
The Challenges of CORBA Security

A. Alireza1, U. Lang2,3, M. Padelis4, R. Schreiner3, and M. Schumacher4

1 T-Nova Deutsche Telekom Innovationsgesellschaft mbH - Technologiezentrum
2 University of Cambridge

3 technoSec Ltd.
4 Darmstadt University of Technology
ameneh.alireza@telekom.de
ulrich.lang@cl.cam.ac.uk

padelis@ito.tu-darmstadt.de
ras@technosec.com

schumacher@ito.tu-darmstadt.de

Abstract Large, distributed applications play an increasingly central role in to-
day’s IT environment. The diversity and openness of these systems have given
rise to questions of trust and security. It is the aim of the project Secure TINA
to examine exactly these questions and try to find possible solutions. The focus
lies on OMG’s Common Object Request Broker Architecture (CORBA) as a basis
technology for developing distributed systems and on the Security Service spec-
ified for it, since this seems to be the most promising technology in the field.
The followed approach is thereby twofold. At first, a thorough analysis of the
specification itself and known implementations thereof is performed, based also
on experiences in the broader area of distributed systems security. At a second,
more practical stage, the attempt to develop an own, prototypical implementation
of CORBA Security is undertaken, with the main objective of gaining as much
practical experience as possible and experimenting with possible alternatives to
find a solution to the problems encountered.

1 Introduction

Today, many applications are re-engineered to use Internet technologies. Much attention
has been devoted recently to security issues and it is apparent that a high level of security
is a fundamental prerequisite for Internet-based transactions, especially in the business-
to-business area.

In our collaborative research project Secure TINA we address security aspects of
distributed, heterogenous systems, especially for the Telecommunications Information
Networking Architecture (TINA) platform. The basic idea of TINA is to logically sep-
arate applications and the communication infrastructure from each other. Another very
important issue is to integrate management and control functions into a unified, logical
software architecture supported by a single distributed computing platform [Lap98].

As CORBA is the distributed computing platform of choice, we decided to focus on
the CORBA Security Service (CORBAsec). One of the expected results of this bottom-
up approach is, to answer whether or not TINA components can use CORBAsec and to
show how CORBAsec can be integrated into TINA.

In this paper we begin with a brief introduction on CORBA and CORBAsec. In the
next section we discuss problems that we identified during the analysis of the specifica-
tion and given CORBAsec products. With the introduction of the project Mico Security
we describe our approach to filling the gaps between theory (the specification) and real
world implementation, as well as gathering practical experience with the application
and the implementation of CORBAsec.

2 CORBA and the CORBA Security Service

The technological advances in recent years have led to a situation where large, dis-
tributed applications that cooperate with each other are becoming an essential part of
IT technology. As a consequence, the need for standard architectures and frameworks
for developing such applications has arisen. The Object Management Group (OMG,
[OMG00a]) has specified the OMA (Object Management Architecture) in response to
these needs; at the heart of OMA lies the CORBA specification ([OMG99], [HV99]).

2.1 CORBA in a Nutshell

The CORBA specification allows programmers to design and implement distributed
applications in a standardized manner that guarantees portability and interoperability,
following the object-oriented paradigm. The central component in the CORBA archi-
tecture is the Object Request Broker (ORB), as depicted in figure 1.

C l i e n t S e r v e r

v e r t i c a l
i n t e r f a c e I I O P

h o r i z o n t a l
i n t e r f a c e

I D L

O R B 1 O R B 2

Figure1. Interfaces of the CORBA Architecture

We can distinguish between two distinct interfaces in this architecture. The first is
the horizontal interface, which is defined between the application and the ORB. At this

c©2000 Springer-Verlag, Informatik aktuell , http://www.springer.de/comp-de/inf akt/index.html

interface the application interacts with the underlying CORBA infrastructure. On the
server side, the application implements objects, which provide services to clients in the
network. These services are specified in a programming language independent fashion,
using the CORBA-specific Interface Definition Language (IDL). On the client side,
the application can use the services provided by a server by accessing the appropriate
(application-specific) stub. Any programming language can be used for the implemen-
tation, as long as an appropriate language mapping from IDL exists. Furthermore, any
platform (operating system) can be used for which an ORB system is available. This
way, CORBA achieves portability of the application code and reusability for legacy
systems.

The second interface is the vertical interface, which is the interaction point of ORB
systems installed at different nodes in the network. At this point, a standardized protocol
is used by any compliant ORB product. For the normal case of TCP/IP-based networks,
this is the Internet Inter-ORB Protocol (IIOP). In this way, interoperability between
installations of CORBA products of various vendors (corresponding to independent
technological domains) is guaranteed. In a nutshell one could describe the ORB as a
software bus, that enables and manages the communication between clients and servers.

The ORB specification represents the backbone of the CORBA architecture and
forms the foundation for providing portability, reusability and interoperability. Never-
theless, in many cases it does not provide enough support for developers of distributed
applications. When developing distributed applications, one has to cope with several
common tasks, such as finding services, guaranteeing transactional processing and/or
providing asynchronous communication. These are not done inside the ORB, as this was
designed to provide only the core functionality. For this reason, the OMG has specified
so-called object services, which reside outside of the ORB core. Examples for CORBA
services are the naming service, the trading service, the transaction service, the event
service, and the security service; this latter service (i.e. CORBAsec) is the topic of the
next chapter.

2.2 Overview of CORBA Security

As described above, the objective of the CORBAsec ([OMG00c], [Bla00]) is to provide
security in the ORB environment in the form of an object service. The focus lies hereby
on confidentiality, integrity, and accountability. Technically these services are provided
through the specification (by the OMG) and the implementation (by a CORBAsec prod-
uct vendor) of objects, which exhibit a series of interfaces described in CORBA IDL
that define precisely the necessary functionality. A high-level overview of these inter-
faces/ functionality together with the underlying design principles will be given in this
chapter.

Terminology and Main Components. In CORBAsec, actors (the users of the system) are
described with the term principals. Each principal is associated with a credential, which
collects his security attributes (e.g. privileges). Another important term in CORBAsec
is that of a domain. The most security relevant type of domains in CORBAsec are the
security domains, which denote a part of the system, where a specific set of security
policies (rules) is valid.

c©2000 Springer-Verlag, Informatik aktuell , http://www.springer.de/comp-de/inf akt/index.html

CORBAsec includes interfaces that define services for the following well-known ar-
eas of computer security: Authentication, Message Protection (including encryption for
guaranteeing confidentiality as well as integrity), Access Control, Auditing, and Non-
repudiation1. The latter two provide means to achieve some degree of accountability. In
addition, CORBAsec describes interfaces that can be used for coping with the tedious,
but very crucial task of security management/administration (e.g. assigning policies to
domains). Furthermore they take care of specific problems with object-oriented (secu-
rity) systems, such as the delegation of rights.

Design Principles. In order to meet its objectives, CORBAsec’s design is based on
some general principles. The most important ones are transparency, scalability, flexi-
bility, and interoperability, presented in the following.

The functionality of CORBAsec is provided in three distinct levels of increasing
functionality. The bottom Level 0, which is not part of the specification in the beginning,
but was added later on, just integrates SSL into CORBA. Level 1, provides all the above-
mentioned security measures except for non-repudiation. This is done in such a way
that the applications running on top of the CORBA system are not aware of the security
features provided underneath. Level 1 thus covers the security unaware applications.
On the contrary Level 2 deals with those applications that are security aware and that
are consequently in a position to interact with CORBAsec in order to specify the exact
security features used. For these security aware applications non-repudiation is also
relevant.

Note that CORBAsec itself does not provide any security mechanisms (e.g. cryp-
tography). Instead, CORBAsec provides only a standardized architecture and interfaces
that can be used to integrate security in a CORBA distributed objects scenario. The
concrete security mechanisms (implementations) must be provided separately. Secu-
rity mechanisms that have been considered so far are Kerberos, SPKM, SESAME, and
SSL. It is considered beyond the scope of this paper to give an introduction to all these
technologies; the interested reader may refer to the extensive literature in this area,
cf.[Gol99] for an introduction. Of course, the actual functionality provided through
CORBAsec is mostly determined by the underlying technology. For example, SSL, al-
though extremely popular, is not very powerful, as discussed in more detail in the next
chapter. In some cases, as with digital signatures (used for non-repudiation), a more
elaborated security infrastructure is needed, such as a Public Key Infrastructure (PKI).

Interoperability is one of the most important design principles of CORBAsec. First
is the issue of interoperability between ORB products and CORBAsec products, often
described as security replaceability and achieved through a well-defined and standard-
ized interface between ORB and CORBAsec. In the current stage of development this
interface is defined by interceptors, but the work in this field is not completed yet. Sec-
ond is the interoperability between different CORBAsec implementations. This is sim-
ilar to the case of interoperability between different ORBs. The solution is also similar:
a special standardized communication protocol, SECIOP (Secure Common Inter-ORB
Protocol) in our case, is defined. This whole area is covered by the Common Secure

1 This is optional and available only for Level 2 (see below), as non-repudiation makes sense
only for security-aware applications.

c©2000 Springer-Verlag, Informatik aktuell , http://www.springer.de/comp-de/inf akt/index.html

Interoperability (CSI) part of the specification. In addition to these major notions of
interoperability there are a range of other aspects of interoperability, such as interoper-
ability between security domains or underlying security mechanisms.

3 Problems and Weaknesses of CORBA Security

In this section we discuss major problems that have been identified in the current phase
of Secure TINA. Based on an extensive analysis2 of the CORBAsec specification and
detailed investigations of available implementations of CORBAsec, we found that those
issues are not only of a technical, but also of a non-technical nature.

3.1 Application Layer of CORBA Security

Architecture. CORBAsec was initially developed for static applications in restricted
environments and cannot be easily adapted to new requirements and trust relationships
of Internet-based applications, for example because the code base of CORBAsec is too
big, and because firewalls block messages passed between objects. The OMG firewall
draft [OMG00d] and the (however proprietary) integration of SSL into CORBA are first
attempts to bring CORBAsec to the Internet.

In theory the architecture of CORBAsec follows a layered approach, the security
functionality can be achieved at the level of the ORB or at the application layer. How-
ever, often it is unclear where and how a given security feature should be implemented.
For example encryption can often be done most efficiently outside of the CORBA sys-
tem, if there are no additional security requirements.

More specific weaknesses of the architecture are covert channels, e.g. via object
references (IORs), which can contain security sensitive data like object keys or names
of internal servers. Beside that it is possible to scan a network for unknown objects as
an “access denied” exception explicitly discloses the existence of a server.

Authentication and Authorization. Before client and server can exchange messages in
a secure way, they must know the identity and other security attributes of the commu-
nication peer. The predefined attributes of CORBAsec are limited and cannot describe
all properties of a principal, and many security mechanisms do not provide sufficient
security attributes.

The authorization model of CORBAsec has several weaknesses [Lan99], such as the
predefined access rights that have only limited validity and do not fit to all application
scenarios. Thus, many vendors introduce their own access control models, which are not
interoperable by nature. Therefore, the only reasonable way to achieve access control
seems to be to implement it within the applications.

Note that some problems or conflicts described in this paper are not CORBAsec re-
lated, but are a consequence of inherent difficulties and trade-offs in distributed, object-
oriented systems; for example, authentication versus delegation, or access control ver-
sus inheritance.

2 Carried out by technoSec Ltd.

c©2000 Springer-Verlag, Informatik aktuell , http://www.springer.de/comp-de/inf akt/index.html

Security Audits. The audit service of CORBAsec can be the basis for a reasonable au-
dit mechanism if the following weaknesses are addressed and eliminated: firstly, the
specification of the audit functionality is not complete, e.g. security for audit records,
effective filtering means, or interfaces for an appropriate analysis are missing. Further-
more, there is no standardized format for audit records or audit trails, so it is impossible
to achieve a centralized audit processing. For portability only the attributes of the corre-
sponding CSI level should be used. Unfortunately, this affects the flexibility of the audit
service dramatically.

Non-Repudiation. The specification of the non-repudiation service in CORBAsec is
also incomplete, requiring components like delivery authority, adjucator and secure
storage. The specification refers to other services and standards, but does not mention
details of service integration and standards availability explicitly. Even worse, there are
no products that implement the ISO Non-Repudiation Framework [ISO97] which is the
basis for the CORBAsec non-repudiation service, nor a prototype implementation for
the referred standard is available.

Besides that, the supported interfaces offer only a subset of the different kinds of
evidence. It is only possible to prove that a message was sent or received, but not suc-
cessfully executed; only a trusted non-repudiation service on the ORB-level can achieve
this.

As there is no standard format for non-repudiation evidence tokens, it is impossible
to achieve interoperability. The main reason for this may be that there is no proposal for
an agreed upon technology.

The non-repudiation service has been announced as a stand-alone replaceable ser-
vice, but in fact it is highly dependent on other components, such as the CORBA Time-
Service. Both asymmetric and symmetric cryptography can be used, i.e. these methods
are replaceable, not the service itself.

Apart from that, there are several other reasons why products that implement the
CORBAsec non-repudiation service are not available today. Firstly the CORBAsec non-
repudiation service relies on CORBA security level 2 and there are only a few imple-
mentations on the market. Secondly it is not mandatory to implement non-repudiation,
as it is only declared as an optional extension. Finally, severe legal restrictions prevent
the usage of non-repudiation.

Policy Management. The SecurityAdmin interfaces provide a rudimentary definition of
how policy objects can be accessed and how they can be used. The actual version of
the specification does not address many important issues like management of underly-
ing security mechanisms, management of policies at the application layer, support for
conflicting policy rules, policy federations, etc. For more sophisticated management of
policies the specification refers to management services that are part of the CORBA
Common Facilities. Again, there is no agreed upon standard, but only an “initial sub-
mission” for a Security Domain Membership Management Service [OMG00f].

Assurance. In contrast to stand-alone systems, it is very difficult to establish trust in
distributed systems, as there are many different components and mechanisms involved.

c©2000 Springer-Verlag, Informatik aktuell , http://www.springer.de/comp-de/inf akt/index.html

In addition, trust relationships change frequently, which makes an analysis for assur-
ance very difficult. The CORBAsec specification introduces the notion of a Distributed
Trusted Computing Base that includes all security-critical components, such as applica-
tion objects that enforce security, the ORB kernel, object adapters, security interceptors,
security mechanisms, hardware, etc. In practice, often only a partial analysis of all com-
ponents is possible as many components are not under control of the service provider,
e.g. client side software.

3.2 Implementation Layer

Interoperability. One of CORBA’s most important strengths is its platform and pro-
gramming language independence, where distributed applications can ideally run on
different computers, even on top of different ORBs. In theory the same should be true
for secure CORBA. However, practical experience shows that there are obstacles that
prevent the interoperability of CORBAsec solutions. As written in [Sch00b] it is up to
the ORB vendors to push interoperability, as only they have the chance to move COR-
BAsec in that direction.

Portable Integration. A portable integration of CORBAsec can be achieved in several
ways, through either additional ORB source code, pluggable protocols, or interceptors.

The first approach has the advantage of a straightforward integration, as all required
information of the ORB can be accessed directly. On the other hand this always requires
the source code of the ORB, therefore third party implementations for most commercial
products are not very likely.

Pluggable protocols [KOSP99] represent an abstraction of the ORB’s transport mech-
anisms. This allows for a comfortable way of replacing the transport mechanisms used
by the ORB, so that SSL for SSLIOP instead of TCP for IIOP can be plugged in.
Pluggable protocols are a convenient way to implement security features like message
protection, but unfortunately they are currently not standardized, i.e. each ORB that
provides pluggable protocols implements proprietary interfaces.

Interceptors play an important role with regard to an integration of CORBAsec into
an ORB, especially if there is no source code available.They are also required to imple-
ment other services that have to manipulate individual messages, such as the Transac-
tion Service. In the past, each ORB manufacturer implemented proprietary interceptor
interfaces. As this resulted in poor interoperabilty capabilities, the OMG addressed this
with a Request for Proposals (RFP) for Portable Interceptors [OMG00e]. Unfortunately
the agreed submission does not define message level interceptors, which are (amongst
other things) required to implement message protection. As a consequence the situation
with interoperabilty has not changed at all.

Using any of these approaches, SECIOP can be implemented3, which is responsi-
ble for establishing the security context between client and server, as well as protection
of subsequent messages between them. It is a very powerful protocol, for example it
makes it possible to have multiple secure associations over a single TCP connection,

3 Alternatively DCEIOP or SSLIOP.

c©2000 Springer-Verlag, Informatik aktuell , http://www.springer.de/comp-de/inf akt/index.html

but consequently it is complex and difficult to implement. Besides that it is very de-
manding on its environment, e.g. both client and server have to be multi-threaded. On
the other hand, most of SECIOP’s functionality is already provided on other layers of
the CORBA protocol stack, and therefore, compared to the complexity of SECIOP, the
benefits seem to be minimal. This may be the reason why only a few vendors offer an
implementation of SECIOP. As a consequence, a more lightweight approach has been
proposed to the OMG [OMG00b].

External Dependencies. CORBAsec cannot be seen in isolation, because it is depen-
dent on external services and additional security infrastructure, such as NamingService,
EventService or Persistent Object Service. In the field of CORBA Security, some con-
cepts are quite new and therefore stable interfaces to external components cannot be
expected immediately. Besides that it is not always easy to determine how new propos-
als should fit into the existing CORBAsec architecture, such as the CORBA PKI draft
[DST00] and the CORBA firewall draft [OMG00d].

3.3 Non-technical Issues

Misleading Advertisement. An often neglected problem of CORBAsec comes from
misleading discussions about the objectives and features of the architecture that are
discussed below.

Just as OSF’s Distributed Computing Environment (DCE) [Ope00], the predecessor
of the CORBAsec architecture (ICL’s DAIS Security) was originally developed for huge
company intranets that are static by nature.

Since around 1997 CORBAsec has been applied to Internet applications that have
different security requirements and trust relationships than intranet applications. Very
soon the limitations of the architecture in this new environment were revealed, for exam-
ple by the lack of support for firewalls or mobile code. In other words, various important
features were missing.

Maybe it is an unrealistic concept to define and implement a security service for all
possible application scenarios. The approach to introduce different conformance levels
does not help, as it was intended for a phase-by-phase adoption of security and not
for the support of different types of applications. It could be useful to have subsets
of CORBAsec for specific application domains, such as company intranets, electronic
commerce, telecommunications or health-care. The current discussions in the OMG on
CORBAsec Light indicate that this may be the right way to go.

CORBAsec should by no means be seen as a panacea for all security problems, as
it essentially does not define any new security functionality. CORBAsec also cannot
solve the fundamental difficulties associated with distributed systems security, the ar-
chitecture suffers under the same problems and conflicting objectives as other solutions
for distributed object-oriented systems, such as the conflict of flexibility and guaranteed
security.

The usage of CORBAsec per se does not result in a secure system - both the devel-
opers and operators of a distributed application have to know what they are doing, and
security specialists have to analyze on a case-to-case basis to ensure the effectiveness of

c©2000 Springer-Verlag, Informatik aktuell , http://www.springer.de/comp-de/inf akt/index.html

the security enforcement. In summary, it is a more realistic viewpoint to consider COR-
BAsec as a powerful toolkit for secure, distributed applications rather than a plug-in
that automatically secures CORBA systems.

Lack of Experience. CORBAsec was the first security system for object-oriented mid-
dleware. It has been developed from scratch with very little previous experience to draw
on, and as a result the specification is not mature at this time of writing.

One of the major issues is that the architects of CORBAsec had a wrong estimation
of the market trends with respect to future security technologies. During the develop-
ment of CORBAsec, SESAME [Cla00], the most powerful security mechanism avail-
able at that time, has served as a paragon, therefore the basic concepts of SESAME are
found in CORBAsec. Unexpectedly the weaker SSL became more widely used than
SESAME. Consequently, CORBAsec on top of SSL is not as powerful as CORBAsec
on SESAME, and many features simply no longer match.

Based on the fact that there are only a few implementations of CORBAsec that
offer the full functionality, most CORBA developers lack experience with regard to the
utilization of most advanced CORBAsec features. The only way to solve this problem
is to gather practical experience and to adapt CORBAsec to today’s requirements.

4 Project: MICO Security

Consequently of the lack of usable CORBAsec products, it was decided to implement
a CORBAsec prototype for MICO [PR00] as part of Secure TINA. The main goal of
MICOsec (MICO Security Service) was to gain practical experience with securing
CORBA applications, in particular already existing applications which need to be se-
cured a posteriori.

4.1 Why MICO?

The main objective of MICO (MICO Is CORBA) is to provide a freely available and
fully compliant implementation of the CORBA standard. The clear micro-kernel based
architecture allows for extensibility and customization for different environments. Note
that MICO has been branded as CORBA compliant by the OpenGroup, thus demon-
strating that open-source software can indeed produce industrial strength software.

As outlined in [Sch00a], open-source software is a good way to achieve reliability
and secure IT systems supporting the business needs of many companies. In fact, a
source code analysis of MICO with ITS4 [VBKM00] revealed that MICO does not
contain very security critical code.

As MICO provides only a C++ language mapping, we decided to show interoper-
ability of the MICOsec prototype with another CORBAsec product. Adiron’s ORBAsec
SL2 [Adi00], which is based on Java, was chosen as the peer security service imple-
mentation to which interoperability should be established as part of the project. Both
implementations are based on SSL and Adiron has also signaled an interest in partici-
pating in such an experiment.

c©2000 Springer-Verlag, Informatik aktuell , http://www.springer.de/comp-de/inf akt/index.html

4.2 Prototype Implementation

The long-term goal of the MICOsec prototype project is to implement as much of the
CORBAsec Level 2 functionality as possible to gain experience with this new technol-
ogy and to identify potential pitfalls. An incremental approach to implementing the var-
ious parts of the Level 2 functionality was chosen, and at the current stage of the project
the basic functionality for authentication and message protection is implemented. SSL
was chosen as the basic security mechanism, firstly because various open-source SSL
implementations are available, and secondly because most other CORBAsec products
are based on it.

The IDL interfaces used for MICOsec are currently based on the CORBAsec 1.7
draft [OMG00c] which also closely resembles the ORBAsec SL2 interfaces. The find-
ings of an extensive CORBAsec analysis carried out at an earlier stage of Secure TINA
are also taken into account during the implementation, in particular with respect to the
access control model and the representation of security attributes.

As a proof of concept, our MICOsec prototype will be used to secure an online
auctioning system that will make use of all implemented parts of the security service.
The auctioning application, which is implemented in C++, will be accessible through
many platforms supported by MICO, such as Tcl/Tk based clients written for Windows
or Linux. In addition, it is planned to integrate mobile devices like the Palmpilot [Pud00]
at a later stage of the project,.

At the time of this writing, the basic authentication and message protection func-
tionality has been implemented and tested. Subject to the successful completion of Se-
cure TINA, the full MICOsec implementation is anticipated to be completed around
mid-20014 and will include some of the following security functionality: CORBAsec
Level 2 access control and auditing, a PKI interface both at the ORB and application
layers based on the upcoming OMG PKI standard, as well as a limited non-repudiation
service.

5 Conclusions

Despite all the problems mentioned in this paper, we believe that CORBAsec has a lot
of potential, especially when looked at its features in a more realistic way. It is important
to understand that CORBAsec is only a (powerful) security toolbox and not the solution
to all security problems. In order to move the specification into the right direction, the
various inherent problems of its architecture have to be further analyzed.

We recommend the following approach to securing CORBA systems with the cur-
rent version of CORBAsec:

– Take into account the security of the entire system, not just the CORBAsec compo-
nents. It is always necessary to look at the system as a whole and at the interplay of
its various components.

– Detect and solve weaknesses of CORBAsec, e.g. the management of users or do-
mains.

4 Please contact the authors if you are interested in the MICOsec distribution.

c©2000 Springer-Verlag, Informatik aktuell , http://www.springer.de/comp-de/inf akt/index.html

– Develop creative solutions when needed, such as making the firewall ORB-friendly
when it isn’t.

– Ignore absurd issues in the specification, such as the predefinition of the TCP ports
for IIOP/SSLIOP5.

Competing technologies like DCOM/COM+, DCE, and EJB don’t provide the func-
tionality of CORBA and its independence from languages and platforms. They are more
immature than CORBA, especially in the field of security. There is no alternative to
CORBA for large-scale, distributed and heterogenous applications.

References

[Adi00] Adiron. Orbasec SL2 and Control. http://www.adiron.com, 2000.
[Bla00] Bob Blakley. CORBA Security: An Introduction to Safe Computing with Objects.

Addison Wesley, 2000.
[Cla00] Joris Claessens. A Secure European System for Applications in a Multi-vendor En-

vironment. https://www.cosic.esat.kuleuven.ac.be/sesame/, 2000.
[DST00] DSTC. Public Key Infrastructure RFP. ftp://ftp.omg.org/pub/docs/ec/99-12-03.pdf,

2000.
[Gol99] Dieter Gollmann. Computer Security. Wiley, 1999.
[HV99] Michi Henning and Steve Vinoski. Advanced CORBA Programming with C++. Ad-

dison Wesley, 1999.
[ISO97] ISO. Iso 10181-4: Information Technology - Security Frameworks for open Systems:

Non-repudiation Framework, 04 1997.
[KOSP99] Fred Kuhns, Carlos O’Ryan, Douglas C. Schmidt, and Jeff Parsons. The Design

and Performance of a Pluggable Protocols Framework for Object Request Broker
Middleware. http://www.cs.wustl.edu/ schmidt/PfHSN.ps.gz, 1999.

[Lan99] Ulrich Lang. Distributed Access Control. http://www.cl.cam.ac.uk/ ul201/proposal.pdf,
1999.

[Lap98] Martine Lapierre. TINA. Prentice Hall Europe (Academic), 1998.
[OMG99] Object Management Group. CORBA/IIOP 2.3.1 specification.

http://sisyphus.omg.org/technology/documents/corba2formal.htm, 1999.
[OMG00a] Object Management Group. Website. http://www.omg.org/, 2000.
[OMG00b] OMG. Common Secure Interoperability V2 RFP. http://www.omg.org/

/techprocess/meetings/schedule/Common Secure Interop. V2 RFP.html, 2000.
[OMG00c] OMG. Corba Security Service Specification v1.7 (Draft).

ftp://ftp.omg.org/pub/docs/security/99-12-02.pdf, 2000.
[OMG00d] OMG. Joint Revised Submission CORBA/Firewall Security.

ftp://ftp.omg.org/pub/docs/orbos/98-05-04.pdf, 2000.
[OMG00e] OMG. Portable Interceptors RFP.

http://www.omg.org/techprocess/meetings/schedule/Portable Interceptors RFP.html,
2000.

[OMG00f] OMG. Security Domain Membership RFP. http://www.omg.org/
/techprocess/meetings/schedule/Security Domain Membership RFP.html, 2000.

[Ope00] Opengroup. DCE Portal. http://www.opennc.org/dce/, 2000.
[PR00] Arno Puder and Kay Römer. MICO: An Open Source CORBA Implementation. Mor-

gan Kaufmann Publishers, 2000.

5 As they are assigned to privileged ports, a talented attacker could easily gain root access.

c©2000 Springer-Verlag, Informatik aktuell , http://www.springer.de/comp-de/inf akt/index.html

[Pud00] Arno Puder. Mico for the Palmpilot. http://www.mico.org/pilot/index.html, 2000.
[Sch00a] Rudolf Schreiner. Open Source Software Security. http://www.technosec.com/

/whitepapers/open source/open source security.html, 2000.
[Sch00b] Rudolf Schreiner. Sicherheitsbedürfnis. iX - Magazin für professionelle Information-

stechnik, page 14, June 2000.
[VBKM00] John Viega, J.T. Bloch, Tadayoshi Kohno, and Gary McGraw. ITS4 : A Static Vul-

nerability Scanner for C and C++ Code. ftp://ftp.rstcorp.com/pub/papers/its4.pdf,
2000.

c©2000 Springer-Verlag, Informatik aktuell , http://www.springer.de/comp-de/inf akt/index.html

