Event Composition in Time-dependent Distributed Systems

C. Liebig, M. Cilia’, A. Buchmann

Database Research Group- Department of Computer Science
Darmstadt University of Techndogy - Darmstadt, Germany
{ chris, cilia, buchmann}@dvsl.informatik.tu-darmstadt.de

Abstract

Many interesting application systems, ranging from work-
flow management and CSCW to air traffic control, are event-
driven and time-dependent and must interact with heteroge-
neous components in the real world. Event services are used
to glue together distributed components. They assume a vir-
tual global time base to trigger actions and to order events.
The notion of a global time that is provided by synchronized
local clocks in distributed systems has a fundamental impact
on the semantics of event-driven systems, especially the conm+
position of events. The well studied 2g-precedence model,
which assumes that the granularity of global time-base g can
be derived from a priori known and bounded precision of
local clocks may not be suitable for the Internet where the
accuracy and external synchronization of local clocks is best
effort and cannot be guaranteed because of large transmis-
sion delay variations and phases of disconnection. In this
paper we introduce a mechanism based on NTP synchronized
local clocks with global reference time injected by GPStime
servers. e argue that timestamps of events can be related to
global reference time with bounded accuracy and propose
that event timestamps are modeled using accuracy intervals.
We present algorithms for event composition and event con-
sumption which make use of accuracy interval based times-
tamping and illustrate the problems that arise due to
inaccuracy and message transmission delays.

I. Introduction

Event-based computing is an emerging paradigm for
composing applicdions in open, heterogeneous distributed
environments [4,23,20,13]. Applicaions like workflow man-
agement [7,19,14], CSCW [5] and monitoring appli caions
ranging from Air Traffic Control [3,29] to Hedth Care Sys-
tems[12] may be onstructed by leveraging event services for
detedion and dstribution of events in a publish/subscribe
manner. The use of generic event services requires that the
semantics of event servicesthat is presented to the gplication
developer be not only formally spedfied [4549] but also
unambiguous. Failing to do so may cause misson-criticd

TAlso ISISTAN, Faculty of Sciences, UNICEN, Tandil, Argentina.

appli cations to malfunction or behave indeterministicaly, and
may result in unreliable software and impose unacceptable
risks.

The use of absolute and relative temporal events to trig-
ger adions, the nead to measure duration of adivities, and the
detedtion and compositi on of events that may originate in dis-
tributed components that are loosely coupled render distrib-
uted event-driven systems time-dependent. A well defined
event service depends on threebasic fadors: the proper inter-
pretation of time, the adoption of partial order of events and
the cnsideration of transmission delays between producers
and consumers of events. In order to describe and detect com-
plex situations, advanced event services provide the nation of
composite events. Typicdly we ae interested in causa
dependencies between red-world happenings or computa-
tions. Temporal order isaprerequisite for causal order. There-
fore, patential causality can be deteded - or excluded - when
examining the order of event occurrences. However, occur-
rencetime and global order of events can only be determined
by an omniscient external observer. In pradice detedion and
timestamping of events is delayed from the instant of occur-
rence. Additionally, time & provided by a distributed time
serviceisimpredse with resped to clock readings at different
nodes and inacairate with resped to physicd time. Asa @n-
sequence, timestamps are inherently inacarate and may dis-
tort the red order of occurrence of events. The inability to
provide predse and acarate timestamps has additional
impad on event consumption, i.e. the seledion of events that
are to be cmposed. Consumption pdicies like recent and
chronicle rely upon the temporal order of events when seled-
ing the latest events (recent) or the oldest events (chronicle)
out of the event stream. Furthermore, event consumption must
contemplate variable transmisson delays, espedaly in the
case of multi ple, independent remote publi shers.

In this paper we focus on timestamping and composition
of eventsin large scade, loosely coupled, distributed systems
without centralized management, like the Internet. Unpredict-
able bounds and large variations on message transmisson
delays, possible phases of disconnedion and independent
failure modes are dharaderistic for such an environment and
complicate the redization d agenera purpose event service
In particular, it is not possible to determine apriori the pred-
sion baunds for al locd clocks in the system. Therefore, we

argue that ordering of events based on a sparse time base or
the 2g-precadence model does not scae up to the Internet.
In our solution we make use of the Network Time Protocol
(NTP).

The remainder of this paper is organized as follows.
Next, an overview of related work is presented. Sedion Il 1.
introduces the mncept of global time based upon synchro-
nized locd clocks. We give abrief overview on NTP time
services and then present a mechanism for timestamping
events based upon acasracy intervals. We introduce an
acaracy interval order that is the basis for event composi-
tion and consumption. Sedion IV. shortly describes the
architedure of our event service After that we discuss the
implementation o simple event composition gperators and
point out the potential pitfalls due to the very nature of dis-
tributed systems. Finally we aldress open issues and
present current and future work.

1. Related Work

General-purpose event natification services have been
proposed recently as part of major middleware initiatives
[37,38,39,20,31]. However, most of them are restricted to
primitive events and do not consider any consumption poli-
cies.

Composition of events was proposed together with the
concept of Event-Condition-Action rules in adive data-
bases [10]. Active databases support composite events but
assume the existence of atotally ordered event history, and
therefore, are restricted to centralized systems. Active data-
bases handle database events, temporal events, and user-
defined events. HiPAC [11] considered ECA rules in gen-
eral, and provided basic medchanisms for composite event
spedficaion. Compose [18] introduced powerful event
operators. Snoop [8] introduced aformal definition of prim-
itive and composite events based on a globa history log,
and four event consumption palicies: recent, chronicle, con-
tinuous and cumulative. Reach [6] provided mechanisms
for efficient detedion and composition based on the
SAMOS [16] algebra. Ode [22] proposed complex event
composition but used timestamps for event identificaion
and required a total ordering. Recent efforts have mncen-
trated on urbundling database functionality to provide,
among others, adive functionality services through config-
urable components [17,25]. None of the previoudy men-
tioned approadches has addressed properly the problems of
global time, impredse timestamps of events, and composi-
tion delays. Instead, they al assume atotal ordering of
events.

In [27], Lamport presented the happened before rela
tion, which defines a partial ordering of events based onthe
causdlity principle. An event a happened before an event b
(depicted a - b) if a could have influenced b; a and b are
said to be causally dependent. If neither a -~ b nor b - a,
the events are said to be concurrent and causaly indepen-
dent. A system of logicd clocks is introduced which
assigns a natural number to ead event (logicd timestamp).
Logicd clocks are monsistent with causdlity [41]: if a - b,
then a's timestamp is gnaller than b's timestamp - the @mn-

trary is not true. In [41] the concept of vedor time is pre-
sented and it is down that vedor time daraderizes
causality: two events are ordered by vedor timeiff they are
causally dependent. However, neither logicd clocks nor
vedor clocks can ded with causal relations that are estab-
lished through hidden channels and also can na represent
timed red world events. Thus they are not appropriate for
open systems.

In [24,47] a global time gproximation is proposed,
assuming that the maximum time difference between any
two clocks at the sameinstant of time isbounded by 5. The
granularity condition states that the granularity of the glo-
bal time-base g should not be smaller than &, g> 35, ensur-
ing that global clocks do not overlap. A global and total
order of events can be determined if event timestamps are
two or more dock ticks apart, a fad known as 2g-prece-
dence. If this assumption does not hold in all cases, one has
to facepartial ordering of events.

Schwiderski [42] adopted the 2g-precalence model to
ded with distributed event ordering and composite event
detedion. She proposed a distributed event detector based
on aglobal event tree and introduced 2g-precedence based
sequence axd concurrency operators. However, event con-
sumption is non-deterministic in the cae of concurrent or
unrelated events. Additionally, the violation of the granular-
ity condition may lead to the detedion of spurious events.

The Cambridge Event Architecure (CEA) [2] presents
the publish-register-notify paradigm. Mediators provide the
means to compose events. CEA is oriented to support mul-
timedia, mobility, group interadion and compasition of het-
erogeneous oftware components [5]. The implementation
of CEA is based on a proprietary RPC system, limiting
interoperability. Recently, COBEA [31] was proposed,
which extends the CORBA Event Service [37] with the
CEA publish-register-notify paradigm, supporting fault tol-
erance, composite events, server-side filtering and acces
control.

In EVE [19,45] an event-based middleware layer is
proposed as platform for a workflow enadment system.
The workflow is mapped to services and brokers. The
behavior of brokersis defined by ECA-rules using compo-
sition of distributed events. Spedficdly, EVE requires
chronicle ansumption mode of eventsto corredly interpret
workflow notificetions.

In CEA, COBEA and EVE, the detedion d global
composite events is based on Schwiderski's approach.

[49] presents a forma refinement of Schwiderski's
approach and extends the Snoop event algebra to support
event compositionin distributed environments.

The 2g-precealence based approaches cited above do
not scde to open systems and still are anbiguous with
resped to event consumption.

l1l. Timestamping and Global Time

We will give ashort overview of the mncept of global
time and dstinguish between internal and external clock
synchronizaion algorithms. We then present how we lever-
age upon atime servicelike NTP for provision of a global

reference time and introduce the cncept of acarracy inter-
vals. We define abstraa interfaces for locd as well as glo-
bal clock readings used for timestamping events.

If we ae merely interested in relative ordering of
events deteded at the same node, a monotonicdly incress-
ing counter, e.g. thelocd clock reading, might be sufficient.
In the red world, we must differentiate between the occur-
rence of an event and the time it takes until detedion. We
have to distinguish the cae where it can be asaured - at the
applicaion level - that occurrence and detedion of distinct
events never overlap such that timestamps at detedion time
always refled the order of occurrence. The more redistic
scenario is however, that timestamping o locd events does
not yield a total order becaise there is uncertainty about
occurrence time and detedion time of events. We will
therefore define a- partia - locd order that recognizes this
faa and a - partial - global order that additionally respeds
the inacairacy which is inherent in the atificial notion of
referencetime.

A. Clock Synchronization

The instant of time & which an event occurs in the
physicd world will be cdled the physicd time of the event.
Referencetime RT - as provided by UTC or GPStime - isa
granular representation of dense physicd time. Note that
reference time is a mnceptua artifad and inacarate by
nature. In fad GPStime servers carry an error encompass
ing relativistic efeds as well as more significant inacara-
cies due to synchronization and clock realing errors.

In order to provide agloba timebase in distributed
systems, a common solution is to creae avirtua clock at
ead node using aloca hardware dock. The dock synchro-
nizaion problem consists of reading some degree of
mutual consistency between virtual clocks and compensat-
ing for hardware dock skew and frequency drift. Note, that
perfed synchrony cannot be adieved by the very nature of
our universe.

A virtua clock is represented by a function
C(t): RT - CT, CTORT that maps reference time to
clock time CT. A hardware dock typicdly consists of an
oscill ator and a counting register that is incremented by the
ticks of the oscill ator. The hardware dock has a certain
granularity G by which the cmunter can be incremented. For
alocd hardware dock to be corred, we require abounded
drift rate:

Linear Envelope:
st ORT:s<t

(1-p)(t-9)-G<C) ~C(9 = (L+p)(t-9) +G

For most modern hardware docks the mnstant p isin
the order of 10" to 10°°, i.e. the dock drifts more than 0.06
milli seconds in one minute which compares to 6000
instructions ona 100 MIPSmadhine.

Internal clock synchronization consists of keeping vir-
tual clocks within some maximum deviation from ead
other, i.e. for all corred clocks C;, C; it is guaranteed:

Precision: [B: ICi() -Cy() <5, tORT

External clock synchronization aims at maintaining
virtual clocks within some maximum deviation from atime
reference externa to the system, i.e for ead correct clock
C; it isguaranteed:

Accuracy: [:|Ct)—t|<a,tORT

Internal clock synchronizaion algorithms [43,26,30]
guarantee predsion in case of known bounds on transmis-
sion delays of the network. Otherwise, interna clock syn-
chronizaion is best effort [9,46] and predsion d cannot be
a-priori determined for al t. As acarracy a aways implies
predsion 2a, externally synchronized clocks are dso inter-
nally synchronized. At the opposite, internally synchro-
nized clocks do na necessarily maintain acairacy with
resped to external referencetime. If acaracy is a require-
ment, internal clock synchronizaion agorithms can be
integrated with external clock synchronization asin recent
hybrid clock synchronizaion algorithms [15,40,46].

Timestamping based on internal clock synchronizaion
and the goplicaion of the 2g-precalence model [42,47] for
ordering and composing events does not scde to loosely
coupled distributed systems like the Internet. As transmis-
sion delays vary significantly and are in general not known
apriori for al nodes of the network, it is not feasible to
determine apredsion ¢ that holds for al t. For the same
reason such an approach is not suitable for mobile ewviron-
ments [44] with long phases of disconnedion. In fad, the
above goproadhes merely present viable solutions for sys-
tems interconneded by red-time networks or seleded
broadcast based LANSs with restricted load patterns, where
at design time it is possible to determine and guarantee a
bound on o for al instantst and all virtual clocks of the sys-
tem [47].

B. Time Service

The Network Time Protocol defines an architedure for
a time service and a protocol to dstribute acarate time
information in a large, unmanaged gobal-internet environ-
ment and is established as an Internet Standard protocol
[33]. The participating nodes form a logicd synchroniza
tion subnet whose levels are cdled strata. Primary servers
at stratum 1 are diredly conneded to a time source such as
aradio clock or a GPS recaver and provide acarrate UTC
reference time with an error ranging from some milli sec
onds down to afew microseconds [21] - whereas GPStime
itself is acaurate in the order of 30 nanoseconds [28]. Sec
ondary servers at stratum 2 synchronize their clock with
resped to stratum 1 peers plus other servers of stratum 2,
servers at stratum 3 synchronize with stratum 2 peea's and
so on. The synchronization scheme wnsists of apee selec
tion algorithm and estimation of the offset for the locd
clock with resped to reference time provided by the
seleded pee. The pea seledion algorithm chooses the best
pea which is supposed to provide reliable and acairate
time information. Calculating an estimation for the dock
offset is based onexchanging timestamps between pees, as
proposed by Cristian [9]. Additionally, statisticd filters are
applied to a recant sample population which significantly

reduces the aror of the estimated offset. A detailed perfor-
mance study of NTP can be found in [34].

C. Timestamping of Events

NTP provides areliable aror bound, the synchroniza-
tion distance, that acounts for inacarrades due to clock
skew and dfset estimation aong the path to the primary
reference server, plusthe inacairacy of the primary server’'s
clock with resped to referencetime. In [35] a new system
cdl nt p_getti ne() isintroduced for readingthe virtual
global clock that additionally returns areliable aror bound
with resped to reference time. The CORBA TimeService
[36] proposes an abstrad interfacethat supports clock read-
ings and additi onally returns an error bound, the purpose of
which is to wrap existing time service implementations
such as NTP or DCE TimeService In the following we will
present our abstrad view on a dock realing interfacefor
which the aove gproaches provide aviable implementa-
tion. Let us first introduce the notion o acairacy intervals
as proposed in [32,40].

Accuracy Interval: We define the acarracy interval with
reference point t 0 RT and acaracy [a;a*]; 0™ O RT
S It o) =[tyg =05 tg + 0]

For convenience we use the shorthand notations [t = o,
a=[a;0*], lower([a-;a+])=a" and upper([a-;a+])=a*.

Global Time Service: The global time service provides a
function get timeg() - when cdled at physicd time t,
get_time() returns the reading of the locd virtual clock C(t)
together with areliable aror bound synchdist;.

We require the global time serviceto be arred.

Correctness of Time Service: If get time() is cdled at
physicd timet and returns C(t) with error synchdist; then:
t O [C(t) —synchdist, ; C(t) + synchdist,]

Let toc(e) be the instant of time when event e
occurred. Actualy, it takes some time ldd until the event is
deteded and is assgned a timestamp. We cal Idd the locd
detedion delay and denote with tyy(€) the detedion time of
the event. In the following, we assume that an individual
upper bound Idd is known for ead hode of the system.

Local Detection Delay:
Odd ORT @ty (€) O [tye(€) —1dd ; ty(&)]

The dfed of the delay depends largely on the signal-

ling source. For example, the minimum delay in the detec
tion of a locd method event is caused by a timer system
cdl. On a SUN SS10 with two CPUs at 55 Mhz the timer
system cdl takes about 5 psec and it takes about 0,5 psec
on a SUN Ultrall with two CPUs at 300 Mhz, whereas the
granularity G of thelocd clock is 1 psecin bah cases.
In other words, the impad of ldd may be insignificant com-
pared to the inacaracy imposed by the dock granularity on
the fast machine. However, on slow macines like the SS10
or in cases where the event is sgnaled by some external
device, Idd may be significantly larger then clock granular-
ity and additionally increases the inacairacy of the global
timestamp.

The locd detedion delay is taken into acmunt by
timestamping event e as:
Global Timestamp:
ts(e) = [Cltye) + 0]

a = [synchdisttdet+ldd; synchdisttdet]

The fad that the global timestamp ts(e) contains t,..(e) can

eadily be seen from the &ove definitions, becaise
tocc(®) 2 tye(€) —1dd 2 C(tyep) —synchdist, —Idd

and . (€) < tye(€) < Cltyey) + synchdist,

We denote the length of the eror interval o as the inaccu-
racy of the timestamp.

D. Ordering of Events

We define a partial order onacairacy intervals as foll ows:
Accuracy Interval Order:
I]- = [rjiaj], = [rexa]
<l = OsO1,0t00, :s<t
oy +o(j+<rk—ofk
Accuracy interval order ismerely apartial order. Obvi-
ously there exist acaracy intervals I, I, such that neither
lj<Iy nor I, <l; holds. We define the order of two eventsto be
uncertain if they cannot be ordered and introduce the nota-
tion KOL= =<l 0= <) . As we cawnot dedde
on the order of events in such cases, the event service
should take well defined adions, aswe will discuss later on.
Depending on the gplication, theinacaracy of timestamps
can be small with resped to the temporal offset between
causally dependent events. In this case, a well defined
applicdion should never generate uncertain events. How-
ever, if uncertain event orders occur, they should be
resolved by application semantics. It should be noted at this
point, that the worst resolution policy, i.e. ignoring the
uncertainty of event order, does not perform worse then pre-
vious approaches discussed in Sedionll.
With our approach we can guaranteein all cases that:
egituations of uncertain event order are deteded and the
adion taken iswell defined
eevents are not erroneously ordered.
More predsely, we can guarantee that acaracy interval
order is consistent with physicd time order, i.e. the foll ow-
ingimportant property holds:

Time Consistent Order: Given eventse, g, and
ts(e) = 1i(tger(€)), t5() = Iy {tyer(€) then

Ij < Ik O tocc(ej) < tocc(ek)

This proposition follows diredly from the previous
definitions of global timestamp and acairacy interval order,
under the assumption that the time serviceis corred.

If the expeded values of synchdist are sufficiently
small, for example when deteding events at a stratum 1
server attached to GPS, it may be sufficient to order events
based on ordering of global timestamps, as defined above.
In many settings however, event detedion runs at nodes of a
lower stratum and reading the dock results in large synch-

dist values (10-50 msec and more) with resped to the gran-
ularity of thelocd clock. Therefore we additionally provide
amedhanism for the relative ordering of events- originating
from the same node - based on locd clock readings.

We asume that the locd clock is monatonicdly
increasing and that clock discipline by NTP uses continu-
ous amortization. Let g, be events originating at the same
node, then we assignthe locd clock readings aslocal times-
tamps:

Local Time Stamp: If e is deteded at node N with locd
detedion delay 1dd we define: Its(e) = Cltgel®)) -

We ae interested in a time mnsistent order for locd
timestamps. We know from the definition of locd detedion
delay, that tue(e) <tyel®)—1dd O to(g) <toe(e). INn
other words we have to find a lower bound for the distance
taer() —tyed8) which can only be gproximated by locad
clock readings. Let us assume that there ae no resynchroni-
zations between the two clock readings, then we know from
the linear clock drift, that C(t)—C(s)<(1+p)(t—s)+G.
Additionally we have to consider rate aljustments by the
clock discipline. For simplicity, we asume that there is a
known upper bound u for a postive rate aljustment
between two resynchronization points. Then we obtain:

Cltger(®) — C(tdet(ej)) < (1+p)(tyeey) —tdet(ej)) +G+u
C(tyei(8)) —Cltyei(€)) —G—u
(tger(©) (1(+dpe;() @)~ tae®)

We now can spedfy the condition to order locd times-

tamps while mnsidering the locd detedion celay:

Local Timestamp Order: Let Its(e), Its(ey)
timestamps of events deteded at the same node.
Its(e) <lts(e)
Cltger(8)) — Cltge(8)) -G —u
(1+p)

We refer to Schmid and Schossmaier [40] for a
detailed dscussion on how to estimate duration measure-
ments using locd clock readings, where they also discuss
various models of locd clocks and clock discipline mecha
nisms.

0 Idd<

be locd

< ldd <

IV. Notification Service

In this ®dion we describe the overall architedure of
our event notification service and look into the implementa-
tion details of event composition wsing acairacy interval
based timestamping. Fig. 1. depicts the main components of
the event notification service

The achitedure is smilar to that of a push-style
CORBA Notificaion Service[38]. Producer and consumer
of events interad with the event channel through proxy
interfaces:. ECPI (producer) and ECCI (consumer). The
channedl itself isa conceptua artifad redized ontop of mul-
ticast messaging middleware that provides a subjed-based
addressing scheme [39]. Producers of events register meta-
data for event type descriptions with the EventTypeReposi-
tory. Consumers as well as other producers may query the
repository to find out about existing event types. If a sub-

scriber registers interest for some type of event an appropri-
ate ECCI proxy will be returned. This proxy is creaed by
an administrative fadtory objed and relays primitive event
notifications receved by the multicast messaging layer to
the cnsumer. A producer publishes events through the cal
of ECPI::signal Event(Event €) which also adds alocd and
global timestamp and the producer name to the event
parameters. A consumer may conned diredly to the ECCI
proxy to be notified of primitive event occurrences. Com-
posite events are deteded by spedalized ECCI proxies: In
the first stage primitive events are catured by InputNodes
(I, encapsulating the gopropriate ECCI, and then passed on
to the CompositionNode (C) where the operator logic is
implemented and consumption takes place Finaly, if a
composite event is deteded, it is signaled to the ansumer.
As we will show later, the CompositionNode may raise
exceptions to inform the applicaion o ambiguities in the
case when candidate events cannot be ordered.

e

zlm-

®
o
[

stratum 1

stratum

~

gettime()
<
<0
[en1alul
Koeinaoe

C'vﬁg\\ consumer

L]
’Eccwzl

‘ tcc
Fig. 1. Notification Service Architecture.

Events are reliably delivered to subscribers by the
underlying messaging middleware and it is also guaranteed
that events are sent by a producer in the detedion order and
that this order is preserved by the channel.

A publish/subscribe event service per definition must
support many-to-many communication. As a cnsequence
the semantic of group membership impads the Composi-
tionNode subscribers, because we need to know which pro-
ducers might have sent events that must be cnsidered for
composition. We provide two dfferent group membership
semantics: atomic membership and we&k membership.
When using atomic membership, a producer registers with
the DirectoryService and must not start sending events
before dl consumers, which are subscribed to the respedive
type of events, have been notified of the new group mem-
ber. We leverage on the event service itself to reliably
broadcast dedicaed control events, such as a group mem-
bership change event. When subscribing for some type of
event a mnsumer may also request alist of currently adive
publishers. In the cae of wedk membership we delegate to
the dynamic discovery protocol provided by the multicast
messaging middleware. In that case apublisher can register
without blocking at the DirectoryService. It isthen possible

that some events of the joined publisher arrive late and
invalidate former event compositions. Atomic membership
prohibits such errors.

As will be discussed in the next section, we introduce
a windowing scheme mmbined with heatbea events to
cope with node failures of consumers and retwork fail ures
like poor response times or partitioning d the network.

V. Composition and Consumption

To ill ustrate the impad of timestamp inacarracy and
varying transmisgon delays on event composition and con-
sumption we will look at the simple mmposite event
expression A& B, which depicts the situation that an event
of type A and an event of type B occurred. Although the
logic of the operator does not seam to impose aly ordering
congtraints, consumption of events must be cnsidered.
Assume there is one producer P, for type A events and
there ae two producers Plg, P25 for type B events which
signal to an A& B CompositionNode, as shown below:

InputNode ,

¢ multicast
messaging InputNodeg

Fig. 2. Scenario.

Composition

A&B

There can be multiple A events and multiple B events,
even from different nodes, that are candidates to make up
the composite event. In chronicle consumption mode we
want to combine the oldest As and Bs. In recent consump-
tion mode we ae looking for the latest events, i.e. lately
occurred events will rule out older ones. In the foll owing,
we will asaume that the CompositionNode contains a par-
tially ordered list for ead operand. Let POList<A> be a
data structure that holds type A events and POList the
one to hold type B events. The method POList<>.oldest()
returns the set of oldest events which are those events that
are not preceded by any other in the POList<>:

OT::ed POList<E>.oldest() :
- (0¢€ OPOList<E>.oldest() : ts(€') <ts(e))

Note that oldest() may benefit from the fad that there
isonly one producer for type A events and there is no need
to relate to referencetime, as it would be when implement-
ing the sequence operator. The optimization then would be
to use thelocd timestamp order instead of the global times-
tamp order.

A. Window M echanism

We mentioned in the beginning, that we have to con-
sider the impact of individual transmisgon delays. Thetime
diagram shown in Fig. 3. illustrates the problems that may
arise. With the arival of b'oat time t, we deted a tentative
composite a,& b'o event. However, we must consider the
possibility that there is another A event on its way, which
occurred at approximately the sametime & g, i.e. a;Ua, .
When g; arrives at t, we now can be sure that &g is the old-
est A event and must be @nsidered for composition. In the

case of B events we have to additionally consider the fact
that there ae two producers, i.e. when receving b'o there
could be events both at P1g and P2y that have not yet been
delivered but would be dement of POList.oldest(). In
general, we require POList.oldest() to be stable before
constructing a composite event. We ae using a window
medhanism with so cdled sync-points to separate the his-
tory of events as seen by the CompositionNode - refleded
in the operand POList<> data structures - into the stable
past and the unstable past and present that still are subjed
to change.

o
Py 5 ul

2
b0
P%g

Fig. 3. Time diagram (global timestamps).

We define the locd sync-point [tSgync(Pa) with resped
to a producer P, to denote the fad that there ae no more
events a deteded at P, that have not been signaled to the
CompositionNode and lower (Its(a)) <Itsy ,«(P») . The locd
sync-point moves on with ead event detedion and is deter-
mined by approximating a locd clock value that is at least
Idd below the locd timestamp of the latest event. In asimi-
lar way we definethe global sync-paint tsy (P, of apro-
ducer P, such that there ae no more events a at Py that
have not been signaled to the CompositionNode and
lower(Is(a)) <tsgnc(Pa) - Whereas the locd sync point
refers to locd clock time the global sync-point relates to
reference time. Obviously, the globa sync-point with
resped to a producer P, is equivalent to the lower end of
the global timestamp of the latest deteded event. In fad,
with eat event recaved by the cnsumer the respedive
sync-point windows move dong!. For example in Fig. 3.
the global sync-point for Pl ist, = lower(b'o) when b'o
is receved and moves to |0W9I’(b11) . We cd
POList.oldest() to be stable, if there ae no more pend-
ing events b such that b would aso belong to
POList.oldest(). If al globa sync-points are & the
right of the oldest timestamp in POList.oldest() then
there can be no pending event that interseds with all times-
tampsin POList.oldest(). Without proof we present the
formal predicate for stability.

Stability: Given POList<E> and the known set of produc-
ersfor E events, PR(E):
is_stable(POList<E>.oldest()) =

mi Nen POList<E>.oIdest()(upper(ts(e))) <
Minge._ 0 preE)(tSsync(Pe)
By definition we cnsider the empty set not to be stable.

1. Special attention is needed, when the synchdist error signifi-
cantly increases

B. Composition

Now that we can determine if the candidate sets are
stable, we can present the dgorithms for conjunction using
the chronicle policy. The adivity diagram below shows the
exeaution flow when processing incoming events. First the
sync-points are updated with resped to the sender of the
event.

InputNode CompositionNode

Producers Consumers

onData
0 » SignalEvent

updateSyncPoints
evaluate

cleanUp

onData()
—— =2
SignalEvent

updateSyncPoints
evaluate

SignalEvent

evaluate
cleanUp

Fig. 4. Activity diagram.

Then we evaluate the operand lists and chedk if there
are stable events that can be composed. At the endwe dean
up the operand lists. Below we sketch the dgorithmsimple-
mented in the CompositionNode:
SignalEvent(Event €):{

switch typeof(e)
case heartbeat: break;
case A: POList<A>.add(e);
update_sync_points(e);
while(evaluate());
cleanup();
break;
case B: // analogous to above
}
evaluate: returns boolean {
/I AND-chronicle
Set<A> oldest_a; Set oldest_b;
if (not_empty(POList<A> and not_empty(POList))
oldest_a=POList<A>.oldest();
if (is_stable(oldest_a))
if (sizeof(oldest_a) > 1)
/I (exception multiple a)
oldest_b=POL.ist.oldest();
if (is_stable(oldest_b))
if (sizeof (oldest_b) > 1)
Il exception (multiple b)
compose(oldest_a, oldest_b);
return (TRUE); / A & B
else
/I exped sync-point to increase
return(FALSE);
else
1l expect sync-point to increase
return(FALSE);
return(FAL SE);
}

C. Heartbeat

In the cae that oldest_a or oldest_b is not stable yet,
we must wait for the global sync-points to be increased.
This will either be in case of following A or B events,
which again trigger the evaluation algorithm, or in case
heatbed events are signaled. We require producers to sig-

nal events with aminimum frequency. If the event streamis
less frequent or no more events occur a some producer
node, the producer will generate an artificial heatbea event
for the sake of increasing the sync-point window. When a
producer crashes or the network is partitioned for long peri-
ods then the CompositionNode could be blocked - possibly
indefinitely. This problem is dedt with by using timeoutsin
the InputNode which in turn raise an exception at the mn-
sumer.

D. Accepting Uncertainty

Because the acaracy interval order is only a partial
order of events, the situation may arise that we cannot
uniquely identify an oldest event. As can be seen from the
definition of the oldest() method, the result may be aset of
events, with uncertain temporal order. In the dove example
of Fig. 3., oldest_b contains b’ and b%. This stuation is
considered to be exceptional in a sense that the event ser-
vice canot guarantee the proposed semantic of chronicle
consumption. Therefore we explicitly raise an exception.
Alternatively we wuld present the operand candidate sets
oldest_a and oldest_b to the gplicaion and let the user
dedde.

In the following we will illustrate the dfed of uncer-
tainty on order dependent operators. As an example we use
the simple sequence operator A; B. We implement the evalu-
ate() method as foll ows:

evaluate: returns boolean {
/I SEQUENCE-chronicle
Set<A> oldest_a; Set oldest_b;
if (not_empty(POList<A> and nd_empty(POList))
oldest_a=POList<A>.oldest();
if (is_stable(oldest_a))
if (sizeof(oldest_a) > 1)

/I exception (multiple g
oldest_b = POList.oldestFollowing(oldest_a);
if (is_stable(oldest_b))

if (sizeof(oldest_b) > 1)

/I exception (multiple b)
else
compose(oldest_a, oldest_b)
return (TRUE); // A ; B
else
/I expect sync-paint to increase
return(FAL SE);
else
/I expect sync-point to increase
return(FAL SE);
else
return(FALSE);
}

The method POList<>.oldestFollowing(Set<>)
returns the set of oldest events which are those events that
are followingthe oldest event in Set<> and are not preceded
by any other in the POList<>:

OT::e O POList<E>.oldestFoll owing(Set<F>) :

fin O Set<F>, lower(f ;) = mMing 5 gyop(lOWer(f))
fmin< e O fmin Ue
- (O€ OPOList<E>.oldestFollowing(Set<F>) : ts(€') <ts(e))

Note that the aove evaluate() agorithm presents the
most strict implementation of the sequenceoperator. In fad,

there culd be pairs of eventsa [J oldest_aand b [J oldest_b
for which a<b holds. However, the notificaion service may
not silently dedde upon which events to compose. We sug-
gest that the user may spedfy a cdlbadk to implement
application spedfic seledion pdlicies. On the other hand
we can say, that if we do na explicitly recognize such situ-
ations, then thereis the possibility for erroneously signaling
a omplex situation that actually did not occur.

V1. Conclusions and Future Work

Previous work on event composition in distributed
environments either does not consider the passihility of par-
tial event ordering or is based on the 2g-precalence model.
Therefore, existing approades suffer from one or more of
the following dawbadks: ladk of applicability to large scde
open systems, possihility of spurious events and ambiguous
event consumption.

In this paper we present a hew approach for times-
tamping eventsin alarge-scde, loosely coupled distributed
system. We use acadracy intervals with reliable eror
bounds for timestamping of events reflecting the inherent
inacarracy in time measurements. We leverage existing
time service implementations, like the Network Time Pro-
tocol, that provide reference time injeded by GPS time
servers and additionally return reliable eror bounds.

We propose awindow mechanism to ded with varying
transmisson delays when composing events from different
event sources. Most important, when deteding composite
events we explicitly consider the fad that events can only
be partialy ordered. We introduce an acairracy interval
order that guarantees the property of time consistent order:
events are not erroneously ordered and situations of uncer-
tain event order are dways deteded and signaled to the
application. Thereby, event consumption modes like recent
and chronicle can be unambiguoudy defined. In ou ongo-
ing reseach we examine different strategies to handle
uncertainty of event order. Possible goproadcies could be to
provide palicies as ®rvice onfiguration options or to intro-
duce up-cdls to the gplicaion level to let the user dedde
and make event composition programmable.

As many applicaions like CSCW need more powerful
temporal relations between composite events [48], we sug-
gest to think of composite events having a start and end-
point thus associating an interval with the composite event
instead of using the timestamp o the terminating event.
Then we can provide mmposition operators that alow for
interval relations[1].

Applicaions with demands for high acaracy time
stamping and timer signal handling, like red-time systems,
are supposed to make use of spedal low-cost hardware
equipment that diredly integrates GPS time signals and
may achieve down to 1 usec acaracy [21] and guarantees
predsion of down to 2 psec The foundations of the pro-
posed interval based approach are in general applicable to
such a high acairacy and high predsion time ewironment.
Our approach aso fits well into mobile ewironments, pro-
vided that the mobile devices are eguipped with GPS
recavers.

We have implemented a prototype on top of a CORBA
platform with multicast capabilities to experiment with
acairacy interval based event compasition. Currently we
are incorporating event composition based on interval rela-
tions and are making extensions for up-cal support.

VII. Acknowledgement

We wish to thank Jean Baoon and Ken Moody for
many fruitful discussons during their recent visit. Thanks
are dso due to UIf Meyer who implemented pations of the
first prototype.

VIll. References

[1] J.F Allen. Maintaining Knowledge about Temporal Intervals. CACM,
Vol. 26, No. 11, November 1983.

[2] J. Bacon and K. Moody and J. Bates. Active Systems. Technical
Report. Computer Laboratory, University of Cambridge, December
1998.

[3] F. Barabas and A. Poddany and J.-P. Florent and G. Klawitter. Java
Shared Objects for Flexible Distributed Applications - Prototype of a
Flight Data Management System. DIFODAM project, Eurocontrol,
Brussels, http://www.eurocontrol.fr/projects/difodam/.

[4] D. Barret and L. Clarke and P. Tarr and A. Wise. A Framework for
Event-based Software Integration, ACM Transactions on Software
Engineeing and Methodology, Val. 5, No. 4, 1996

[5] J.BatesandJ. Baoon and K. Moody and M. Spiteri. Using Events for
the Scalable Federation of Heterogeneous Components. In Proceed-
ings of the SIGOPS European Workshop on Support for Composing
Distributed Applications, September 1998.

[6] A. Buchmann and J. Zimmermann and J. Blakeley and D. Wells.
Building an Integrated Active OODBMS: Requirements, Architec-
ture, and Design Decisions. In Proceedings of |CDE '95, pp. 117-128,
March 195.

[7] F Casati and S. Ceri and B. Pernici and G. Pozzi. Deriving Active
Rules for Workflow Management. In Proceedings of DEXA'96, pp
94-115, September 1996.

[8] S. Chakravarthy and V. Krishnaprasad and E. Anwar and S. Kim.
Composite Events for Active Databases: Semantics, Contexts and
Detedion. In Proceedings of the International Conference on Very
Large data Bases (VLDB '94), pp. 606-617, 1994.

[9] F Cristian. Probabilistic Clock Synchronization. Distributed Comput-
ing (3), Springer, 1989.

[10] U. Dayal and A. Buchmann and D. McCarthy. Rules are Objects too:
a knowledge model for an active, object-oriented database system. In
Proceedings of the 2nd Intl. Workshop on Object-Oriented Database
Systems, Ledure Notes in Computer Science 334, Springer, 1988.

[11] U. Dayal et a. The HiPAC Project: Combining Active Databases and
Timing Constraints, ACM SIGMOD Record, Vol. 17, No. 1, pp. 51-
70, March 1988.

[12] U. Daya and M. Hsu and R. Ladin. Organizing Long-Running Activ-
itieswith Triggers and Transactions. In Proceedings of the 1990 ACM
SIGMOD International Conference on Management of Data (SIG-
MOD'90), pp. 204-214, May 1990.

[13] DCOM, Microsoft Corp., http://www.microsoft.com/com/dcom.asp/

[14] J. Eder and H. Groiss and H. Nekvasil. A Workflow System Based on
Active Databases. In Proceedings of Connectivity '94: Workflow
Management - Challenges - Paradigms and Products (CONN'94), pp.
249-265, 1994.

[15] C. Fetzer and F. Cristian. Integrating Externa and Internal Clock Syn-
chronization. Real-Time Systems, Vol. 12, No. 2., 1997, Kluwer Aca-
demic Publishers, Boston

[16] S. Gatziu and K. Dittrich. Events in an Active Object-Oriented Data-
base System. In Proceedings of Rules in Database Systems (RIDS
'93), pp. 23-39, August 1993

[17] S. Gatziu and A. Koschel and G. v. Buetzingsloewen and H. Fritschi.

Unbundling Active Functionality, SSIGMOD Record. Vol.27, No. 1,
pp. 3540, March 1998.

[18] N. Gehani and H. Jagadish and O Shumeli. Event Spedficationin an
Active Objed-Oriented database. In Proceeadings of International
Conference on Management of Data (SIGMOD'92), June 1992.

[19] A. Geppert and D. Tombros. Event-based Distributed Workflow Exe-
cution with EVE. In Proceedings of Middleware '98 (IFIP Intl. Conf.
on Distributed Systems Platforms and Open Distributed Processng),
September 1998.

[20] R.E. Gruber and B. Krishnamurthy and E. Panagos.High-level Con-
structs in the READY Notification System. ACM SIGOPS European
Workshop on Support for Composing Distributed Applications, Sep-
tember 1998.

[21] W.A. Halang and M. Wannemacher. High Accuracy Concurrent Event
Processng in hard Real-Time Systems. Real-Time Systems, Vol. 12,
No. 1, 1997, Kluwer Academic Publishers, Boston.

[22]H. Jagadish and O. Shmueli. Composite Events in a Distributed
Object-Oriented Database. In M. Tamer Ozsu, U. Daya and P. Valdu-
riez (editors), Distributed Object Management, Morgan Kaufmann,
San Mateo, California, 1994.

[23] JavaBeans, Sun Microsystems, http://java.sun.com/beans/

[24] H. Kopetz. Sparse Time versus Dense Time in Distributed Red-Time
Systems. In Proceedings of the 12th Intl. Conf. on Distributed Com-
puting Systems (ICDCS), Yokohama, Japan, 1992.

[25] A. Koschel and R. Kramer et.al. Configurable Active Functionality for
CORBA. In 11th ECOOP'97 Workshop: CORBA |mplementation,
Use and Evaluation, June 1997.

[26] L. Lamport and M. Melliar-Smith. Synchronizing Clocks in the Pres-
ence of Faults. Journa of the ACM, Vol. 32, No. 1, January 1985.
[27] L. Lamport. Time, clocks, and the ordering d events in a distributed

system. CACM Vol. 21 No. 7, pp. 558-565 July 1978.

[28] W. Lewandowski and J. Azoubub and W.J. Klepczynski. GPS Pri-
mary Tod for Time Transfer. Proc. of the IEEE, Vol. 87, No. 1, Janu-
ary 199.

[29] C. Liebig and B. Boesling and A. Buchmann. A Notification Service
for Next-Generation IT Systemsin Air Traffic Control, GI-Workshop
"Multicast - Protokolle und Anwendungen”, pp. 55-68, Braunsch-
weig, Germany, May 1999.

[30]J. Lundelius and N. Lynch. An Upper and Lower Bound for Clock
Synchronization. Information and Control, Vol. 62, No. 2-3, 1984.
[31] C. Ma and J. Bacon. COBEA: A CORBA-Based Event Architecture.
In Proceedings of the USENIX Conference on Object-Oriented Tech-

nologies and Systems, pp. 117-131, June 1998.

[32] K. Marzullo and S. Owicki. Maintaining the Time in a Distributed
System. ACM Symp. on Principles of Distr. Computing 1983, in
ACM SIGOPS 1985.

[33]D.L. Mills. Network Time Protocol Version 3. Network Working
Group Report RFC-1305, University of Delaware, March 192.

[34] D.L. Mills. On the Accuragy and Stability of Clocks Synchronized by
the Network Time Protocol in the Internet System. ACM Computer
Communication Review, Vol. 20, No. 1, 1990.

[35] D.L. Mills. Unix Kernel Modifications for Precision Time Synchroni-
zation. Electrical Engineering Department Report 94-10-1, University
of Delaware, October 1994.

[36] Object Management Group (OMG), CORBA Services:. Common
ObjectServices, Time Service Technical Report formal/97-12-21,
ftp://www.omg.org/pub/docs/formal/97-12-21.pdf, Famingham, MA,
July, 1997.

[37] Object Management Group (OMG). Event Service Specification.
Technical Report formal/97-12-11, ftp://www.omg.org/pub/docs/for-
mal/97-12-11.pdf.

[38] Object Management Group (OMG). Notification Service Specifica-
tion. Technical Report telecom/98-06-15, ftp://www.omg.org/pub/
docs/telecom/98-06-15.pdf.

[39] B. Oki and M. Pfluegl and A. Siegel and D. Skeen. The Information
Bus - An Architecture for Extensible Distributed Systems. In Proceed-
ings of SIGOPS93, 1993.

[40]U. Schmid and K. Schossmaier. Interval-based Clock Synchroniza-
tion. Real-Time Systems, Vol. 12, No. 2., 1997, Kluwer Academic
Publi shers, Boston.

[41] R. Schwarz and F. Mattern. Detecting Causal Relationshipsin Distrib-

uted Computations: In Search of the Holy Grail . Distributed Comput-
ing, Vol. 7, No. 3, 1994.

[42] S. schwiderski. Monitoring the Behavior of Distributed Systems, PhD
Thesis, Selwyn College, Computer Lab, University of Cambridge,
June 1996.

[43] T.K. Srikanth and S. Toueg. Optimal Clock Synchronization. Journal
of the ACM, Vol. 34, No. 3, July 1987.

[44] B. Sterzbach. GPSbased Clock Synchronizationin a Mobile, Distrib-
uted Real-Time System. Real-Time Systems, Vol. 12, No. 1, 1997,
Kluwer Academic Publishers, Boston.

[45] D. Tombros and A. Geppert and K. Dittrich. Semantics of Readive
Components in Event-Driven Workflow Exeaution, In Proceedings of
the 9th International Conference on Advanced Information Systems
Enginee&ing, June 1997.

[46] P. Verisdmo and L. Rodrigues and A. Casimiro. CesiumSpray: a Pre-
cise and Accurate Global Clock Service for large-scale Systems. Real-
Time Systems, Vol. 12, No. 3., 1997, Kluwer Academic Publishers,
Boston.

[47] P. Verisgmo. Red-Time Communication. In Sape Mullender (Editor),
Distributed Systems, Addison-Wesley, 1993.

[48] T. Wahl and K. Rothermel. Representing Time in Multimedia-Sys-
tems. |EEE Conf. on Multimedia Computing Systems, Boston, 1994.

[49] S. Yang and S. Chakravarthy. Formal Semantics of Composite Events
for Distributed Environments. In Proceedings of the International
Conference on Data Engineering (ICDE 99), pp. 400-407, Sydney,
Asutralia, March 1999.

