
CREAM: An Infrastructure for Distributed,
Heterogeneous Event-based Applications

M. Cilia?, C. Bornhövd??, A. P. Buchmann

Databases and Distributed Systems Group, Department of Computer Science
Darmstadt University of Technology - Darmstadt, Germany

<lastname>@informatik.tu-darmstadt.de

Abstract. Applications ranging from event-based supply chain man-
agement to enterprise application integration and pervasive computing
depend on the timely detection and notification of events. We present
Cream the event-based reactive component of the Dream middleware
platform. Here we address four key issues in distributed and heteroge-
neous environments: event detection and notification, event composition,
an active functionality service, and ontology support. We show the need
for ontology support at all levels in heterogeneous environments and
present a distributed active functionality service that addresses the diffi-
cult issues of event composition in widely distributed environments. We
illustrate the practicality of the proposed approach through two proto-
types that are based on this infrastructure: a meta-auction service and
a personalized service offering in Internet-enabled vehicles.
Keywords: event-based applications; event handling; publish/subscribe;
concept-based addressing; data integration; business rules.

1 Introduction

Application are moving away from tightly-coupled systems towards systems of
loosely-coupled, dynamically bound components. This trend fits the event-based
application paradigm which is well suited for integrating autonomous, heteroge-
neous components into complex systems by means of detecting and exchanging
events. Since event-based systems do not require a-priori knowledge about the
consumers of events they are easy to evolve and scale.

However, the exchanged events encapsulate data about a given happening of
interest, which can only be properly interpreted and used when sufficient context
information is known. In traditional, centralized systems this context informa-
tion is typically known by the users and left implicit. It is normally lost when
data and events are exchanged across component or institutional boundaries. To
process events in a semantically meaningful way, explicit information about the
semantics of events and data is required. Moreover, event-based systems use an
event dissemination mechanism, such as a publish/subscribe mechanism, which
allows for asynchronous communication. Producers and consumers must share a
common understanding in order to express their mutual interests.
? also Faculty of Sciences, UNICEN, Tandil, Argentina

?? IBM Almaden Research Center, USA. e-mail: cborn@us.ibm.com

The reaction to events on the application-side represents part of the busi-
ness processes and, in general, is hard-coded. Since the domain knowledge is
scattered and hard-wired into applications it has been difficult to adapt to new
requirements quickly.

Cream (Concept-based REActive Mechanism) is the reactive component
of Dream [1], a flexible middleware platform for developing open distributed
and heterogeneous event-based applications. Cream supports from the ground
up ontologies that provide the base for correct data and event interpretation.
Rather than requiring every producer or consumer to use the same homogeneous
namespace (as is common in other pub/sub systems) we provide metadata and
conversion functions to map from one context to another. On top of it a higher
level addressing model for event dissemination is proposed. Event-triggered busi-
ness rules can be explicitly defined and managed to adapt to new business re-
quirements. For instance, modern large-scale applications, such as e-commerce,
event-based supply chain management (ESCM), Internet or Intranet applica-
tions, enterprise application integration (EAI), and emerging pervasive systems,
can effectively benefit from this infrastructure.

The power of Cream is illustrated with the help of two case studies for
which prototypes have been built: a meta-auction application and the personal-
ization of car and driver portals in Internet-enabled vehicles. Examples presented
throughout this paper are related to these scenarios.

The remainder of this paper is organized as follows. In Section 2 related work
in the four main areas contributing to our event-based middleware platform
is presented. Section 3 provides an overview of the proposed approach with
additional detail presented in the corresponding subsections. An outline of the
implementation of the infrastructure and two case studies built on top of it is
given in Section 4. Conclusions and future work are presented in Section 5.

2 Related Work

The work presented in this paper involves the following areas: event dissem-
ination, complex event detection, rule processing and data/event integration.
Problems in individual areas have been solved for homogeneous and centralized
environments but are much harder in heterogeneous, distributed environments
where they have not been solved yet. Due to space limitations it is not possible
to provide a more detailed discussion of related work. Therefore, the reader is
pointed to [2,3] for additional discussion of related research.

2.1 Event Dissemination

In distributed environments events must be propagated to all interested con-
sumers. For this purpose, event notification services, or notification services for
short, are widely used. In CORBA an event service [4] was introduced to provide
a mechanism for asynchronous interaction between CORBA objects. Here, an
event channel acts as a mediator between suppliers and consumers of events. To

overcome deficiencies of this service specification, the notification service [5] was
proposed as a major extension with support for quality of service specifications
and basic event filtering.

The Java Message Service (JMS) [6] provides the Java technology platform
with the ability to process asynchronous messages. JMS was originally developed
to provide a common Java interface (API) to legacy Message Oriented Middle-
ware (MOM) products. This API brings portability of Java code which facilitates
the replacement of the underlying messaging service without affecting existing
code. JMS provides two models for messaging among clients: point-to-point (us-
ing a queue) and publish/subscribe (by means of topics). JMS was incorporated
as an integral part of the Enterprise Java Beans (EJB) component model in the
EJB 2.0 specification by defining a new bean type, known as message-driven
bean (MDB). This new bean acts as a message consumer providing asynchrony
to EJB-based applications.

In the past few years, publish/subscribe mechanisms have got more atten-
tion because they offer loosely coupled exchange of asynchronous notifications,
facilitating extensibility and flexibility. The channel model has evolved to a more
flexible subscription mechanism, known as subject-based, where a subject is at-
tached to each notification [7]. Subject-based addressing features a set of rules
that defines a uniform name space for messages and their destinations. This ap-
proach is inflexible if changes to the subject organization are required, implying
fixes in all participating applications.

In order to improve expressiveness of subscriptions the content-based ap-
proach was proposed where predicates on the content of a notification can be
used for subscriptions. This approach is more flexible but requires a more com-
plex infrastructure [8]. Many projects in this category concentrate on scalabil-
ity issues in wide-area networks and on efficient algorithms and techniques for
matching and routing notifications to reduce network traffic [9,10,11]. Most of
these approaches use simple Boolean expressions as subscription patterns and
assume homogeneous name spaces.

2.2 Detecting Composite Events in Distributed Environments

The approaches mentioned in the previous section do not consider event com-
position. That means that they filter event notifications trying to deliver events
of interest to consumers without considering any correlation with other event
occurrences. Event composition involves the occurrence of two or more events.
Composite events are expressed using an event algebra, such as those defined
in HiPAC [12], or Snoop [13]. Such algebras require an order function between
events to apply event operators (e.g. sequence), or to consume events. To de-
termine which of these events should be consumed or selected, different con-
sumption modes were defined [14]. Usually, events are timestamped to provide
a time-based order with the purpose of facilitating event selection. However, in
open distributed environments global time is not applicable.

An approximation for modeling the time imprecision in distributed systems
has been proposed [15], which is known as the 2g-precedence model. Since an up-

per bound to the precision is assumed, this model is not appropriated for wide
area networks and open distributed systems. In [16] an approach for timestamp-
ing events in large-scale, loosely coupled distributed systems is proposed. This
uses accuracy intervals with reliable error bounds for timestamping events that
reflect the inherent inaccuracy in time measurements.

Schwiderski [17] adopted the 2g-precedence model to deal with distributed
event ordering and composite event detection. She proposed a distributed event
detector based on a global event tree and introduced 2g-precedence-based se-
quence and concurrency operators. However, event consumption is non-deter-
ministic in the case of concurrent or unrelated events. Additionally, the violation
of the granularity condition (2g) may lead to the detection of spurious events.

Many projects on event composition in distributed environments such as
[18,19,20] either do not consider the possibility of partial event ordering or are
based on the 2g-precedence model. Therefore, they suffer from one or more of
the following drawbacks [16]: they do not scale to open systems, they provide
the possibility of spurious events, or they present ambiguous event consumption.

Systems that support composite events must also address the semantic issues
associated with processing composite events. For example, how timestamps are
generated and the way in which events are selected and consumed.

2.3 Active Functionality

Once simple or composite events are detected a proper reaction must be per-
formed. Reactive mechanisms were introduced in the late ’80s in the form of
Event-Condition-Action rules (ECA-rules) in active databases (aDBMS) [21].
The goal of active databases was to avoid unnecessary and resource intensive
polling in monitoring applications where events are detected as changes to a
database and the application reacts to the occurrence of these events.

Active functionality developed for a particular DBMS became part of a large
monolithic piece of software (the DBMS). Active functionality tightly coupled
to a concrete DBMS hinders its adaptation to today’s Internet applications,
such as e-commerce, where heterogeneity and distribution play a significant role
but are not directly supported by traditional (active) database systems [22]. An-
other weakness of tightly coupled aDBMSs is that active functionality cannot be
used on its own without the full data management functionality. However, active
functionality is also needed in applications that require no database functional-
ity at all, or that require only simple persistence support. Consequently, active
functionality needs to be offered as a separate service that can be combined.

The unbundling of active databases consists of separating the active part
from active DBMSs and breaking it up into components providing services like
event detection, rule definition, rule management, and execution of ECA rules
on the one hand, and persistence, transaction management and query process-
ing services on the other [22]. Afterwards, only necessary components can be
rebundled in order to provide the required functionality. A separation of active
and conventional database functionality would allow the use of active capabili-
ties depending on given application needs without the overhead of components

that are not needed. Various projects like C2offein [23], FRAMBOISE [24], and
NODS [25] have followed this approach.

Unbundling in this context means to give up the “closed world” assumption
that traditionally underlies a DBMS and therefore its applicability in an open
distributed environment is questionable. This is because of the inherent char-
acteristics of such environments that impose new requirements that were not
considered in centralized environments, such as the lack of global time, inde-
pendent failures of nodes or communication channels, message delays, etc. The
consideration of these characteristics has an enormous impact on the event detec-
tor [16], which is the essential component of an aDBMS [26]. In [27] crosseffects
and potential incompatibilities arising from the combination of selective features
of active, real-time and distributed object systems are discussed.

2.4 Heterogeneity

The need for additional semantic metadata for the exchange of data or messages
among independent applications or services has been clearly identified, not only
in the context of B2B frameworks like ebXML [28], BizTalk [29], or RosettaNet
[30] but also by the W3C in efforts like Semantic Web [31], or DAML+OIL [32].

In the first case, XML [33] and XML Schema [34] are used to define common
vocabularies to describe data and business processes. XML tags may be explicitly
defined in a XML Schema and can be used to give hints about the assumed
meaning of the represented data. XML Namespaces [35] allow to contextualize
XML tags in the sense of distinguishing different meanings of the same tag name.

In the context of W3C’s Semantic Web initiative RDF [36] and RDF Schema
[37] are used to provide additional semantic metadata to better enable computer
and users to exchange and integrate data. RDF provides an infrastructure that
supports the representation and exchange of structured metadata to describe
Web resources, like (parts of) Web pages, or other RDF metadata. RDF allows
the description of properties of and interrelationships among those resources in
terms of 〈resource, attribute, value〉 triples. The attributes used can be declared
in RDF Schemas which, similar to XML Schemas, give information about their
intended meaning, and specify restrictions on their values. RDF Schemas and
XML Schemas can play a role similar to ontologies as a common semantic basis
for data and metadata representation.

In our framework we use the MIX model [2,38] for the representation of event
content. Like XML/XML-Schema or RDF/RDF Schema MIX provides a flexi-
ble representation model for data plus additional metadata based on a common
domain-specific vocabulary. However, in addition to the functionality provided
by the data models discussed above, MIX directly supports data integration by
making the concept of semantic context (i.e., the explicit description of implicit
assumptions about the meaning of the data) and conversion functions (which
allow the automatic conversion of data/events from different sources to a com-
mon context) first class citizens of the model itself. MIX should not be seen as
an alternative to the models being developed in the context of the W3C but as

a complementing approach that provides features that hopefully will find their
way into the other XML-based models and standards.

3 Our Approach

Cream provides a middleware platform for distributed, heterogeneous event-
based applications. Such middleware requires event handling, support for inte-
gration of heterogeneous data and events, monitoring capabilities, reaction to
events and of course an event dissemination service. Our approach is based on
an ontology infrastructure which is the key to achieve our goal.

Events are described with ontology concepts and are augmented with ad-
ditional context information allowing in this way their correct interpretation
outside the boundaries of an event source. On this basis, a concept-based noti-
fication service is proposed with the objective to provide event producers and
consumers with a common level of abstraction to describe their interests.

More and more, event-based applications need to detect complex situations
based on the event stream. For this purpose, a complex event detection mech-
anism that takes into consideration issues related to open distributed environ-
ments is proposed. ECA-rules are incorporated to avoid the definition of re-
actions to simple and complex events in the form of hard-wired code in the
applications. Again, these high-level (business) rule definitions are based on the
ontology providing the ability to define them using the most adequate domain
specific language without affecting the active mechanism underneath. This ac-
tive mechanism relies on a service-based architecture where elementary ECA-rule
services are composed according to rule definitions. These elementary services
are able to interact with external systems or services but always taking into
account the data/event assumptions of the system they interact with.

3.1 Ontology Support

The event-based approach carries the potential for integrating autonomous, het-
erogeneous components into complex systems by means of exchanging events.
These events encapsulate data about a given happening of interest, which can
only be properly interpreted and used when sufficient context information about
its intended meaning is known. In general, this context information (at least the
larger part of it) is left implicit and as a consequence is lost when data/events are
exchanged across institutional or system boundaries. For this reason, to exchange
and process events from independent sources in a semantically meaningful way,
explicit information about its semantics in the form of additional metadata is
required.

Our infrastructure is founded on the use of shared concepts expressed through
common ontologies [39,40,41,42]. By concept we understand an abstraction of
characteristics common to a set of real world phenomena. By associating a spe-
cific concept with a data object we describe the correspondence between the
data and the respective real world phenomena.

Depending on the application domain at hand, ontologies as they are used
in our infrastructure, can be obtained by negotiation between a small set of

companies (like in the case of EDI), by a consortium responsible for providing
standards for a given domain (e.g., the Unicorn standard [43] for travel data), or
by formalizing existing commonly used vocabularies (e.g., for stock trading) by
a service provider. It is important that ontologies, other than database schemas
for example, are source-independent and need to be extensible to be useable in
real-life situations.

We represent events, or to be more precise event content, using a self-de-
scribing data model called MIX [2,38]. MIX refers to concepts from a domain-
specific ontology to enable the semantically correct interpretation of event con-
tent. Simple attributes of an event are represented as triplets of the form 〈C, v, S〉,
with C referring to a concept from the underlying ontology, v representing the ac-
tual data value, and S providing a set of additional meta-attributes (also known
as the semantic context of v) to make implicit modeling assumptions explicit. The
semantic context specifies the interpretation context of a data value and is also
represented as MIX data objects. For example, the fuel level of a gas tank can
be represented as 〈FuelLevel, 20, {〈VolumeUnit, “Liter”〉, 〈ScalingFactor, 1〉}〉.

Complex data objects are represented in MIX as 〈C, A〉 pairs, where C refers
to a concept from the common ontology, and A provides the set of simple or com-
plex sub-objects that represent its attributes. These attributes are divided into
those that are mandatory, and additional attributes that are optional. Identify-
ing attributes, which are used, similar to key attributes in the relational model,
to identify an object of a given concept have to be mandatory attributes. For
example1, a PlaceBid event can be represented with a complex semantic object
as follows:

CSO = <PlaceBid, {<ParticipantId, 412, {<IdentifierCode,”eBayCode”>}>,
<ItemId, 5423, {<IdentifierCode, ”eBayCode”>}>,
<BidAmount, 99, {<Currency, “USD”>, < Scale, 1>}>,
<ParticipantType, ”Gold”>,
...} >

In the following, we refer to events represented in the MIX model, i.e.,
based on concepts from the common ontology and enhanced by additional con-
text metadata as semantic events. Semantic events from different heteroge-
neous sources can be integrated by converting them to a common semantic
context using conversion functions. Conversion functions can be specified in the
underlying ontology if they are domain-specific and application-independent.
Application- or service-specific conversion functions may be defined and stored
in an application-specific conversion library [38].

As depicted in Fig. 1, we use ontologies at three different levels of abstraction:

– Basic Representation Ontology: defines concepts like Integer or String for the
platform-independent representation of data. It is domain-independent and
provides the basis for the higher levels of the ontology.

1 Mandatory attributes are underlined for presentation purposes.

– Infrastructure-specific Ontology: contains the concepts needed for describing
the infrastructure, i.e., event hierarchy, time notions, and notifications.

– Domain-specific Ontology: provides all the concepts needed for a particular
domain. For example, PlaceBid, BidAmount, etc. for auctions and FuelLevel,
VehicleStatus, GetInto, etc. for the Internet-enabled car.

'RPDLQ�VSHFLILF�RQWRORJ\

, QIU DVWU X FWX U H�VSHFLILF�RQWRORJ\

% DVLF�U HSU HVHQWDWLRQ�RQWRORJ\

U HIHU V�WR�D�FRQFU HWH�VX E M HFW�G RPDLQ

� PRG HO�RI�U HDO�Z RU OG �DVSHFWV�

U HIHU V�WR�DFWLY H�IX QFWLRQDOLW\

LQIU DVWU X FWX U H

G RPDLQ�LQG HSHQG HQW�SK \VLFDO

U HSU HVHQWDWLRQ�E DVLV

Fig. 1. Three abstraction levels of ontology concepts

Concept definitions from the last two levels are associated with a physical
representation by inheriting from an appropriate concept of the basic represen-
tation ontology.

3.2 Events and Notifications

An event is a happening of interest. Events coming from diverse sources must be
mapped to the common vocabulary. This is basically the task of event adapters.
These components convert source-specific events into their corresponding con-
cepts of the ontology augmented with semantic contexts. Event adapters deliver
a semantic event. The association of context information with events serves as an
explicit specification of the implicit assumptions made by the event source. With-
out this additional information the event content cannot be correctly interpreted
once the event leaves the source boundaries. Based on the explicit description
of the underlying context these semantic heterogeneities can be resolved by con-
verting the data to a common context using appropriate conversion functions.
As mentioned before, this common context is specified by the consumer of the
semantic event. For instance, consider the placement of a bid that is generated
at an American auction site. This happening is then mapped into the PlaceBid
concept and the assumptions about the data involved are attached in the form
of semantic context. Taking a closer look at one of its attributes, e.g. the bid
amount, it is augmented with USD as currency in order to be correctly inter-
preted outside this particular auction site. PlaceBid consumers can specify the
currency of interest, e.g. Euro, as the target context. This conversion is auto-
matically done by the ontology support.

A notification is a message reporting a semantic event to interested con-
sumers. A notification carries not only data about the event itself but also im-
portant operational data, such as detection time, event source, time-to-live, etc.
Concepts related to notifications (e.g. Notification, OperationalData, Detection-
Time, EventSource, TimeToLive) are specified as part of the infrastructure-specific

ontology. On the other side, concepts related to the content of semantic events
should be specified in the corresponding domain-specific ontology.

3.3 Event Dissemination

A notification service based on the publish/subscribe paradigm is responsible
for delivering events to interested consumers. Here a notification flows from an
event producer to one or more consumers. Consumers place a standing request
for events by subscribing. A publisher makes information available for its sub-
scribers. A publish/subscribe mechanism provides asynchronous communication,
it naturally decouples producers and consumers, makes them anonymous to each
other, allows a dynamic number of publishers and subscribers, and provides lo-
cation transparency without requiring a name service.

In order to provide a higher level of abstraction to describe the interests of
publishers and subscribers, concept-based addressing is proposed for our frame-
work. Since semantic events are represented with concepts of the ontology, con-
sumers can benefit from this situation and can specify their subscription pat-
terns by also using the underlying ontology. In this way, consumers do not need
to take care of proprietary representations and all participants use a common
vocabulary not only for its physical and structural representation but also for
expressing their interests. In addition, publishers do not require to specify addi-
tional information for event dissemination since the destination of notifications
is determined by self-contained information.

The delivery of notifications to consumers is the responsibility of the delivery
mechanism. Consequently, there is a correspondence between the concept-based
approach and the addressing model (i.e. content-based, subject-based) of the
underlying delivery mechanism. The latter is responsible for using efficiently the
resources involved (network bandwidth, size of routing tables, etc.)2 while the
concept-based approach is responsible of providing a common level of abstraction
for producers and consumers.

In our current implementation the concept-based addressing is built on top of
a commercial delivery mechanism that uses the subject-based addressing model.
Before getting into more details about the mapping between these two mod-
els, subject-based addressing needs to be introduced. Subjects define a uni-
form name space for messages and their destinations. A subject is associated
with each notification. Subject names consist of one or more elements (usu-
ally a string) organized in a tree by means of a dot notation. Subjects are
used to direct notifications to their destinations. Therefore, notifications need
to have attached a specific subject which is a path on the subject tree e.g.
NEWS.SPORTS.BASKETBALL. Subscribers could also use wildcards for sub-
scription purposes (e.g. NEWS.SPORTS.*).

In our prototype the subject name space is organized in two main parts. The
first one is to provide control of the destination of notifications (if needed). This

2 It is out of the scope of this paper to discuss routing algorithms and efficient use of
the brokers’ resources. For a detailed discussion see [44].

control part is used to concatenate services in the service chain (more details in
Section 3.6). The second part is used to capture the content of the semantic event
in question. For this purpose, the subject for a semantic event is derived from its
identifying attributes. This mapping is done by flattening the semantic event into
a subject structure. The first position of the subject is used for its concept name
and subsequent positions are used to locate the value of identifying attributes by
traversing the semantic event. Notice that both parts of the subject organization
are configurable. That is, the number of fields that form part of the control as
well as the depth of the traversing algorithm for mapping event content into a
subject can be configured. All this information and the name space organization
is maintained in a repository.

3ODFH%LG � � �� � � � ��� ���

HY HQ W � FR Q W HQ WFR Q W U R O

V X E M HFW

LQ V W DQ FH

FR Q FHS W � Q DP H

Y DOX HV � R I

LGHQ W LI \ LQ J � DW W U �

Y DOX HV � R I

LGHQ W LI \ LQ J � DW W U �

���

���

��� ���	��
��

���

�����

� �����
���

FR Q FHS W � Q DP H
Y DOX H� R I

LGHQ W LI \ LQ J � DW W U �

Y DOX H� R I

LGHQ W LI \ LQ J � DW W U �

V X E M HFW

R U J DQ L] DW LR Q

W U HH

FR Q W HQ W � R I � D

S DU W LFX ODU

HY HQ W

LQ V W DQ FH

GHU LY DW LR Q � R I � LW V � FR U U HV S R Q GLQ J

V X E M HFW � LQ V W DQ FH

Fig. 2. Subject organization and subject instance derivation

Figure 2 shows how the content of a semantic event is mapped into the sub-
ject model and how a particular subject instance is derived. The obtained subject
instance is attached to the notification that corresponds to the event in question
and then the notification is passed to the underlying delivery mechanism.

3.4 Composite Event Detection

Composite events involve the occurrence of two or more events. The component
events can be simple events or may be composite events themselves. Compo-
sition is described through an event algebra. Event composition in its general
form depends on the ability to determine the order of occurrence of events. The
determination of this order is important not only for event operators such as se-
quence, but also for all other operators since the consumption of events directly
depends on it3. Logical clocks can not be used for this purpose because they
3 Four consumption modes were defined in [14]. Recent and chronicle are of most com-

mon use. Recent selects the latest event occurrences of a given type, while chronicle
selects the oldest event occurrences of a given type out of the event stream.

can not represent timed real world events. Therefore, event order is achieved by
using timestamps that are attached to event occurrences.

In addition to defining an event algebra, middleware platforms that support
event composition must also address the semantic issues associated with pro-
cessing composite events. For example, the manner in which timestamps are
generated and interpreted, and the way in which events are selected and con-
sumed. Consequently, the adopted assumptions must be clearly exposed to the
application developers and it must be possible for them to influence the service
behavior by applying (predefined or user-defined) policies.

Inherent characteristics of distributed environments increase the difficulty
of composite event detection and invalidate the use of approaches designed for
centralized systems. Consider, for instance, the reuse of operators implemented
for centralized environments where a total order of events was assumed and
no transmission delays or failures were considered. Even though the intended
meaning of the event operator is the same, its implementation may be invalid
and demand a re-design due to the requirements of the distributed environment.

Our infrastructure was designed to be used in a variety of scenarios. This
impacts the semantics of composite event detection. Therefore, the objective is
not to define yet another event algebra but to provide a flexible platform for
event composition that explicitly exposes to the application developer the deci-
sions that must be taken and the policies that must be applied under particular
circumstances. Three areas that received particular attention are:
– Proper interpretation of time. Since this infrastructure was designed to

be used in a variety of scenarios different time assumptions and timestamp
representations must be considered. At an abstract level the required func-
tionality is basically the same in all cases: find a correlation among times-
tamps. Two main issues must be solved: i) how to represent timestamps in a
flexible and open yet “understandable” way, and ii) how to correlate them.
Timestamps and their related concepts are defined in the ontology. An ab-
stract timestamp concept is defined and particular timestamp representa-
tions can be specialized for different scenarios and environments according
to the adopted time model.
To correlate events, the functionality of the abstract timestamp concept
includes the methods before and after while the internal data representation
is maintained hidden. These methods must be specialized for each particular
time model. Additionally, these methods throw exceptions when decisions
cannot be taken transferring the decision control to a higher level, where
application semantics can be used for resolution.

– Consideration of transmission delays. Incoming events are maintained
in a temporary data structure (the EventList) before they are used for com-
position. Since it is the intermediary between event producers and the event
composition, it is the appropriate place to tackle the problem of transmission
delays, failures at event producers, network failures, and also the order and
uncertainty issues when working with event streams. Specifically, our im-
plemented approach combines a window scheme with a heartbeat protocol.
When a producer node crashes or the network is partitioned an exception

can be raised and treated by a failure handling policy. A window mechanism
that works in tandem with the heartbeat protocol is used to separate the
history of events (or event stream) into the stable past and the unstable past
and present that still are subject to change. For composition purposes only
events in the stable past are considered.

– Adoption of partial order of events. A partial order of events is adopted.
With this in mind, correlation methods should include the possibility of
throwing an exception (e.g. cannotDecide) in order to announce an uncer-
tainty when comparing timestamps. That means that the underlying infras-
tructure is responsible for announcing an ambiguous situation to a higher
level of decision, allowing the use of application semantics for the resolution.
Events from the stable past are maintained (partially) ordered in the EventList
according to the consumption mode criteria. EventList also implements the
event consumption interface that is used for selecting and consuming events.
With the provisions taken, it can be guaranteed in all cases that: i) situations
of uncertain timestamp order are detected and the action taken is exposed
and well defined, and ii) events are not erroneously ordered.

The composite event detector service is based on components and containers.
Components are the event operators that are plugged into compositor containers.
The container itself is the composite event detector kernel which controls the
event detection process. As shown in Figure 3, the container has attached, in this
case, two EventLists that play the role of event operands. Additionally, they are
configured with appropriate policies according to the definition of the composite
event that must be detected.

Components are responsible for the logic of the event operator. They imple-
ment the method evaluate. Components specialize the EventOperator class by
re-writing the evaluate method according to the operator they represent. More
details about the implementation can be found in [3].

The logic of operators detects the situation of interest. Other aspects are now
under the responsibility of the EventList which implements the order in which
events are accessed through the event consumption interface. The consideration

��������� 	�
 �
� �

��������� 	�
 �
� �

��������� ��
 � ���
��� ��� ��
 ��� �

$1'

��� �"! #�$&% ')(#��"!
* (,+ '��-'&� !

�"! #�$&% '
(,#��"!

! . /�'

021 /�(1 �,'&�-!43 1 +
',5 '&�-! 1 (,'&+ #,! 1 + 6

Fig. 3. Abstract view of an event compositor

of failures and transmission delays, as well as uncertainty issues are solved at
the EventList by applying pre-configured policies.

Because of its uniform design, compositors can cooperate in the detection of
other composite events. Compositors publish detected events in the same way
primitive events are published. Thus, the output of a compositor can be used for
subscription of other parties. Consequently, each compositor can be seen as an
abstract tree where primitive events are injected at the leaves and compositors
are located in the internal nodes. Detected events are pushed to the upper layer in
the tree by using the publish mechanism. The whole composite event is detected
once an event is published at the root of the tree.

3.5 ECA-Rule Definition

Rule representation is organized into three layers (see Figure 4):

– external: allows the tailoring of a rule’s definition for each specific domain
making the specification of rules convenient without the complexities im-
posed by a generic rule definition language. This is the layer seen by the
end-users.

– conceptual: provides independence between the implementation of the under-
lying active mechanism and an end-user’s rule definition. Concepts like Rule,
Event, Condition, Action, etc. and their specialization are representatives of
this layer. This is the layer of the system developers.

– internal: enables the use of a “generic” active functionality service where
components or services that are involved can be implemented using differ-
ent optimization criteria or different programming languages, but they all
“understand” the conceptual layer while using an internal representation to
process rules. This is the layer of the service implementors.

It must be borne in mind that domain-specific and infrastructure-specific ter-
minology are represented here using ontologies as described previously. On this
basis, developers can provide various “external” alternatives to end-users in or-
der to define rules taking into account the domain in question, the target end-
users, etc. Notice that details about event consumption, or coupling modes can
be specified by the system developer hiding in this way such details from the
end-user.

From the developer’s point of view, all these alternatives rely on an Ontology
API that facilitates the access and manipulation of the ontologies. In this way,
all kinds of external rule definitions produce an ontology-based (conceptual) rule
representation as output. As mentioned above, this conceptual rule representa-
tion provides independence between the underlying active mechanism and the
end-users’ rule definitions.With the aid of ontologies as the foundation of our infrastructure, the def-
inition of rules can benefit from the use of semantic contexts. Contexts can be
associated with conditions and actions in order to evaluate them under the de-
fined contextual information. For instance, a condition predicate that verifies
distances can define “metric system” as its context. In this manner, incoming
events from heterogeneous sources are first converted into the metric system

'RPDLQ�VSHFLILF�UXOH�VSHFLILFDWLRQ

2 QWRORJ \ �E DVHG

UXOH�UHSUHVHQWDWLRQ

WUDQVIRUPDWLRQ

RULE Analyse
ON placeBid
IF placeBid.bidAmount < MyLimit
THEN BidAnalysis(placeBid)

Cancel

name

condit ion

event

action

Submit

Rule Definition

Cancel

name

condit ion

event

action

Submit

Rule Definition

V\ VWHP

G HY HORSHU

HQG �XVHU

(
$&

VHUY LFH

LPSOHPHQWRU

(OHPHQWDU\ �VHUY LFHV

Fig. 4. Rule representation layers

(if necessary) before they are used for evaluation. Consequently, conditions and
actions are always specified at a domain-specific level, and are independent of
source-specific representations. This provides a very useful and powerful mecha-
nism for interpreting events from heterogeneous sources by maintaining a high-
level specification.

3.6 Service-based ECA-rule Processing

In Cream, traditional ECA-rule processing is decomposed into its elementary
parts (aka elementary services). These autonomous services are responsible for
composite event detection, condition evaluation, and action execution. Elemen-
tary services expose two kinds of generic and very simple interfaces: i) a service
interface with a single method that receives an event notification as an argument;
ii) a configuration interface that is used for administration purposes, such as reg-
istration, activation, deactivation, deletion, etc. This service interface provides
flexibility, enabling a simple interaction among services. ECA-rule processing is
then realized as a composition of these elementary services according to the rule
definition. Elementary services involved in its processing can interact with exter-
nal services or systems (e.g. workflow engines, databases, Web Services) through
plug-ins in order to complete their task. Plug-ins are also responsible for main-
taining the target context of the system they interact with making possible the
automatic conversion of data to the target system.

From an abstract point of view, this service composition takes the form of
a chain of services, where semantic event instances flow through the composed
services to carry out the corresponding rule processing. Interactions among ele-
mentary services involved in the processing of a rule can be carried out by using

traditional request/reply protocols. However, in our prototype interactions are
based on the notification service described before providing several advantages
as natural decoupling of services, asynchronous communication, location trans-
parency to mention a few. Figure 5 shows the interaction among elementary
services, where boxes denote services and lollipops their interfaces.

QRWLIL\ QRWLIL\

U H J LV WH U � 5 �
 V

(Y H QW
U H J LV WH U � 5 �
 V

&RQG LWLRQ

U H J LV WH U � 5 �
 V

$F WLRQ

F RP S O H [� H Y H QW� G H WH F WLRQ

V H U Y LF H
F RQG LWLRQ� H Y D O X D WLRQ

V H U Y LF H

D F WLRQ� H [H F X WLRQ

V H U Y LF H

U H J LV WH U � U X O H � 5 �

�

� D

� E � F

5 �
 V

$ F WLRQ

(&$� 5 X O H � 0 D QD J H U

V H D U F K V H U Y LF H

U H J LV WU \

�

�

� E � F

��������� 	�
 ���

��������� 	�
 ��� �

��������� ��
 � ���
��� ��� ��
 ��� �

$1 '

2 QWRO RJ \� E D V H G

U X O H � U H S U H V H QWD WLRQ

(
$&

5 �
 V

&RQG LWLRQ
� D

Fig. 5. Interaction among elementary services (ECA-rule processing chain)

Service composition is the responsibility of the ECA-rule manager. It ex-
poses operations to register, remove, activate, and deactivate ECA-rules. The
most complex of these operations is the registration of a rule, which involves
the composition of elementary services. This composition consists of four steps:
i) decomposing the rule, ii) finding, iii) contacting, and iv) configuring elemen-
tary services. The ECA-rule manager decomposes the rule definition passed for
registration, and based on its parts it finds adequate elementary services in the
service registry. The ECA-rule manager is responsible for building a chain of
elementary services that will process the rule in question. Next, elementary ser-
vices are contacted for configuration. The configuration of an elementary service
itself comprises three steps: a) the subscription to the output of the preceding
elementary service (this is achieved by using the control part of the subject as
it was mentioned in Section 3.3), b) the configuration of the task under the re-
sponsibility of this service (e.g. a condition evaluation service is configured with
the condition of the rule that must be evaluated) and c) the configuration of the
publisher.

Interactions among elementary services rely on the notification service. Cou-
pling modes (which specify the transactional relationship between elementary
services involved) can be delegated to a notification service that supports them.
For instance, the notification service implemented in the X2TS Project [45] inte-

grates notifications and transactions allowing the specification of coupling modes
to be made on a per subscription basis [46].

Consider the registration of rule R1 which includes a composite event (Figure
5). Input for the registration is a rule definition represented using the ontology.
The ECA-rule manager (1) breaks the incoming rule into elementary parts (2)
and searches for proper services according to the parts obtained (3). Afterwards,
the manager registers the rule parts of R1 with the services obtained (4a, 4b
and 4c). As a consequence the composite event detector configures policies and
consumption mode according to the rule definition to detect R1’s event. Then the
condition evaluation service instantiates a condition object which is responsible
for subscribing to the event in question, for its evaluation and if satisfied for
republishing the event. The action execution service instantiates an action object
that is in charge of subscribing to the event passed by the ECA-rule manager
and for the action execution. This completes the service composition phase.

At run-time, semantic events feed the EventLists (5a) and when R1’s compos-
ite event is detected the compositor container publishes this happening (5b). In
this particular case, the condition object is notified. If R1’s condition is satisfied,
the event is republished (5c) notifying in this case the action object in question.

Notice that more than one rule may be defined and they could share the same
or similar event definitions. So, conflict resolution policies may be needed accord-
ing to the execution model adopted (concurrent execution, sequential execution
or based on a conflict resolution policy. See [3] for details.).

4 Case Studies and Implementation

This section presents two case studies where the proposed infrastructure was
used. A short description of the implementation is provided.

4.1 Meta-Auctions

A meta-auction broker [47] provides a unified view of different auction sites
and services for category browsing, item search, auction participation, and auc-
tion tracking. To enable the brokering between different participating auction
sites, the precise understanding of the terms used by each site is needed and
is made explicit through a domain-specific common vocabulary. Notifications
about events, such as the placement of a highest bid, and their timely delivery
to the user represent valuable information. Propagation of events leads to an
efficient non-polling realization of an auction tracking service. Events related to
the auction process are disseminated using the concept-based notification ser-
vice. This way, bidders and sellers use a semantic level of subscription which is
common to all of them.

The auction process itself is defined using state charts. Because they are
event-driven, they can be easily implemented with ECA-rules. In this way, dif-
ferent sets of rules can describe different types of auction processes (ascending,
reverse, dutch, etc.) [48]. To track an item of interest during an auction process,

e.g. to ascertain that another bidder has placed a highest bid, or that the dead-
line of an auction is approaching, an agent can be used. Here bidders benefit
from an active functionality service to program their own agents. In contrast to
current agent bidders that are owned, controlled, and implemented by the auc-
tion house, these agents can react to happenings of the auction process according
to the bidders’ strategy.

4.2 Internet-enabled Car

Automotive systems will no longer be limited to information located on-board,
but can benefit from a remote network and service infrastructure. Consider the
scenario where vehicles, persons and devices have a web presence (or portal).
Within this scenario new possibilities emerge, e.g. the adjustment of instruments
according to personal preferences, favorite news channels, sports, music or access
to one’s e-mail and calendar through the portals. Through the portals this can
be made independent of a particular car and could be applied to other vehicles
(rental cars, company cars, etc). But not only instruments can be adjusted,
services can be personalized too. For instance, services such as, “find the route
to the next gas station”, or “book an appointment to change oil” can take into
account car manufacturer’s, company’s, and/or driver’s preferences.

The content of portals is kept up-to-date by means of events. Events are dis-
seminated to interested consumers (e.g. other portals) through of the concept-
based publish/subscribe mechanism. For instance, vehicle manufacturers are in-
terested in subscribing to vehicle failures obtaining in this way an “on-line”
statistic which can provide valuable data that could be fed back into the design.

Portal managers are enhanced with the active functionality service in order
to provide the possibility to specify reactions according to happenings of interest.
These reactions can also take into consideration user preferences. For instance,
when the driver gets into the car, it is a workday and between 8:00 am and 9:00
am the vehicle can react by loading the best route to the office, and by reading
out her company news, her e-mail and by checking her calendar.

Based on Cream, our prototype [49] shows the reaction of vehicles to dif-
ferent situations according to a set of user-defined rules. External services are
implemented using Web Services technologies.

4.3 Implementation

A prototype of Cream has been developed. Java is used to specify and im-
plement ontology concepts and their relationships. Ontology support and the
necessary ontology concepts of the infrastructure are completely implemented.
Event adapters are manually configured. The concept-based notification service
was implemented on top of TIB/Rendezvous (for historical reasons). The ac-
tive functionality service and its elementary services were developed using Java
and run on top of HP’s Core Service Framework (CSF). Event adapters (for
Java applications and for XML) and plug-ins (for workflow engines and for Web
Services) were also implemented.

For the meta-auction scenario event adapters were built to integrate data
and events from different auction sites. An auction service on the basis of ECA-
rules was also defined. For the Internet-enabled car scenario an adapted version
of the CoolTown Web Presence Manager was used to manage portals and it
was extended to collaborate with Cream. Complex rule reactions which involve
several services are carried out using a workflow engine. The domain-specific
ontologies for both scenarios were defined.

5 Conclusions

Event-based applications require a middleware layer that includes event han-
dling, support for integration of heterogeneous data, monitoring capabilities,
reaction to events, and notification mechanisms.

Approaches found today in the literature focus on specific issues (i.e. event
dissemination, active functionality) providing isolated solutions. Cream presents
a uniform and integrated approach based on ontologies. Our ontology-based
infrastructure applies homogeneously the ontology approach not only to inte-
grate events from different sources but also to support a higher level subscrip-
tion abstraction. Therefore, consumers do not deal with proprietary representa-
tions. Moreover, a conceptual representation of business rules makes a high-level
and domain-specific rule definition language possible providing independence
between specification of rules and the active functionality mechanism.

ECA-rule processing in Cream is decomposed into elementary services. These
services provide a very simple and generic interface, where parameters of meth-
ods are represented using the common ontology. Therefore, the flow of work
through services can be easily configured – inclusion or conscious exclusion of
services like condition evaluation, event filtering or complex event detection is
made easy. Services interact through notifications. For this purpose, a notifi-
cation service, based on a publish/subscribe mechanism using concept-based
addressing, is employed. The use of this mechanism is appropriate for loosely-
coupled distributed systems. Because of this conceptual foundation, our architec-
ture promotes flexibility, extensibility and integration for large-scale, event-based
distributed applications.

We are currently moving our implementation from a proprietary to an open
platform for the service-based architecture. The notification service is being mi-
grated to JMS. We are also studying how to integrate Web Services with the
conversion function mechanism supported by our ontology.

References

1. Buchmann, A., Bornhövd, C., Cilia, M., Fiege, L., Gärtner, F., Liebig, C., Meixner,
M., Mühl, G.: DREAM: Distributed Reliable Event-based Applcation Manage-
ment. In: Web Dynamics (to appear). Springer (2003)

2. Bornhövd, C.: Semantic Metadata for the Integration of Heterogeneous Internet
Data (in German). Ph.D. Thesis, Department of Computer Science, Darmstadt
University of Technology, ISBN: 8265-8390-6, Shaker-Verlag, Germany (2000)

3. Cilia, M.: An Active Functionality Service for Open Distributed Heterogeneous
Environments. Ph.D. Thesis, Department of Computer Science, Darmstadt Uni-
versity of Technology, ISBN:3-8322-0790-2, Shaker-Verlag, Germany (2002)

4. Object Management Group: Event Service Specification. Technical Report
formal/97-12-11, Object Management Group (OMG) (1997)

5. Object Management Group: CORBA Notification Service Specification. Technical
Report telecom/98-06-15, Object Management Group (OMG) (1998)

6. Hapner, M., Burridge, R., Sharma, R.: Java Message Service. Specification Version
1.0.2, Sun Microsystems, JavaSoftware (1999)

7. Oki, B., Pfluegl, M., Siegel, A., Skeen, D.: The Information Bus – An Architecture
for Extensible Distributed Systems. In: Proceedings of SIGOPS, USA (1993) 58–68

8. Carzaniga, A., Rosenblum, D.R., Wolf, A.L.: Challenges for Distributed Event
Services: Scalability vs. Expressiveness. In: Proc. of EDO. (1999)

9. Opyrchal, L., Astley, M., Auerbach, J., Banavar, G., Strom, R., Sturman, D.: Ex-
ploiting IP Multicast in Content-based Publish-Subscribe Systems. In: Proceedings
of Middleware. Volume 1795 of LNCS., Springer (2000) 185–207

10. Mühl, G., Fiege, L., Buchmann, A.: Filter Similarities in Content-Based Pub/Sub
Systems. In: Proc of ARCS. Volume 2299 of LNCS., Springer (2002) 224–238

11. Fabret, F., Llirbat, F., Pereira, J., Jacobsen, A., Ross, K., Shasha, D.: Filtering
Algorithms and Implementation for Very Fast Publish/Subscribe. In: Proceedings
of ACM SIGMOD. (2001) 115–126

12. Dayal, U., et al.: The HiPAC Project: Combining Active Databases and Timing
Constraints. ACM SIGMOD Record 17 (1988)

13. Chakravarthy, S., Mishra, D.: Snoop: An Expressive Event Specification Language
for Active Databases. Data and Knowledge Engineering 14 (1994) 1–26

14. Charkravarthy, S., Krishnaprasad, V., Anwar, E., Kim, S.: Composite Events for
Active Databases: Semantics, Contexts and Detection. In: Proc. of VLDB. (1994)
606–617

15. Kopetz, H.: Sparse Time versus Dense Time in Distributed Real-Time Systems.
In: Proc. ICDCS, Yakohama, Japan (1992) 460–467

16. Liebig, C., Cilia, M., Buchmann, A.: Event Composition in Time-dependent Dis-
tributed Systems. In: Proceedings of CoopIS. (1999) 70–78

17. Schwiderski, S.: Monitoring the Behaviour of Distributed Systems. PhD thesis,
Selwyn College, Computer Lab, University of Cambridge, United Kingdom (1996)

18. Ma, C., Bacon, J.: COBEA: A CORBA-based Event Architecture. In: Proceedings
of COOTS’98, New Mexico, USA, USENIX (1998) 117–131

19. Geppert, A., Tombros, D.: Event-based Distributed Workflow Execution with
EVE. In: Proceedings of Middleware, The Lake District (1998)

20. Yang, S., Chakravarthy, S.: Formal Semantics of Composite Events for Distributed
Environments. In: Proceedings of ICDE, Sydney, Australia (1999) 400–407

21. Paton, N., ed.: Active Rules in Database Systems. Springer (1999)
22. Gatziu, S., Koschel, A., v. Buetzingsloewen, G., Fritschi, H.: Unbundling Active

Functionality. ACM SIGMOD Record 27 (1998) 35–40
23. Koschel, A., Lockemann, P.: Distributed Events in Active Database Systems -

Letting the Genie out of the Bottle. Data & Knowledge Engineering 25 (1998)
29–53

24. Fritschi, H., Gatziu, S., Dittrich, K.: FRAMBOISE - an Approach to Framework-
based Active Data Management System Construction. In: Proc. of CIKM. (1998)

25. Collet, C.: The NODS Project: Networked Open Database Services. In et.al., K.D.,
ed.: Object and Databases 2000. Number 1944 in LNCS, Springer (2000) 153–169

26. Buchmann, A.: Architecture of Active Database Systems. In: Active Rules in
Database Systems. Springer (1999) 29–48

27. Buchmann, A., Liebig, C.: Distributed, Object-Oriented, Active, Real-Time
DBMSs: We Want It All – Do We Need Them (At) All? Annual Reviews in
Control 25 (2001)

28. Eisenberg, B., Nickull, D.: ebXML Technical Architecture Specification v1.04.
Technical report (2001) http://www.ebxml.org.

29. Microsoft Corp.: BizTalk Framework 2.0: Document and Message Specification.
Microsoft Technical Specification (2000)

30. RosettaNet: RosettaNet Implementation Framework: Core Specification v2.00.01.
RosettaNet Technical Specification (2002)

31. Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. In: Scientific American.
(2001)

32. Conolly, D., van Harmelen, F., Horrocks, I., at al.: Daml+oil (march 2001) reference
desciption. W3C Note, W3C (2001)

33. Bray, T., Paoli, J., Sperberg-McQueen, C.: Extensible markup language (xml) 1.0.
W3C Recommendation, W3C (1998)

34. Fallside, D.: XML Schema Part 0: Primer. W3c recommendation, W3C (2001)
35. Bray, T., Hollander, D., Layman, A.: Namespaces in XML. W3C Recommendation,

W3C (1999) http://www.w3.org/TR/REC-xml-names.
36. Lassila, O., Swick, R.: Resource Description Framework (RDF) Model and Syntax

Specification. W3c recommendation, W3C (1999)
37. Brickley, D., Guha, R.: RDF Vocabulary Description Language 1.0: RDF Schema.

W3c working draft, W3C (2002) http://www.w3.org/TR/rdf-schema.
38. Bornhövd, C., Buchmann, A.: A Prototype for Metadata-Based Integration of

Internet Sources. In: Proc. of CAiSE. Volume 1626 of LNCS. (1999) 439–445
39. Gruber, T.R.: Towards Principles for the Design of Ontologies Used for Knowledge

Sharing. Int. Journal of Human-Computer Studies (IJHCS) 43 (1995) 907–928
40. Guarino, N.: Understanding, Building and using Ontologies. Int. Journal of

Human-Computer Studies (IJHCS) 46 (1997) 293–310
41. Mena, E., Kashyap, V., Illarramendi, A., Sheth, A.: Domain specific ontologies for

semantic information brokering on the global information infrastructure. In: Intl.
Conf. on Formal Ontology in Information Systems, Trento, Italy (1998)

42. Heflin, J., Volz, R., Dale, J.: Requirements for a web ontology language. W3C
Working Draft, W3C (2002) http://www.w3.org/TR/webont-req/.

43. UNICORN Maintenance Authority: UNICORN Application Standard. Technical
Report TTIP03 V4.0, Travel Technology Initiative Ldt. (1994)

44. Mühl, G.: Large-Scale Content-Based Publish/Subscribe Systems. PhD thesis,
Darmstadt University of Technology, Germany (2002)

45. Liebig, C., Malva, M., Buchmann, A.: X2TS: Unbundling Active Object Systems
(Short Paper). In: Proceedings of Middleware. Volume 1795 of LNCS. (2000)

46. Liebig, C., Tai, S.: Middleware Mediated Transactions. In: Proc. of DOA’00. (2001)
47. Bornhövd, C., Cilia, M., Liebig, C., Buchmann, A.: An Infrastructure for Meta-

Auctions. In: Proceedings of WECWIS, IEEE Computer Society (2000) 21–30
48. Cilia, M., Buchmann, A.: An Active Functionality Service for E-Business Appli-

cations. ACM SIGMOD Record 31 (2002) 24–30
49. Cilia, M., Hasselmeyer, P., Buchmann, A.: Profiling and Internet Connectivity in

Automotive Environments. In: Proc. of VLDB. (2002) 1071–1074

