get them all. In this respect, CUSP competes with
DCCP, TCP, SST, and SCTP, all of which require at least one
round-trip to setup and provide only a subset of its features.

CUSP negotiates exactly-once delivery and cryptography
in a single round-trip (Section III-B), the minimum possible.
Within an established channel, CUSP creates new streams
without a round-trip, leveraging the channel state to ensure
exactly-once delivery semantics. Congestion control is man-
aged at the channel-level. Thus, new streams wait neither for
slow-start nor after packet loss from inter-stream competition.

B. Complex Exchanges

Traditional network applications are usually modelled as
simple request-response message exchanges between two
hosts. This does not fit P2P for several reasons. First, com-
munication is often indirect. A node issues a query into the
overlay and receives replies from several hosts with which it
has not communicated directly. Second, messages are often
passed from one node to another without a reply (e.g. in a
recursively routed scenario). And finally, one message might
cause several independent reactions from one host.

When an application uses CUSP, each network action should
use a new stream. Therefore CUSP streams must have low
message overhead, a small memory footprint, and zero setup
delay. In fact it is possible to create a stream, send data, and
close the stream all within a single packet (Section IV). As
not every action has exactly one reaction, streams are unidi-
rectional. If no reaction is anticipated, a reply message which
must itself be acknowledged is both useless and wasteful.

Instead, an action expecting one or more answers supplies
in its stream the ID of one reply service for each response
type. A complex conversation with many possible forks and
outcomes is then modelled using one stream per step in the
logical flow. In the case of indirect multi-hop scenarios, reply
service IDs can be simply forwarded to the eventual responder.

C. Priorities

P2P systems exchange a wide spectrum of message types,
some more time-sensitive than others. A bulk download is
lower priority than a user query, which is in turn lower priority
than topology maintenance messages. Furthermore, priorities
must not only be respected inter-stream, but also inter-channel.

Priorities cannot be implemented properly on top of an
existing reliable transport protocol. Losing a segment from
one stream will stall all other streams until that segment has
been retransmitted. This is called head-of-line blocking. Fur-
thermore, reliable protocols typically have internal buffering,
adding latency to any new high priority stream.

In CUSP, every stream has its own associated priority. The
highest priority ready stream always sends first; ready streams
are those not blocked by flow or congestion control with data
to send. Equal priority streams are serviced round-robin.

D. Many Connections

P2P systems establish hundreds of concurrent connections
with extremely diverse lifetimes. For example, the BitTor-
rent [4] client Vuze (formerly Azureus) can quickly reach its
default of 200 connections when downloading a popular file.
DHTs like Kademlia [5] can easily exceed 500 connections
even in a 10,000 node network [6].

For some operations, P2P systems establish very short-lived
connections. For example, in unstructured search systems [7]
a query is routed through the overlay network. When a peer
with an answer receives the query, it connects directly to the
source. This connection is then only used to reliably deliver
the answer. Since P2P applications constantly open and close
connections, we cannot waste state on closed connections.

Competing protocols retain state after a connection has
been closed. An actively closed TCP end-point must enter a
TIME_WAIT state for four minutes in order to ensure reliable
delivery of the last ack. Negotiation protocols like Just Fast
Keying (JFK) [8] must cache entire response messages for
previously established connections. That means one packet
per successful connection for a minimum of four minutes.
For P2P networks with many one-shot connections, this is
unacceptable. In CUSP, neither streams nor channels retain
state after completion. The negotiation protocol (Section III-B)
does not require a JFK-style response cache (we solve SYN-
flooding differently) and TIME_WAIT is usually avoided at
the cost of an additional message (Section III-C).

II. RELATED WORK

The standard reliable transport TCP does not offer anything
that CUSP cannot do equally well or better. In contrast, UDP
is only a thin layer over IP. It is extremely flexible, but lacks
features many applications end up reinventing. We position
CUSP as a complete replacement for TCP also appropriate
for some applications built on UDP that implement their own
handshake for reliability.

DCCP [9] is a connection-oriented protocol adding con-
gestion control to unreliable datagram delivery. Because it is
connection-oriented, it sacrifices one of the main advantages

of UDP, the zero setup time. If a three-way handshake is
performed anyway, then encryption, authenticity, and exactly-
once delivery should be at least optional features. DCCP lacks
all of them and also has a TIME_WAIT problem like TCP.

SCTP [2] was designed to overcome TCP’s weaknesses.
Data is transmitted in form of messages whose boundaries are
preserved. Like CUSP, it supports multiple streams within one
connection, avoiding head-of-line blocking. But the protocol
does not allow dynamic stream creation; the number of streams
is determined during connection setup. This severely limits
its usefulness for complex and dynamic applications. Even
though confidentiality, authenticity, and priority management
are not part of the SCTP standard, its implementation seems
significantly more complex than CUSP’s.

CUSP is similar to SST [1], the protocol which inspired
its development. We borrow the concept of channels (with
congestion control) and streams (with flow control). In SST
streams are prioritized and bidirectional; new streams are
created by spawning from existing streams. As discussed in
Section I-B, unidirectional streams are preferred for complex
applications, because they allow more flexible response flow
and can be substantially cheaper. SST also suffers from sev-
eral technical shortcomings overcome by CUSP. First, SST’s
stream identifiers can fall out of sync, a problem aggravated by
unidirectional streams. Second, SST uses JFK which retains
state after a channel closes. Third, it enters TIME_WAIT
after channel teardown. Fourth, its flow control cannot exclude
buffer overruns. Finally, carrying data in negotiation packets
violates exactly-once delivery and must be sent in the clear.

CUSP takes the best ideas from SCTP and SST and fits a
wider spectrum of interaction patterns than either of them. It
integrates confidentiality and authenticity as integral parts of
the protocol. Additionally, the resource use of the protocol is
tightly controlled. Nevertheless, CUSP is conceptually simpler
and easier to implement than both of its progenitors.

III. THE CHANNEL PROTOCOL

Communication in CUSP is application-application, not
host-host. Applications are identified by their application key,
a public key unique to that application on that host. As CUSP
is layered on top of UDP, applications contact each other
using UDP addresses. This initial contact creates a channel
logically associated to the pair of local and remote UDP
addresses. However, streams created on this channel are asso-
ciated not to the remote UDP address, but rather to the remote
application key. If the remote application changes addresses
(perhaps switching from Ethernet to Wi-Fi), a new channel is
automatically negotiated and streams continue unaffected.

The channel layer is responsible for all the low-level packet
details. It reports to the stream layer which segments have been
lost, limits the transmission rate using congestion control, and
negotiates cryptography acceptable to both sides. The channel
layer is not responsible for retransmitting lost segments; in
fact CUSP never retransmits packets. Rather, the stream layer
puts lost segments back on a ready queue, to be transmitted
inside a new packet when the stream has priority.

send: CHALLENGE no

<
) recv: HELLO

(Closed

contact() | A

send: FAIL

send: HELLO
recv: FAIL
recv: recv: HELLO

CHALLENGEY.

Sent

"\ _ send: HELLO ;
< PK ok? > Received
send: no yes

RESPONSE recv: WELCOME send: CHALLENGE recv: WELCOME

recv: HELLO/\‘ recv: DATA

send: DATA
Established
recv: RESPONSE

recv: WELCOME

send: DATA

Fig. 1.

CUSP negotiation flow chart

A. Normal Operation

During normal operation, DATA packets carrying stream
payload are exchanged. Each has a unique sequence number,
with the low 28 bits contained in the transmit sequence number
(TSN) field. Every established packet ends with a message
authentication code (MAC) which ensures the packet belongs
to the channel and has not been corrupted. Any packet with
an invalid MAC is discarded without further processing.

Sequence numbers start at 0 and increase every packet.
In principle sequence numbers never wrap around; they have
unbounded length. In practice they are used as nonces for en-
cryption and must not wrap within the nonce space. Before this
happens, a channel is disconnected to trigger renegotiation.
CUSP only uses nonced MACs; thus, they confirm sequence
numbers are correctly extrapolated from the TSN field.

Every data packet acknowledges a contiguous range of
sequence numbers. A packet x is acknowledged if a — [<=
r <= a, where the acknowledge sequence number field (ASN)
contains the low 28 bits of @ and [is the acknowledge length
field (AL). This has most of the advantages of TCP selective
acknowledgements (SACK) [10] without a per-packet bitmask.

Currently, CUSP implements a variant of NewReno [11] for
congestion control. To simulate the fast retransmit rule [12],
we declare an unacknowledged packet x dead if we receive an
ASN three packets ahead of = which does not acknowledge
z. Section V experimentally confirms this is TCP-friendly.

B. Negotiation

The negotiation protocol is responsible for selecting accept-
able cryptography and synchronizing communication. Figure 1
shows the packet exchange sequence is somewhat similar to
TCP. The initiator sends HELLO, receives WELCOME, and
then sends a (possibly empty) DATA packet. If overloaded,
the responder can CHALLENGE instead of WELCOME.

Compared to JFK [8] and TCP SYN cookies [13], our ex-
plicit CHALLENGE/RESPONSE defense uses an extra round-
trip. However, this defense is implemented so that it need never
be used; the CUSP nuclear option. Recall that a successfully
completed channel must retain no state. Furthermore, the
negotiation must establish a shared secret. To defend against
resource attacks and compute a secure shared secret, one must
either retain state for failed connections (vanilla TCP), retain

recv: NOSTATE
Established v > Sent
/ send: HELLO
recv: FINISH 4 any live recv: DATA/FINISH/WELCOME
y streams? 7/~ send: NOSTATE

(oosng) C Closed)

Fig. 2. CUSP tear-down flow chart

recv: NOSTATE

recv: FINISH
send: NOSTATE

state for successfully completed connections (JFK), or spend
an extra round-trip. CUSP takes the approach of paying state
for the first few failed connections and then switching to
spending an extra round-trip. We use a variation of the puzzles
from [14] for CHALLENGE/RESPONSE.

Cryptography in CUSP is broken into two suites: the public-
key and symmetric suites. A public-key suite includes a Diffie-
Hellman (DH) function and a compressor function to hash two
DH group elements. A symmetric suite includes a cipher and
MAC function. We currently implement only Curve25519 [15]
and Whirlpool [16] for the public-key suite and AES128-CTR
and Poly1305 [17] for the symmetric suite.

The HELLO and WELCOME packets list cryptographic
suites acceptable to an application. Suites have an associated
computational cost, and the cheapest mutually acceptable suite
is always selected. To reduce the number of round trips,
HELLO packets speculatively include DH public keys for the
lowest numbered locally acceptable public-key suite. Upon
receipt of a HELLO packet, the locally acceptable suites are
intersected (bitwise AND’ed) with the remotely acceptable
suites. If there is no mutually acceptable public-key or sym-
metric suite, then the responder reports negotiation FAILure.
Otherwise, it checks if the speculatively included public keys
are acceptable. If they are, the responder immediately sends a
WELCOME packet. Otherwise it sends its own HELLO with
the suite intersections and mutually acceptable public-keys.

The WELCOME and DATA packets are cryptographically
MAC’ed using the mutually acceptable symmetric suite. This
confirms the identity of the remote application before transi-
tion to the Established state allows data to flow. Furthermore,
it completely eliminates the need for two separate ports in
protocols like http/s, imap/s, smtp/s. It is impossible for a
man-in-the-middle to pretend that the responder does not want
encryption, because the WELCOME packet is authenticated.

CUSP’s cryptographic negotiation is based on a 3-message
variant of HMQYV [18]. This is a very fast negotiation protocol
with the guarantees we want. HELLO packets include the
initiator’s public-key ¢g® and an ephemeral public-key ¢”. The
ephemeral key is necessary to ensure forward-secrecy. The
WELCOME packet includes the responder’s public-key g® and
gY. The shared secret o is calculated using the HMQV equa-
tions and used to seed the symmetric suite. Each participant
generates his sending key as H(c||g®) and his receiving key
as H(o||g?) where || is concatentation, H is the compressor
function, and ¢%, g% are his and his partner’s public-keys
respectively. We negotiate two different secret keys, because
the initiator and responder should use different cipher streams.
This construction also tidily deals with simultaneous open.

C. Tear Down

Channels are automatically destroyed as soon as both ap-
plications agree there are no live streams. This is conceptually
achieved using a Closing state (Figure 2). A channel transitions
freely between the Closing and Established state depending on
whether or not there are any live streams.

Consider the packet exchange for the last stream. Receipt of
stream-level completion moves the receiver into the Closing
state, so that the acknowledgement will now have the FINISH
type. The sender processes the acknowledgement, clearing the
state for the last stream and thus also entering the Closing
state. The type of the acknowledgement (FINISH) is now
processed, moving the sender into the Closed state and causing
the transmission of a NOSTATE packet. The receiver sees the
NOSTATE packet and also transitions to Closed. For a single
request-response style connection, the packet flow is: HELLO,
WELCOME, DATA, DATA, FINISH, NOSTATE.

Compared to TCP, CUSP requires one additional packet,
a trade-off that mitigates the TIME_WAIT problem. Upon
receiving a NOSTATE packet, we transition from Closing to
Closed. Only if the NOSTATE packet is lost will CUSP wait
for a 4-minute timeout to trigger the transition. As packet loss
is quite uncommon, TIME_WAIT is almost always eliminated.

NOSTATE packets echo back the MAC of whatever packet
triggers them. This defends against an attack where a third-
party injects a forged NOSTATE packet. CUSP will only
honour a NOSTATE packet with a MAC identical to the
most recently sent packet. If the remote application really has
no state, then congestion control will eventually throttle the
channel to the point where there is only a single packet in-
flight and the NOSTATE packet will be honoured.

IV. THE STREAM PROTOCOL

Once a remote application has been contacted and its public-
key validated, streams can be created. CUSP does not promise
when a stream will be sent; it might be blocked indefinitely
by a high priority stream. It only guarantees that when an
application is informed that stream shutdown is complete, the
remote application has acknowledged the stream.

A. Normal Operation

The stream layer described in this section is layered on top
of the channel layer and requires the channel layer guarantee:

« the integrity of received messages

« received messages are never 16 or more TSNs old

« to report possible message loss or confirmed delivery

The stream-layer groups streams by remote applications, as
identified by their public-key. Of the streams with pending data
unblocked by flow control, the highest priority is reported on a
ready-to-send (RTS) signal line. If a channel is not blocked by
congestion control, it sets its RTS line equal to the RTS of the
attached stream group. To create a packet, the channel layer
selects the highest priority channel and provides the stream-
layer with a packet to fill. The stream-layer fills this packet
with messages from streams in decreasing priority order until
either the packet is full or there are no more RTS streams.

1RTT senders offset / out-date barrier
l

I l l

old offset application read offset end of buffered data

>

l » time

barrier

Fig. 3. Flow control with application limited rate

CUSP must ensure that retransmissions will not confuse the
receiver into creating the same stream twice or completing a
new stream from a retransmitted packet. As CUSP can pack
stream creation, payload, and completion into a single packet,
the entire stream could be retransmitted if reported lost. A
stream identifier is not re-used until the packet creating it and
its acknowledgement have been transmitted. Since the channel
layer enforces a 16 sequence number age limit, CUSP simply
includes a 4-bit monotonically increasing re-use counter with
stream identifiers.

B. Flow Control

A stream sender may only transmit segments up to a
receiver-specified barrier. As the receiver application processes
the stream, it moves the barrier forward, allowing the sender
to transmit further. The barrier is only ever increased by
the receiver. This flow control mechanism guarantees that
the sender cannot overrun the buffer space provided by the
receiver. If for some reason the sender violates the protocol and
exceeds the barrier, a receiver should treat the entire packet as
lost. As specified, the policy for barrier updates is implemented
entirely by the receiver. This section describes a barrier update
policy which performs well in combination with NewReno.

For a new stream, both sender and receiver set the barrier
to the minimum window size, 16 times the ethernet MSS. We
call the offset up to which the receiving application has read
the read offset (RO). The receiver’s barrier is the read offset
plus the window size. Whenever the receiver’s barrier exceeds
the last transmitted barrier by more than ith of the minimum
window size, it transmits a BARRIER update to the sender. If
this is lost, it transmits a fresh BARRIER update.

To perform well, this policy must estimate a good window
size. To this end, whenever a BARRIER update is acknowl-
edged, the receiver calculates the progress of the RO since the
barrier was sent. This is how much the application processed
in one round-trip. The window is set to twice this value or
the minimum window size. The application processing rate
might be limited by the application, flow control, or congestion
control. We examine the policy for each of these cases.

If the processing rate is limited by the application, then
Figure 3 illustrates the flow control. An entire round-trip’s
worth of data is buffered locally, with the barrier allowing up
to another round-trip’s worth of data. If a packet is lost, this
buffer provides enough time for fast retransmission to fill the
hole before it would stall the application.

If the processing rate is limited by flow control, the receiver
has nearly empty buffers; the application has consumed all the
data. In this case, the policy allows exponential growth. Each
round trip, the window is doubled, until either the application’s
processing rate or congestion control become the bottleneck.

10000

1.6 T T T T T T T

1.4

1.2

1k 4
08| i
06 e S g

MB/s

X —

04 | J V\ g

02 F 4 0
0 . i . . .) .

30 40
Time (seconds)

CUSP CUSP
-AES -MAC

(b) Throughput on 100Mb/s Internet Link

(a) NewReno Fairness

CUSP SST SCTP TCP SCP

I Scp
T ~o-SST cold
2 iz
—] S ~#- CUSP cold
E 1000 il
1 ——CUSP
15,85 17,04[110,831 9,65 HeSST
T T T 100 § - ‘ ‘ Ubp

32 128 512 2K 8K 32K 128K 512K 2M
Transfer Size (bytes)

(c) Response Times on Intercontinental Link

Fig. 4. Experimental Evaluation

If the processing rate is limited by congestion control,
there will likewise be no local buffering. For NewReno’s slow
start to find the correct congestion window, it must be able
to increase the transmission rate exponentially. Thus, flow
control must also allow exponential rate increase. Unfortu-
nately, this means that during congestion avoidance the flow
control window is bigger than necessary; a stall in the receiver
application could cause buffering of twice the congestion
window. However, breaking the channel-stream abstraction to
improve this one case does not seem worthwhile.

V. EVALUATION

We evaluated our implementation (available at [19]) and
compared it to UDP, TCP, and SCTP from Linux 2.6.26.

A congestion-controlled protocol should share bandwidth
fairly with TCP. In Figure 4a we started a full-rate CUSP
stream, consuming all available Wi-Fi bandwidth. 20 seconds
later a TCP connection joins in; CUSP and TCP share with
perfect fairness. At 40 seconds an additional CUSP stream is
added to the channel. This does not affect the bandwidth shar-
ing. When CUSP stops, TCP quickly consumes all bandwidth.

To measure actual network performance we transfer 100MB
between two hosts connected to the Internet backbone with
Fast Ethernet; the RTT is 5.5ms. CUSP is able to keep up
with TCP, even outperforming SCP. SCTP falls behind, as does
SST. AES and MAC do not slow down CUSP in practice.

To gauge raw performance, we also measured it on loop-
back. When AES encryption is negotiated, our Opteron
2.3GHz got 46MB/s (bytes), compared to 103MB/s without.
Replacing the MAC with an optimized CRC32 gains 8% more.

We conclude that our user-space prototype performs sur-
prisingly well, especially when compared to its unencrypted
siblings SCTP and SST. The throughput tests confirm that an
efficient MAC does not significantly impact performance on a
real network. Thus it’s reasonable to always use a MAC.

As discussed in Section I-B, it is important that stream cre-
ation is fast in order to model application flow. In Figure 4, a
cold start refers to stream creation without an existing channel.
Otherwise, SST and CUSP response times are assumed to
already have a channel available. On real networks, CUSP cold
start response times match TCP. This isn’t surprising as both
require an initial handshake, and CUSP’s HMQV calculation
only takes 0.7ms. SCTP lags behind here due to its four-
way handshake. Naturally, a cold start is far worse than both
UDP and a hot start which require no round-trips. For small
messages, SST and CUSP hot starts are competitive with UDP.

Once the stream size increases beyond the initial receiver
window, SST and CUSP must block, waiting for the receiver
to increase the window. However, CUSP has a small initial
window compared to the fixed 64KB in SST. This gives SST a
superficial initial advantage on high latency links where it can
push more data before blocking. Once streams become large
(like the 100MB bandwidth tests) CUSP’s window scaling
plays to its advantage and it overtakes SST’s throughput.

VI. CONCLUSION

Designed for the challenging P2P environment, CUSP is a
versatile transport with the potential to replace DCCP, SCTP,
and SST. It offers a wide range of features from unidirectional
streams to encryption. it fits many application scenarios. Our
userland prototype outperforms even kernel-level SCTP.

REFERENCES
(1]

[2]
[3]

[4]
[5]

B. Ford, “Structured Streams: a New Transport Abstraction,” in SIG-
COMM, 2007.

R. Stewart, “Stream Control Transmission Protocol,” RFC 4960, 2007.
J. Rosenberg, R. Mahy, P. Matthews, and D. Wing, “TCP Extensions
for Long-Delay Paths,” RFC 5389, Oct. 2008.

D. Qiu and R. Srikant, “Modeling and Performance Analysis of
BitTorrent-like Peer-to-Peer Networks,” in SIGCOMM, 2004.

P. Maymounkov and D. Maziéres, “Kademlia: A Peer-to-Peer Informa-
tion System Based on the XOR Metric,” in IPTPS, 2001.

K. Graffi, K. Pussep, S. Kaune, A. Kovacevic, N. Liebau, and R. Stein-
metz, “Overlay Bandwidth Management: Scheduling and Active Queue
Management of Overlay Flows,” in LCN, Oct 2007.

W. W. Terpstra, J. Kangasharju, C. Leng, and A. P. Buchmann, “Bub-
bleStorm: Resilient, Probabilistic, and Exhaustive Peer-to-Peer Search,”
in SIGCOMM, Aug. 2007.

W. Aiello, S. M. Bellovin, M. Blaze, R. Canetti, J. Ioannidis, A. D.
Keromytis, and O. Reingold, “Just Fast Keying: Key Agreement in a
Hostile Internet,” ACM Trans. Inf. Syst. Secur., vol. 7, no. 2, 2004.

E. Kohler, M. Handley, and S. Floyd, “Datagram Congestion Control
Protocol (DCCP),” RFC 4340, Mar. 2006.

M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow, “TCP Selective
Acknowledgment Options,” RFC 2018, Oct. 1996.

M. Allman, V. Paxson, and W. Stevens, “TCP Congestion Control,” RFC
2581, Apr. 1999.

S. Floyd, T. Henderson, and A. Gurtov, “The NewReno Modification to
TCP’s Fast Recovery Algorithm,” RFC 3782, Apr. 2004.

W. Eddy, “TCP SYN Flooding Attacks and Common Mitigations,” RFC
4987, Aug. 2007.

T. Aura, P. Nikander, and J. Leiwo, “DOS-Resistant Authentication with
Client Puzzles,” in SPW. Springer, 2001.

D. J. Bernstein, “Curve25519: New Diffie-Hellman Speed Records,” in
PKC. Springer, 2006.

P. S. Barreto and V. Rijmen, “The Whirlpool Hashing Function,” in
NESSIE Workshop, Nov 2000.

D. J. Bernstein, “The Poly1305-AES Message-Authentication Code,” in
FSE, vol. 3557. Springer, 2005.

H. Krawczyk, “HMQV: A High-Performance Secure Diffie-Hellman
Protocol,” in CRYPTO, 2005.

“CUSP,” http://www.dvs.tu-darmstadt.de/research/cusp/, Oct. 2009.

[6]

[7]

[8]

[9]
[10]
(11]
[12]
[13]
[14]
[15]
[16]
[17]
(18]

[19]

