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Abstract. Cyber-physical systems and the Internet of Things illustrate
the proliferation of sensors. The full potential of ubiquitous sensors can
only be realized, if sensors and traditional data sources are integrated
into one system. This leads to large, complex systems which are harder
to use and manage, and where maintaining desired behavior is increas-
ingly difficult. We suggest a novel approach to handle the complexity
of these systems: users focus on the desired behavior of the system and
use a declarative policy language (DPL) to state these behaviors. An
enhanced message-oriented middleware processes the policies and auto-
matically generates components which execute the policies. We compared
our approach against other approaches in a case study and found that it
does indeed simplify the use of cyber-physical systems.

1 Introduction

The number of sensors in today’s environments increases steadily. In our homes
the sheer number but also the different kinds of sensors have increased in recent
years. Similarly, companies rely more and more on sensor data to improve and
steer their processes, especially in production and logistics. Trends like cyber-
physical systems (CPS) or the Internet of Things illustrate this evolution further.

This calls for a new perspective on software architecture. In Event Driven Ar-
chitectures (EDAs) components get triggered by events [27]. In service Oriented
Architectures (SOAs) they are invoked by explicit calls. In modern architectures
both interaction paradigms coexist. This perspective shift comes at the price of
increased architectural complexity: EDAs are inherently distributed, the applica-
tion does not have direct control over the control flow, and language-support for
event processing is but well-supported. We believe that this complexity must -at
least in part- be handled by a middleware, which abstracts from this complexity.

Event handling today is done via complex event processing (CEP), which
proposes to construct more complex events out of simple ones, according to a
set of rules [24]. An event query language (EQL), as for example found in Esper
or Software AG’s Apama, allows for declaratively stating such rules. However,
this abstraction is still on a very low level. It requires expert developers to be
handled correctly. Even when handled by experts, the number of rules quickly



exceeds a manageable amount, creating a maintenance nightmare with (hidden)
dependencies among the rules and no indication why a rule was created.

Our goal is to allow domain experts without a profound computer science
background to use systems based on an EDA, as well as to provide developers
with a mechanism which abstracts from the architectural complexity of EDAs.
Thus, we introduce the abstraction of a policy. A policy is the conceptual repre-
sentation of a set of fine grained rules, which cooperate towards a common goal.
Policies abstract from rule management and architectural distribution. By allow-
ing users to state policies declaratively, we enable them to focus on what they
want to achieve, rather than how this is done exactly. Other approaches, sharing
the goal of simplifying the use of EBS by providing higher level abstractions, fo-
cus on procedural workflows [2, 19]. Declarative statements bear the advantage
of abstracting from implementation details, while procedural statements provide
more control of how a task is achieved. No concept is inherently superior.

We illustrate the idea of our approach with a typical example from the do-
main of situation monitoring originally proposed by Georgakopoulos et al. [18]:
A company wants to ensure the following: guests are allowed to walk around the
company area. However, in some restricted rooms, guests need to be accompa-
nied by an employee, otherwise an alarm should sound. There are already many
sensors in place to derive positions of people, e.g., RFID readers or cameras. 1

Ensuring this policy involves several steps (querying the database for a per-
son’s status, calculating absolute positions, checking in which room a person
is, correlating multiple position events). Each of these steps requires a number
of low-level CEP rules to encode. A common approach to reduce the number
of rules is to define event compositions, resulting in a more complex event hi-
erarchy. When adding more ”real-world” requirements, like different security
clearances, the set of rules quickly becomes hard to manage. We therefore advo-
cate a segmentation of the rule space into policies and a mechanism to express
them declaratively2:

IF
person A with a t t r i bu t e s t a tu s=’guest ’ IS INSIDE
room R with a t t r i bu t e s e c u r i t y =’ r e s t r i c t e d ’ AND
person B with a t t r i bu t e s t a tu s=’employee ’

IS NOT WITHIN 5m of A
THEN

sound alarm

We provide a generic middleware architecture and approach to automatically
process such policies. It can be instantiated by providing a domain model and
annotating data sources with metadata. Similar to a database expert creating a
database schema, providing this information is done only once. With this infor-
mation, we can generate Event Enrichment Components (EECs) which enrich

1 We were able to verify the validity of such a scenario in discussions with Software AG
(http://www.softwareag.com), a leading provider of business application software.

2 Note that this policy does not enforce B to be in the same room as A. We omit this
detail for presentation simplicity.
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Fig. 1. Policies are specified in DPL and mapped to executable code in EECs

events with additional knowledge. EECs enforce policies by evaluating derived
rules against incoming events.

Enabling domain experts to fully exploit CPS requires the following com-
ponents (Figure 1 provides an illustration): a) A user-friendly way of stating
the policies. We refer to this as the declarative policy language (DPL). b) A
grammar underlying DPL. c) A mapping from DPL to executable code (EEC).
d) A framework to capture domain concepts to support the mapping.

The contributions of this paper are:
– A novel approach to handle the complexity of cyber-physical systems and

event-driven architectures in general.
– A generic, declarative language to state policies and a middleware architec-

ture for processing them. The language can be mapped to multiple concrete
languages and implementations.

– An implementation with modern message-oriented middleware to map DPL
statements to executable code. Our implementation is in Java and based on
Apache ActiveMQ, an industry-strength middleware.

– An approach that preserves the benefits of event-driven architectures: new
sensors/producers can be added at runtime and the system remains flexible

The rest of this paper is structured as follows. Section 2 provides a detailed
description of the parts comprising our DPL-enabled middleware, including how
they interact. Section 3 compares our approach against Java and CEP-techniques
in a case study. We discuss related work in Section 4 and conclude in Section 5.

2 Technical Overview

In this section, we detail how to get from a policy to executable code. Therefore,
we first provide our domain model framework and the grammar for DPL. We
follow up with the description of the architecture and close with an illustration
of the interaction among the components with the example from Section 1

2.1 Domain Model Framework

We need domain models as background knowledge to generate executable code
from a policy. The purpose of this section is not to discuss suitable representa-
tion languages, but rather state the requirements of our approach. We therefore
introduce the individual elements and defer discussion about a suitable repre-
sentation to Section 2.3.



Concepts and Attributes Every policy will refer to certain things. In the ex-
ample from Section 1 these are person and room. In that regard they are similar
to entities in a database schema. However, we chose to call them concepts (simi-
lar to description logic) to avoid confusion. Concepts are described by attributes
and may not have a direct representation (i.e. in a database). They might exist
implicitly only (e.g., because various events refer to it)

Relationships Relationships connect concepts. A relationship is backed by
a relationship function, which evaluates for given instances if the relationship
holds. A relationship function uses attributes of the related concepts. More than
one relationship may exist between two concepts. For example, the employee and
room can be connected by the relationship works in and meets customers in.

Figure 2 shows an example illustrating the concepts, attributes and relation-
ships of our running example. The relationship inside refers to the attributes
position and coordinates of two opposing corners of a rectangular room. Thus,
when evaluating if a specific person is inside a specific room, the relationship
function will be passed the values of position and coordinates as its arguments.

room person

building

part of

inside

within

status

position

security

coordinates

Fig. 2. Example domain model related to the policy from Section 1

To support relationships like within, which need an additional parameter
(e.g., 5 meters), the framework must support parameterized functions.

Since relationship functions can be complex, we chose to keep them separate
from the structural definition to support separation of concerns. In our exam-
ple, one concern is to say that generally, persons can be inside rooms. Another
concern is to say what exactly the semantics of being inside a room is.

Another advantage of keeping the definition of the relationship functions
separate is reusability. Developers can reuse their function in different domain
models and a set of functions can be directly shipped with the middleware.

2.2 Policy Grammar

With usability in mind, we believe that the determinism of a formal language
outweighs the familiarity of natural language. Thus, policies must follow a formal
syntax. Figure 3 shows the grammar that generates DPL in EBNF notation.
The nonterminals concept, attribute, value, f-name, parameter and action are
not explicitly given, as they can be arbitrary strings.



po l i c y : := ’ IF ’ c ond i t i on s ’THEN’ ac t i on s
cond i t i on s : := cond i t i on | cond i t i on s op cond i t i on s | ’ ( ’ c ond i t i on s ’ ) ’
c ond i t i on : := concept−de f func t i on concept−r e f
concept−de f : := concept [ a l i a s ] ,

[ ’ with a t t r i bu t e ’ ( a t t r i bu t e attr−op value )∗ ]
a t t r−op : := ’= ’ | ’ != ’ | ’< ’ | ’> ’ | ’<=’ | ’>=’
concept−r e f : := concept−de f | a l i a s
func t i on : := [ ’ i s ’ ] [ ’NOT’ ] f−name [ parameter ] [ ’ of ’ ]
op : := ’AND’ | ’OR’
a c t i on s : := ac t i on+

Fig. 3. Grammar for policies in Extended Backus-Naur Form (EBNF)

Policies are divided into a situation description part and an actions part. The
first part contains a set of conditions, describing the desired situation. Conditions
are checked upon arrival of relevant events and, if met, the actions of the actions
part are triggered. Thus, policies are similar to event-condition-action rules [10].
However, policies abstract from the notion of events and let users think in the
descriptions of situations.

Concepts may have an alias for easier referencing within the policy. The with
attribute statement allows for filtering out instances of a concept not relevant
for the current statement. For example, guests and employees are persons, but we
are concerned about guests being alone in restricted areas. Functions connect two
concepts to a condition and may have a parameter, as indicated in Section 2.1.
The element ’of’ is only syntactic sugar: it makes policies more readable.

DPL is a generic language, which is instantiated by pairing it with a concrete
domain model. The resulting language is specific to the given domain, but may
map to several concrete programming languages like Java or C#.

2.3 Middleware Architecture

In event-driven architectures (EDAs), events (e.g., sensor readings) are reified
as event notifications. Due to a typically high volume of data and the benefits
of decoupling, EDAs adopt the publish/subscribe messaging paradigm [14]: soft-
ware components with an interest in events issue subscriptions for them with a
message-oriented middleware (MOM). Sensors act as event producers and send
event notifications in the form of messages to the MOM. There, a message broker
matches incoming messages against issued subscriptions and routes messages to
interested consumers.

Figure 4 shows the generic architecture of the middleware enabling declar-
ative behavior specification. We will detail the components in this section and
illustrate how they interact. Components are loosely coupled and communicate
asynchronously through a message bus. Interaction with the request/reply parts
of the EDA also happen through messages (e.g., an event-driven SOA, where
the action part of a policy fires a service-triggering event).
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Fig. 4. Architecture of the DPL-enabled middleware

Message and Command Bus A message bus connects event producers, aux-
iliary data sources (e.g., databases), the user interface, the policy engine as well
as the processing components. We use the existing messaging functionality of
the MOM. The command bus consists of special message channels. Thus, each
component is able to listen to commands asynchronously, which provides for
good decoupling and easy distribution.

Producers send events via the publish/subscribe messaging facility. Since all
messages pass through the broker, it can access message content.

User Interface The user interface allows for creating, altering and deleting
policies. Creating a policy just requires writing it, choosing a unique name and
sending the policy to the middleware. We provide users with an Eclipse plugin
with content assist, syntax highlighting and syntax checking. Thus, users cannot
accidentally send erroneous policies to the middleware. Altering a policy follows
similar steps, except that the user first retrieves the policy by its name. Deletion
of a policy may happen implicitly or explicitly. An explicit deletion means the
termination by a user action, while implicit deletion happens as part of a policy’s
action part.

Policy Engine The policy engine is the heart of our DPL-enabled middleware.
It serves as a coordinating component in a controller-like fashion: Upon receiving
a policy, the policy engine uses the policy manager to analyze the policy. Based
on the analysis, it generates Event Enrichment Components (EECs).

Conflicting Policies Especially in multi-user environments policies might con-
flict. For example, one policy could state to close the windows if the temperature
is less than 25◦C (to preserve heat), while another policy requires opening the
windows if the temperature is greater than 23◦C (to preserve air quality).

Without proper semantic annotation of actions, it is impossible to automati-
cally analyze, on a semantic level, what the effect of an action is. Such semantic



analysis is out of scope of this paper and subject of future work. Currently, we
support users by displaying similar policies to them as they edit theirs. Simi-
larity is chosen based on the concepts and their attributes a policy is referring
to.

Domain Model The policy engine uses the domain model when generating the
EECs. We chose a custom representation in favor of more elaborate languages
like OWL or RDF. The main reason for our choice is performance. Since we in-
tegrate various, different, already existing data sources, their information is not
yet in the domain model. However, ontological reasoning requires this informa-
tion to be in the model. Inserting on demand, then reasoning severely impacts
performance. Alternatively, one could try keeping the model synchronized with
external data sources, which causes redundant data and consistency problems.
Adapters are a third option. For example D2RQ3 provides a relational data-
base as an RDF graph. However, we chose to use our custom representation,
as relationship evaluation causes less CPU utilization and sharing relationship
functions across processing nodes is easier. Reusing existing ontologies/domain
models is still possible, by simply registering them as an external data source.

Data Source Registry The data source registry keeps track of all data sources.
The example from Section 1 illustrates that the suggested middleware has to in-
tegrate various data sources. We distinguish between two categories of data
sources: pull sources (e.g., databases) and push sources (e.g., sensors). Pull
sources follow a request/reply paradigm, while push sources typically interact in
a publish/subscribe fashion.

Data sources need to be annotated with metadata. The metadata specifies
about which concept the data source provides information and which format
the data have. For example, the employee table provides information about the
concept person.

The position of sensors is useful information and thus also included in the
metadata. Unlike location-based publish/subscribe [12, 23], we use location in-
formation for enrichment, not routing.

Depending on the kind of data source, we distinguish between static and dy-
namic attributes: pull sources provide comparatively static, queryable informa-
tion, while push sources provide volatile, high frequency data in an event-based
fashion. Thus, we call attributes with associated pull sources static and those
with associated push sources dynamic attributes.

Policy Manager The policy manager keeps track of all registered policies. It
is responsible for handling new and edited policies, as well as ensuring proper
shutdown of all related components when a policy is deleted.

When a policy is created or edited, the policy manager creates a policy logic
tree, based on the policy and the domain model. The policy logic tree represents

3 http://d2rq.org/



the policy’s concepts, their attribute constraints and relationships with other
concepts. The tree then enables the policy engine to make educated judgments
which data source to use for enrichment and which relationship functions to
evaluate.

We want to illustrate this with the running example: Figure 5 shows the
policy logic tree for our running example. The policy logic tree is then further

status= guest 

person A

security= restricted 

room R

status= employee 

person B

inside
NOT

within[5]
position position position

coordi-
nates

AND

Fig. 5. Policy logic tree for the running example

analyzed. For edges connecting a static attribute with a dynamic attribute (e.g.,
inside), the policy manager generates an EEC which is triggered for events pro-
viding information about the dynamic attribute (e.g., position) and enriches
them. For edges connecting two dynamic attributes, the policy manager gener-
ates an EEC, which reacts to events from event streams and correlates them. The
resulting events are further processed by nodes representing the logic operators.
Changing the domain model might force re-analyzing policies and re-generating
EECs, which our middleware can handle transparently.

ACTrESS Cyber-physical systems are inherently heterogeneous systems, due
to their many different sensors. One example for heterogeneity are different
unit systems, e.g., Metric units vs. American Standard units. Thus, an event
saying temperature = 25 can only be interpreted correctly, if producer, bro-
ker, and consumer share the same understanding of what 25 means (and what
temperature means). Heterogeneity becomes even more complicated when we
take the structure and types of events into consideration.

In order to correctly interpret events, this heterogeneity has to be mediated.
The correct interpretation is vital both for the subscription matching in the bro-
ker and handling of events at the consumers. To achieve this, we designed and
built ACTrESS (Automatic Context Transformations in Event-based Software
Systems), which transforms incoming events to the desired format and interpre-
tation [15]. We proved ACTrESS to be type safe to avoid hard-to-trace runtime
errors [16].

ACTrESS enhances message-oriented middleware, by allowing producers and
consumers to tell the broker about their interpretation of data (independent of
each other). Based on this information, the broker then automatically transforms
messages.

For the DPL-enabled middleware we make use of ACTrESS. As pointed out
in Section 2.3 producers provide their data format in the metadata. We feed
this information into ACTrESS so it can transform incoming events to the needs
of the EECs. For example, the generated EECs will always receive absolute



Cartesian coordinates (x, y) , even if a sensor (e.g., a camera) sends events in
relative, polar coordinates (r, θ).

EECs We distinguish between query-EECs and correlation-EECs. We illustrate
the need for this distinction with our running example:

Checking the inside edge of the policy logic tree (c.f. Figure 5) involves
knowing a person’s and the rooms’ coordinates. Since person.position is a dy-
namic attribute (c.f. above), computation is triggered by position events. All
other required information (the constraints and the rooms’ coordinates) are
static attributes and available via pull sources. Upon receiving a position event,
the (query-)ECC can query the external sources for the required information
and generate an enriched event based on the obtained information.

This is different from the within edge. In this case, both sides are dynamic
attributes and thus, their information is not readily available when the EEC
receives a position event. In this case, we must correlate multiple events. Such
correlation is best left to event stream processing engines like Esper4.

We designed EECs so they do not need to run on the same machine as the
middleware. This helps in distributing processing and keeping the overall system
scalable. EECs therefore subscribe to events from the message bus. At least one
EEC per policy is also responsible for invoking the specified action when all
conditions are met. Since EECs fulfill a certain event processing related task
(enriching events/ taking action), they can be implemented with Eventlets[1].
Eventlets encapsulate tasks in event-based systems and have a managed lifecycle.
This allows for instantiating one EEC per instance (e.g., one for every person),
resulting in an automatically managed, highly modular (and thus parallelizable
and scalable), distributed infrastructure.

The policy engine keeps track of all running EECs. We can stop an EEC if
its corresponding policy was deleted. The policy engine also allows for getting
various statistics about the EECs, e.g., how often they triggered the policy or
even the triggering frequency. We use publish/subscribe monitoring tools like
ASIA [17], to keep the monitoring overhead to a minimum.

2.4 Detailed Walkthrough

In this section, we want to illustrate the interaction between the components
with our running example from Section 1. We assume that the system has been
setup by an expert (e.g., loading the domain model and annotating data sources).

After receiving the policy, the policy engine analyzes it and generates three
EECs, based on the policy logic tree: (1) A query-EEC, subscribing to position
events and checking (by querying external sources) if the reported position be-
longs to an employee. If successful, the EEC generates an EmployeePosition

event. (2) A query-EEC, subscribing to position events and checking if the
reported position belongs to a guest and if that guest is inside a restricted

4 http://esper.codehaus.org/



room. Upon successful detection, the EEC generates a GuestInsideRestricted

event. (3) A correlation-EEC, subscribing to EmployeePosition events and
GuestInsideRestricted events and checking (using event stream processing) if
the received events show a pattern which satisfies the policy’s conditions.

Position sensors (e.g., RFID readers) produce PositionEvents as shown in
Figure 6. As discussed in Section 2.3, we use ACTrESS to transform the local
position to a global one. After this transformation, the broker delivers the posi-
tion event to the two query-EECs. Depending on the status of the person with id
5 (obtained by querying an external source), one of them generates an enriched
event (c.f. Figure 6).

<Posit ionEvent>
id = 5
at = (5 , 3)

</Pos i t ionEvent>

<EmployeePosit ion>
id = 5
at = (27 . 4 , 40 . 3 )

</EmployeePosit ion>

<Gues t In s ideRes t r i c t ed>
id = 5
at = (27 . 4 , 40 . 3 )
room = 205

</Gues t In s ideRes t r i c t ed>

Fig. 6. Source event (left) and enriched events

For guests, the EEC queries an external source to obtain the room which
contains the position (27.4, 40.3). Finally, the correlation-EEC uses a stream
processing engine like Esper to correlate both event streams (e.g., with the EQL
statement given in Figure 7)

s e l e c t 1 from pattern
[ a=Gues t In s ideRes t r i c t ed and not b=EmployeePosit ion ]

where with in ( a . at , b . at , 5)

Fig. 7. EQL statement (simplified) used by the EEC

When the EEC detects such a pattern, it generates a PolicyAction event,
which the middleware detects and invokes the alarm actuator.

3 Case Study

To strengthen and support our initial claim of simplifying the development of
cyber-physical systems and event-based systems in general, we use a case study to
compare three approaches along several criteria. The three competing approaches
are Java, EQL (Event Query Language used by Esper) and DPL. They represent
a solution to the evaluation example we give in the next section.

We do not provide a detailed performance analysis due to space reasons. In
light of modern cloud infrastructures, single node performance is less important.
Thus, we show that our approach is fully distributable (and thus parallelizable).



The generated EECs are autonomous components, which run independently
of each other. As indicated in Section 2.3, EECs can be implemented as Eventlets.
The execution of each EEC is thereby even further distributed. For example, the
Eventlet middleware separates the guest-EEC along id. Each EEC instance then
processes events for only a single person. The Eventlet middleware automatically
manages distribution of instances efficiently. We thus achieve a very fine grained
distribution/parallelism, which makes our approach easily scalable with virtually
any load.

3.1 Complete Example

For the evaluation, we slightly expand the example from Section 1. There are
publicly accessible areas in the company. For all other rooms, guests must be ac-
companied by employees. Furthermore, there exist restricted areas where guests
are not allowed under any circumstances. We can express this in DPL:

IF
person A with a t t r i bu t e s t a tu s=’guest ’ IS INSIDE
room with a t t r i bu t e s e c u r i t y != ’ publ ic ’ AND
person B with a t t r i bu t e s t a tu s=’employee ’ IS NOT WITHIN 5m of A OR

A IS INSIDE room with a t t r i bu t e s e c u r i t y = ’ r e s t r i c t e d ’
THEN

sound alarm

The exact EQL statements depend on the specifics of the stream processing
engine, the host language and how much functionality is pushed to the streaming
system. Thus, we outline how to achieve the above goal and try pushing as much
functionality to the streaming system as possible.

We need to make data from the database available to the streaming system,
by inserting them into a stream (for every table we need data from):

i n s e r t in to UserStream s e l e c t ∗ from pattern [ t imer : i n t e r v a l ( 0 ) ] ,
s q l : db1 [ ’ s e l e c t ∗ from users ’ ]

We need to generate higher-order events based on the conditions, for example:

i n s e r t in to NonPublicEvent s e l e c t p . id , p . po s i t i on , r . room
from PersonPos i t i ons as p , RoomStream as r
where i n s i d e (p . po s i t i on , r . c oo rd ina t e s )

and p . s t a tu s = ’ guest ’ and r . s e c u r i t y != ’ publ ic ’

The function inside is a host language function made accessible to the streaming
system. This EQL statement assumes that there is a stream PersonPositions
which combines position events with user data. This illustrates the dependency
between different EQL statements. For our example, various such higher-order
events are necessary, whose definition we omit for brevity.

Finally, an alarm triggering mechanism based on the given conditions must
be specified:

i n s e r t in to AlarmEvents s e l e c t ∗ from pattern
[ a=NonPublicEvent and not b=EmployeeEvent
or c=ForbiddenEvent ]

where with in ( a . po s i t i on , b . po s i t i on , 5)



The host language can subscribe to events matching this pattern, and upon
reception of an event, trigger the alarm.

We omit the Java-only code for implementing the given scenario, as we
believe the reader can imagine the effort to implement this in Java without any
stream processing support (like Esper provides).

3.2 Criteria

We want to evaluate our three candidate solutions with the criteria description
similarity, number of instructions, control, and change. We explain each
criterion in more detail:

Description similarity indicates how similar the solution is to the original
task (written in prose). We used the MCS method [26] which measures text
similarity on a semantic level. Similarity is measured on a scale from 0 to 1,
with a higher score meaning a higher similarity. We believe this metric to be
a good indicator of how close a solution is to the mental model of the user.

Number of Instructions refers to the length of the solution. We use lines of
code the solution requires as our metric. We do not count boilerplate code
or setup-related code (e.g., registering JMS clients).

Control means how much direct control the user has over what happens inside
the system. For example, choice of index structures and data structures.

Change indicates how well changes are supported. Changes might occur be-
cause the user wishes to change the behavior, but may also result from
changes to the system (e.g., the addition of new sensors). We assume the
presence of other policies in the system, which also need to work.

3.3 Results

Table 1 summarizes our results, which we detail in this section.

Table 1. Results of the Case Study

Java EQL DPL

Description similarity 0.08 0.33 0.62
Number of Instructions 158 34 9
Control ++ + -

Change -- - ++

Looking at the description similarity, the advantages for DPL are apparent.
While it is nowhere close to a natural language definition, DPL still matches the
description in some terms and the line of thought. EQL requires the definition
of more complex events and access to database data, all of which is not part
of scenario description. Java’s syntax prevents coming close to a description in
prose.



Implementing the given scenario with EQL requires considerably more in-
structions than using DPL. Many of the EQL statements are simply necessary
to prepare the raw data so it can finally be used in a pattern-statement. By using
DPL, the middleware takes care of all preparation through enrichment and lets
the user focus on the important part. Thus, DPL requires much less effort to
implement the scenario. Since the Java implementation cannot rely on stream
processing libraries, it takes even more instructions.

On the other hand, more middleware-enabled functionality means less control
for the end user. Thus, Java provides the most control, while stream process-
ing libraries usually provide many optional settings. DPL clearly provides little
control about how a policy is executed. Providing mechanisms for more control,
would complicate the language and execution, which is not our goal.

Changing policies is also much better supported in DPL. For example, if we
want to extend the restrictions to interns, in EQL, we will have to change the
definition of a NonPublicEvent. However, other parts of the system might still
depend on the current definition. Thus, the user has to either introduce a new
definition besides NonPublicEvent with the risk of doing unnecessary work (if
NonPublicEvent is in fact not used anywhere else), or the user has to analyze
all other EQL-statements to see if and how they depend on NonPublicEvent. In
Java, the user must analyze the code to check where the modifications need to be
made and which other parts of the code might be affected, requiring similar effort.
Assuming a correct setup of the additional knowledge (e.g., domain model), with
DPL, the user simply modifies the query and leaves the rest to the middleware.

In summary, we see the arguments above as good and convincing evidence
that DPL indeed, simplifies the development of event-driven architectures.

4 Related work

Complex Event Processing (CEP) [24] is an active field of research. It is based
on stream processing and active databases, aiming at providing higher-level ab-
stractions with event patterns, filtering and aggregation. Low-level events are
combined according to rules. There is a plethora of complex event processing
and stream processing systems [9]. All systems however, try to improve per-
formance [29] or the expressive power of their rule language. Other works are
on improving the rule language design itself [22], but stick with the same con-
cept. Eckert et al. surveyed CEP languages [11], but all of them operate on a
lower abstraction than our approach and are thus comparable with EQL. Some
approaches advocate integrating event processing directly into major languages
like Java [13]. Reactive Programming [3] extends this idea by providing more
built-in language support to avoid common problems such as value propagation
inconsistencies. However, none of these approaches attempts changes as radical
as our approach.

Situation monitoring suggests such a perspective shift [4, 18]. They argue that
users typically think of situations a computer system should be aware of and then
define reactions based on them. They provide tools for defining these situations.



Their approach faces some drawbacks in light of today’s distributed, dynamic
and heterogeneous systems: their approach does not use message-oriented mid-
dleware for forwarding events and they hard-wire information flows from specific
sensors to specific processing components. Similarly, behavioral programming
aims at ”constructing reactive systems [...] from their expected behaviors” [20].
They advocate thinking about a system as the composition of its behaviors,
where behaviors are reactions to events. However, they rely on explicitly defin-
ing the interactions and an a-priori knowledge of which events exist. Schiefer
et al. developed a graphical tool for specifying event-condition action rules [28].
While their approach certainly helps tackling the complexity of event-based sys-
tems, it still requires the technical knowledge of how events can be combined.

The Alarm Correlation Engine (ACE) allows for declaratively specifying con-
ditions and actions for alarms in a computer network, based on events [30]. Their
motivation, too, is to give domain experts a tool for specifying policies. How-
ever, their approach is highly tailored to networks, with a predefined correlation
database. Their solution is too rigid for modern event-driven architectures. Han-
dling multiple, heterogeneous data sources with the help of an ontology has been
explored in the field of query formulation [25, 8]. Users are supported with sug-
gestions to the queries they are trying to construct. Among other hints, query
formulation systems suggest vocabulary based on the underlying ontology.

Higher-level approaches for simplifying the development of cyber-physical
systems are Ukuflow, Event Stream Processing Units and MobileFog. Ukuflow
allows users to define workflows, which are then deployed and executed in a
wireless sensor network (WSN) [19]. Although targeted to WSNs, we believe
the approach can be adopted to event-driven architectures in general. Similarly,
Event Stream Processing Units (SPUs) support developers and domain experts
by introducing an abstraction for event stream processing. Thus, event streams
can easily be integrated into the business process modeling. MobileFog abstracts
from the distributed nature of applications for event-driven architectures (called
Future Internet Applications) [21], based on the paradigm of fog computing [5].
All three approaches rely on a procedural approach, while we use a declarative
approach, each with its unique advantages.

Policies can be viewed as a grouping mechanism of CEP queries. For ex-
ample, the policy given in Section 3.1 can be seen as a collection (group) of
the EQL statements (not technically, but conceptually). In that regard, our ap-
proach is similar to constraint grouping techniques in DBMSs [7, 6]. Constraint
grouping aims at grouping database constraints into meaningful units, which can
be plugged in and out, without worrying about other dependencies. However
constraint grouping and query formulation have been designed for pull-based
interactions, while we specifically target push-based interactions.

5 Conclusion

In modern software architectures SOAs and Event-driven architectures coexist.
While the former has good architectural support the latter still suffers from a



lack of good abstractions. Particular challenges are distribution and no direct
control over the control flow. In this work we proposed a novel approach for han-
dling this complexity. Our approach allows users to focus on the desired behavior
of the event-driven parts, leaving architectural concerns like distribution to the
middleware. We allow for stating the behavior in a declarative way, expressed in
DPL. We implemented a prototype of our approach on top of a message-oriented
middleware used as a communication infrastructure. We rely on computer ex-
perts to do the initial setup of the system, similar to a database developed by
database experts for use by domain experts. Results from our case study show,
that our approach makes event-driven architectures much easier to use.

Our approach yields some tradeoffs: using a declarative approach allows for
easy specification but also means less control for the user. For example, window
sizes or the degree/strategy of distribution is beyond the user’s control. In terms
of system qualities, our approach clearly favors scalability over some others: by
automatically dividing the processing into small, independent processors, scaling
out is handled automatically, which is especially useful for cloud environments.
On the other hand, since we access messages and create new ones, encryption
and signatures require trust in our middleware. Even with trust, the necessary
key/certificate management becomes a challenge.

In future work, we want to exploit existing spatial database technology and
incorporate enhanced event detection from image processing. Furthermore, we
want to explore the benefits of dynamically moving EECs to other nodes in the
system when CPU load becomes too high. Especially for settings where multiple
users interact with a large system, we want to develop a policy conflict detection.
This involves making the meaning of actions (and probably also conditions) ex-
plicit to the policy engine. We can then use standard conflict resolution strategies
to avoid inconsistent system behavior.
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