Building an Integrated Active OODBMS: Requirements,

o o o o *
Architecture, and Design Decisions

A. P. Buchmann J. Zimmermann

Dept of Computer Science
Tech. University Darmstadt
Darmstadt, Germany 64293

Abstract

Active OODBMSs must provide efficient support
for event detection, composition, and rule erecution.
Previous experience, reported here, building active ca-
pabilities on top of existing closed OODBMSs has
proven to be ineffective. We propose instead an active
OODBMS architecture where event detection and rule
support are tightly integrated with the rest of the core
OODBMS functionality. After presenting an analy-
sis of the requirements of active OODBMSs, we dis-
cuss event set, rule execution modes, and lifespan of
events supported in our architecture. We also discuss
the coupling of event composition relative to transac-
tion boundaries. Since building an active OODBMS
ex nihilo is extremely expensive, we are building the
REACH active OODBMS by extending Texas Instru-
ment’s Open OODB Toolkit. Open OODB is particu-
larly well suited for our purposes because it is the first
DBMS whose architecture closely resembles the active
database paradigm. It provides low-level event detec-
tion and invokes appropriate DBMS functionality as
actions. We describe the architecture of the event de-
tection and composition mechanisms, and the rule fir-
ing process of the REACH active OODBMS, and show
how these mechanisms interplay with the Open OODB
core mechanisms.

1 Introduction

Active database systems have been proposed as a
new data management paradigm to satisfy the needs
of many applications that require a timely response to
critical situations. Frequently mentioned examples of
such applications are power and communication net-
work management, computer-integrated manufactur-
ing, commodity trading, air-traffic control, plant and

*This work is sponsored in part by the ACT-NET research
network on active databases which is part of the program ”Hu-
man Capital and Mobility” of the European Community.

J. A. Blakeley D. L. Wells

Computer Science Laboratory
Texas Instruments, Inc.

Dallas, TX 75265

reactor control, tracking, monitoring of toxic emis-
sions, and multimedia applications. Common to all
is the need to respond in a timely manner to exter-
nal events. Other applications that could benefit from
active database technology are applications in which
large volumes of data must be analyzed to detect rele-
vant situations although time constraints are less im-
portant, as is the case with intelligence applications
and the monitoring of environmental pollutants and
their long-term effects. Workflow management is an-
other application domain of active databases that is
rapidly gaining importance. It combines the need for
event-driven activities with temporal constraints. Fi-
nally, a domain for active database technology is the
DBMS itself, since the same mechanisms can be ap-
plied for unified handling of consistency constraints in
homogeneous as well as heterogeneous systems, mate-
rialized views, access control, and complex transaction
models required for heterogeneous systems and work-
flow management.

So far, the promises of active database technol-
ogy have not been realized, particularly in an OO-
framework. The main reason, in our opinion, is the
lack of a readily available and stable platform that
incorporates all the functionality identified to be rele-
vant for many of the above applications. Many good
but partial solutions have been proposed to individual
aspects of active database technology, such as event
detection and composition, rule execution strategies
and execution models, and the application of active
database techniques for limited domains, such as con-
sistency enforcement and materialized views. Many of
the systems that have been built address subsets of the
functionality that has been identified as relevant. For
example, most implemented systems use sequential
rule execution with one coupling mode, either imme-
diate or deferred. They are limited in the set of events
that can be detected to basic database operations,

and the actions are constrained to database updates
or transaction aborts (e.g., Postgres [SHP88, SHP89],
Starburst [WF90], Ariel [Han92], Exact [DPG91]).
Other systems, such as HIPAC [DBB88, CBB89], al-
though ambitiousin the defined functionality, have not
been fully implemented.

The implementation of an active DBMS with full
functionality requires the availability of a full-fledged
DBMS into which the active capabilities can be in-
tegrated. This fact makes the entry price very high,
particularly for active OODBMSs. Building the active
capabilities as a layer on top of an existing commercial
system, results in difficulties when trying to modify
the underlying transaction model or trapping method
execution events. Further, basic requirements for ef-
ficient implementation of active capabilities, such as
threads and their parallel execution, are not provided
by many popular operating system implementations.

The REACH project! [BBK92, BBK93] attempts
to provide a stable research platform based on an
extensible object-oriented DBMS, Texas Instruments’
Open OODB [WBT92]. Open OODB uses the EXO-
DUS storage manager [CDR86] and is implemented in
an extensible way that follows closely the event-driven
paradigm of active databases. In this paper we de-
scribe the architecture and basic design decisions that
are required for a seamless integration of a wide range
of active database capabilities into an object-oriented
DBMS. The driving motivation behind many of these
decisions is to provide an efficient and stable platform
without sacrificing essential active capabilities, such as
a rich event set with temporal and composite events
in addition to the basic database operations, multi-
ple coupling modes, and parallel rule execution. The
contributions of this paper are threefold:

1. We clarify the semantics of event composition rel-
ative to transaction execution. This issue has not
been properly addressed previously, but is essen-
tial for efficient event detection and composition.

2. We present an experience report summarizing the
difficulties we faced when trying to build an ac-
tive OODBMS on top of two closed commercial
OODBMSs. We conclude from that experience
that it is necessary to build the active capabil-
ities nto the OODBMS and identify important
features of the underlying system.

3. We show how the Open OODB sentry mechanism
is a key feature in the efficient support of active

1REal-time ACtive and Heterogeneous mediator system un-
der development at T.H. Darmstadt

database management, and present the architec-

ture of the REACH ECA-managers.

Section 2 characterizes the essential features we expect
in an aDBMS. Section 3 discusses events and rule exe-
cution in REACH. Section 4 reports and analyzes our
negative experiences trying to build a layered system
on top of two closed, commercial OODBMSs. Sec-
tion 5 introduces the Open OODB meta-architecture
as the basis for the REACH implementation. Section
6 addresses the architectural decisions needed to per-
form efficient event monitoring and rule firing, while
Section 7 addresses open issues, future work and con-
clusions.

2 Characterization of Active Database
Features

The concept of an active database system is elusive.
With commercial relational DBMSs offering basic trig-
ger capabilities and the standards bodies planning
on adding them to the SQL-3 standard, the question
arises what the basic features of an aDBMS are. In
REACH we aim at supporting complex applications,
possibly in open environments, for which the primitive
triggers offered by today’s RDBMSs are not sufficient.
In the HiPAC project [DBB88,CBB89], one author
participated in the requirements analysis of complex
applications (process control, network management,
command and control, CIM, and air-traffic control).
As a result of that analysis, the primitives and ba-
sic abstractions of HIPAC were defined. Recently, we
started a study of applications in the areas of power-
plant maintenance and operations and telecommuni-
cation network management. Preliminary results con-
firm the validity of the HiPAC primitives and have
lead to the identification of some additional capability
needed to deal with recovery in open systems [BBK93].
We therefore require from an aDBMS the following ba-
sic features:

Flezible rule invocation/triggering: The flexibility
of rule invocation is achieved through a clear separa-
tion of the triggering event from the condition and ac-
tion parts of the rule, the richness of the event set, and
the power of the algebra that composes those events.
In an aOODBMS an event set must comprise arbi-
trary method invocation events, temporal events, and
flow-control events. These events must be compos-
able through an event algebra [DBM88]. While the
required richness of the event algebra may be appli-
cation dependent, we specify that basic compositions,
such as, sequence, conjunction, disjunction, negation,
closure and history be provided. Good examples of

such an algebra are [GD93a, GD93b, CM91, GJ92].

However, a sophisticated event composition algebra is
of little use if a rich collection of event types cannot be
detected and composed efficiently. Therefore, a bal-
ance must be found between the expressiveness and
complexity of the event algebra and the efficiency with
which expressions of this algebra can be evaluated.

Efficient rule invocation/iriggering: The efficiency
of rule triggering depends on the efficiency of primi-
tive event detection, the efficiency of event composi-
tion, and the overhead incurred in deciding whether a
rule must be triggered or whether normal processing
can proceed. Efficient event detection depends on the
availability of a low level trapping mechanism, such
as hardware interrupts, virtual memory page faulting,
dispatch redefinition, or in-line wrappers. It depends
on being simple and parallelizable. Further, over-
head derived from storing parameters and garbage-
collecting incomplete events must be minimized. Fi-
nally, the event composition process should be exe-
cuted asynchronously with normal processing to avoid
unnecessary delays while a decision is made whether
normal method execution can proceed or if a rule must
be executed.

Flexible rule execution: The flexibility of rule exe-
cution is guaranteed through the definition of various
coupling modes that define the execution of rules or
parts thereof relative to the triggering user-submitted
transaction. HiPAC recognized four coupling modes,
namely immediate, deferred, detached and parallel
detached causally dependent [HLM88, CBB89]. In
[BBK93] we showed that for closed database appli-
cations these coupling modes are sufficient. For open
environments, i.e., situations in which rules may cause
non-recoverable side effects, two additional coupling
modes are required, namely sequentially detached
causally dependent and exclusive detached causally de-
pendent.

Full database capability: An active database sys-
tem by definition is a full-fledged DBMS. Therefore,
persistence, query processing, concurrency control and
recovery are essential features.

Efficiency and tight integration of DBMS function-
ality and ECA-rule execution: The complex appli-
cations that are targeted require a tight integration
of the active capabilities with the DBMS. The loose
coupling between rule management at the applica-
tion level and a passive DBMS, as has been provided
by expert system shells that interface with relational
database systems, has proven to be rather inefficient
because of the expert system’s rule invocation modus
(either explicit or through a recognize-act cycle) and
the frequent crossing of the application and database

interfaces.

Definition of timing constraints: Many applications
do require the specification and enforcement of timing
constraints. Although we do not view this as an es-
sential requirement of an active database system, we
consider timing constraints an important feature for
which the necessary provisions should be made early
on.

The goal of the REACH project is to provide a
stable platform that satisfies the above requirements.
Such a stable platform is a necessary condition for the
development of meaningful applications using active
database technology.

3 Events and Rule Execution

The above requirements determine many of the de-
sign decisions that were made for REACH. This sec-
tion summarizes four important aspects related to rule
invocation and execution:

e the primitive and composite events, that are han-

dled;

e the composition of events relative to transaction
boundaries;

e the lifespan of composite events;

e the event consumption policies.

Space limitations preclude a full discussion of all these
issues. Therefore, we refer to previously published re-
search whenever possible.

3.1 Event Set

The event structure of REACH has been described
elsewhere [BBK92]. It is similar in many aspects to
other event hierarchies and algebras [DBM88, CM91,
GD93b, GJ92]. We describe only briefly the main fea-
tures needed for a better understanding of the follow-
ing sections.

REACH recognizes both primitive and compos-
ite events. Primitive events can be either method-
invocation events, state-change events, flow-control
events (such as transaction-related events), and ab-
solute temporal events. Explicit user signals can
be modelled as method-invocation events. Temporal
events can be either absolute or relative, periodic or
aperiodic. A good characterization of primitive events
is given in [GD93a].

Events can further be composed through an event
algebra. A variety of event algebras of varying com-
plexity have been proposed [DBM88, CM91, GD93b,
GJ92]. The REACH algebra inherits the sequence,
disjunction and closure of the HiIPAC algebra with the
same semantics [DBM88]. In addition, it takes from
SAMOS the notion of validity interval for an event

and uses SAMOS’s negation, conjunction and history
operators [GD93b]. In addition, we defined a special
kind of temporal event, milestones, which are used
for time-constrained processing and can be applied to
tracking the progress of a transaction relative to its
deadline. If the transaction does not reach a milestone
in time, the probability of missing its deadline is high
and a contingency plan can be invoked [BBK93]. The
first REACH prototype supports the event classes for
method events, DB-internal events (e.g. commit or
persist), time events, and composite events. Future
extensions will consider special events, such as mile-
stones, and state change events, which require other
low-level event detection mechanisms, such as virtual-
memory faults.

It is not the goal of this paper to expand on the
semantics of events and the event algebra, as these
have been described elsewhere. However, we provide
more detail on the semantics of event composition rel-
ative to transaction boundaries, as this has not been
properly addressed in the literature.

3.2 Event Composition Relative to Trans-
action Boundaries

Events can be composed using either finite state au-
tomata [GJS92], (colored) Petri nets [GD93b] or syn-
tax graphs (e.g., [CKA93], [Deu94]).

A crucial issue for the architecture is the composi-
tion of events relative to transaction boundaries and
the valid execution strategies of rules, depending on
the kind of event. This issue has not been properly
addressed elsewhere. Events can be:

e Simple method events (both application-method
invocations and transaction-related events, such

as BOT, EOT, Commit, Abort).
e Simple temporal events (absolute points in time).

e Complex events where all the primitive method-
events originate in the same transaction.

e Complex events where the primitive events origi-
nate in different transactions.

REACH distinguishes six coupling modes. In the im-
mediate mode a rule is executed, possibly as a sub-
transaction, at the point at which an event was de-
tected within another transaction. In deferred mode,
the rule is executed as a subtransaction after the trig-
gering transaction completes its execution but before
it commits. In detached mode the rule is executed
in an independent transaction. In parallel causally de-
pendent mode, the rule executes in a separate transac-
tion which may begin in parallel but may not commit
unless the triggering transaction commits. In sequen-
tial causally dependent mode, the rule executes in a

separate transaction which may initiate only after the
triggering transaction has committed. Finally, in ez-
clusive causally dependent mode a rule may execute as
a separate transaction which may commit only if the
triggering transaction aborts [BBK93].

Not all the combinations of the four kinds of events
and the six coupling modes are semantically meaning-
ful. Some that are semantically correct may not be
practical for performance reasons. Therefore, we first
identify which combinations are reasonable to support
in the REACH architecture. Table 1 summarizes the
supported combinations.

Single-method events can always be related to the
transaction in which they were raised. Therefore, rules
triggered by a single-method event can be executed
under any coupling mode. Conversely, simple tempo-
ral events occur independently of transactions. There-
fore, rules triggered by purely temporal events may
only be executed in a detached mode.

Composite events where all primitive events orig-
inate in a single transaction can be related to that
transaction. Therefore, any coupling mode would be
semantically correct. However, if a method-event is
raised and composite events are allowed to trigger
rules in immediate mode, the normal flow of execu-
tion must be stopped every time a method event is
raised until the event composers have signaled that
no complex event that triggers an immediate rule has
been completed. This overhead is prohibitive (and
collides with our requirement that event composition
can be carried out asynchronously). Therefore, we
do not support in REACH the combination of com-
plex, single-transaction events with immediate cou-
pling mode.

If the composite event is composed of events orig-
inating in more than one transaction, immediate and
deferred coupling modes are not well defined, since
an ambiguity exists as to which transaction is meant.
Therefore, this combination is disallowed. The various
detached coupling modes are allowed, provided that
the commit/abort dependencies are respected for all
transactions from where the primitive method events
originated.

It should be observed that for any of the detached
execution modes, references to persistent objects as
well as values can be passed as parameters. References
to transient objects are not allowed since these objects
may disappear as soon as the originating transaction
completes. However, transient objects may be passed
by value.

| | Single Method | Purely Temporal | Composite 1 TX | Composite n TXs

Immediate
Deferred
Detached
Par.caus.dep.
Seq.caus.dep.
Exc.caus.dep.

e S T
ZZ22Z<2zZ2

N
N
Y
Y (all commit)
Y (all commit)
Y (all abort)

<2

Table 1: Supported combinations of event categories and coupling modes.

3.3 Event Life-Span

The next important issue when dealing with com-
posite events is to determine how long to keep alive
a partially composed event. We distinguish between
composite events that are composed from primitive
events originating in a single transaction and those
that are composed across transactions. The life-span
for composition of events that originate within a sin-
gle transaction is the duration of a transaction. Once
the transaction is either committed or aborted, the
event composition is discarded. This avoids cluttering
the system with semi-composed events. For events
that are composed from primitive events that origi-
nate in different transactions we require a validity in-
terval. This may be given either for the whole com-
posite event, or it may be determined by the smallest
validity interval of the composing events. Composite
events without an explicit or implicit validity interval
are illegal. Clearly defining the life-span of events en-
ables to clean the system from semi-composed events
in an efficient manner.

3.4 Event Consumption Policy

The third important issue when composing events
is the event consumption policy. The problem arises
from multiple instances of primitive events arriving at
an event composer and the resulting ambiguity. Let us
consider that the sequence E3 = (Fq; E3) of primitive
events £7 and E5 is being composed. The primitive
event instances ej, €], ey arrive in this order. Should
the composer use €1 or €} in the composition? This
problem was addressed in SNOOP [CM91], defining
four contexts: recent, chronicle, continuous, and cu-
mulative. In recent mode, typical for sensor monitor-
ing, the most recent occurrence of a primitive event is
used in the composition. In chronicle mode, typically
used in workflow applications, the primitive events are
consumed in chronological order. In continuous mode,
useful in financial applications, such as monitoring of
the Dow Jones index, each occurrence of a primitive
event opens a new window that stays open for a spec-

ified period. Finally, in cumulative context all occur-
rences are used up to the point where the composite
event is raised. For details see [CM91]. We consider
these consumption policies to be the best so far de-
fined. Although complex, they all appear to be useful
for some application. As a minimum, a system must
support recent and chronological event consumption
policies. These are the consumption policies currently
supported in REACH. The issues of consumption pol-
icy and life-span of the event composition process are
orthogonal.

4 Limitations of Layered Architectures

Because an aDBMS combines full database func-
tionality with active capabilities the entry price one
must pay in terms of infrastructure before any mean-
ingful applied research can be done is extremely high.
A layered implementation of active database capabil-
ity on top of a commercial OODBMS appeared, at first
sight, to be a reasonable compromise between func-
tionality and effort. Giving up the efficiency of a tight
coupling between the OODBMS and the rule man-
ager, one could try to implement the active database
capabilities on top of a closed commercial system hop-
ing that the provided functionality would eventually
be migrated into the system by its developers. We at-
tempted this route using two well-known OODBMSs,
O> and ObjectStore, for which we had licenses but
no source code available, and encountered a series of
limitations which would have resulted in too many sac-
rifices of functionality and prompted us to abort this
course of action in favor of an integrated approach.
Here we summarize the main problems.

FEvent detection: Method invocations are basic
database events in an OODBMS . To detect method-
calls it becomes necessary to wrap the methods and
modify the dispatcher to signal the pertinent events
whenever the method is called. Implementing the de-
tection of method events in a closed OODBMS is dif-
ficult at best. It requires redefinition of all the classes
for which method invocations generate events. This

results in a parallel class hierarchy of active classes
that must be maintained by the application program-
mer. Since active classes also require system-provided
classes, it requires the reimplementation of many of
these classes as well. Alternately, each single method-
body must be modified to signal invocation and re-
turn. None of these alternatives is satisfactory since it
either imposes a large overhead or forces applications
to announce the events. More details on this issue are
given in Section 6.

Another major problem results from the distinc-
tion between values and objects made by some ob-
ject models. Smalltalk, for example, supports strict
encapsulation. Therefore, all the interaction occurs
through methods. C++ and other object models be-
ing used in OODBMSs include state in their public in-
terface. While objects are modified through methods
only, value changes are detected through low-level sys-
tem functions that could not be modified by us. Thus,
changes of state could not be detected as events.

Transaction model and manager: The implementa-
tion of the coupling modes that we identified as es-
sential to satisfy the more demanding applications re-
quires a flexible transaction model. For parallel rule
execution it is necessary to have a nested transaction
model. Without a nested transaction model only se-
rial execution of triggered rules is possible in the im-
mediate and deferred modes. One of the commercial
systems we attempted to use only provides flat trans-
actions, while the other does provide closed nested
transactions. For the implementation of the detached
and the detached causally dependent modes (paral-
lel, sequential, and exclusive) it becomes necessary
to spawn new top-level transactions. All four modes
require the forking off of a new transaction, which
caused problems with one OODBMS’s license man-
ager. Furthermore, to enforce the dependencies in
the three detached causally dependent modes, it is
necessary to have access to information handled by
the transaction manager, such as transaction identi-
fier, commit and abort signals, and in the case of the
exclusive causally dependent mode it becomes neces-
sary to transfer resources from one transaction to the
other once it is determined that the spawning trans-
action is to be aborted. Neither of the commercial
OODBMSs we used provided us with the necessary ac-
cess to transaction-manager information nor did they
allow us to gain control as needed, or to redefine the
commit and abort methods.

Persistence model: The persistence model used by
an OODBMS has a major impact on the coupling
mode in which rules can be executed upon deletion

of an object. In the case of O that implements per-
sistence by reachability without an explicit delete we
encountered serious problems in triggering rules on
delete of an object. This problem, although not insur-
mountable, requires much additional information to be
carried (externally) to support the firing of deletion-
triggered rules. In the case of persistent C++ systems
this problem does not exist since invocation of the de-
structor methods can be detected by the event detec-
tor (provided the issues discussed under detection of
method-events have been solved).

Closed environments: When implementing the rule
system on top of a closed OODBMS one is forced, in
many cases, to work in the OODBMS’s proprietary
programming and run-time environment. The closed
nature of the O» programming environment caused
major problems,; since access to the operating system
level was not possible whenever we needed 1it.

We were initially encouraged by UBILAB [KOT93],
a prototype that was implemented in a layered archi-
tecture in a Smalltalk environment. However, this im-
plementation has a reduced functionality in terms of
events, execution model and performance and its ar-
chitecture hinges on some features that are Smalltalk-
specific. The kind of applications that we want to
address, the compatibility with existing applications
and the performance requirements push us to a C++
object model. None of the commercial OODBMSs we
have access to provides us with the necessary features
and access to internal levels that is required for ro-
bust and efficient implementation of the full range of
active capabilities. We have therefore turned to Texas
Instruments’ Open OODB, an extensible C++ based
OODBMS as the basic platform we want to extend
with our active DBMS capabilities in an integrated
architecture.

5 The Open OODB Platform

Texas Instruments’ Open OODB system [WBT92]
is based on an open, extensible architecture for con-
structing a family of DBMSs. By abstracting orthog-
onal dimensions of database functionality, the Open
OODB system allows tailoring each of these dimen-
sions for particular applications within a common, in-
crementally improvable framework that can serve as a
common platform for research.

The Open OODB system is based on a computa-
tional model that transparently extends the behavior
of operations in application programming languages
[WBT92]. Invocations of these operations are exam-
ples of primitive method events. Open OODB uses the
type systems of conventional object-oriented program-
ming languages, currently C++ and Common Lisp, as

alternative data models for applications. The compu-
tational model is realized by a meta-architecture mod-
ule that implements the concepts of event, sentry, and
policy manager interface.

Figure 1 illustrates the architecture of the Open
OODB. The meta-architecture module provides the
extensibility mechanisms in Open OODB. It plays the
role of a “software bus” on which database compo-
nents (policy managers) can be plugged in. This meta-
architecture module is philosophically close to the ac-
tive database paradigm. An event is the entry point
to extensibility in Open OODB. Any operation per-
formed within the context of a programming language
can be an event. Object dereference and method in-
vocation are two operations whose behavior is often
extended to enable persistence, distribution, or access
control support. A mechanism, the sentry, tracks pri-
mitive events and invokes (activates) the appropriate
policy manager (PM) which implements the extended
behavior. Different sentries (see Section 6) may invoke
a variety of policy managers, e.g. a Persistence PM,
a Transaction PM, a Distribution PM, a Change PM,
and an Indexing PM. There must be at least one policy
manager per database function, but one of the inter-
esting features of this architecture is the possibility of
exchanging or adding new policy managers and thus
evolve and extend the system. A Nested Transactions
PM and a Rule PM to support active database capa-
bilities can be added. The meta architecture also con-
tains a collection of support modules including address
space manager (ASM), communications, translation,
and date dictionary. ASMs may be passive or active.
A passive ASM is simply a data repository (e.g., a file
system). An active ASM allows computation which,
in an object-oriented environment, is essential to the
execution of methods. In an Open OODB system con-
figuration, at least one ASM must be active. If more
than one address space exists, there must be commu-
nications and translation mechanisms to effect object
transfer between them. A data dictionary serves as
a globally known repository of system, object, name,
and type information.

Open OODB does not implement all its modules
from scratch. The Exodus storage manager [CDR86]
is used as an ASM for permanent storage of objects,
and the Volcano optimizer generator to generate the
query optimizer [BMG93]. For our purposes, the use
of multiple threads, preferably on a multiprocessor
platform, for event composition and rule firing in the
active DBMS is essential. Therefore, we committed
early to a Solaris 2.x platform. This required the port-
ing of Exodus to the Solaris environment. Currently,

a version of Open OODB runs on top of Solaris 2.3
and Exodus 2.2.

6 The ECA-Oriented Architecture

The efficiency of an aDBMS depends critically on
the efficiency of event detection, event composition,
and rule triggering after the event is raised. These
mechanisms must be well integrated with the type
system of the DBMS. At the same time they should
be implemented in a modular way since there are
many architecturally equivalent alternatives for each.
Specifically, there are many ways to detect primitive
events, each of which can be made compatible with
any of a number of algebras. Similarly, depending on
the predominant kind of rule and process topology of a
particular system, different organizations of rules can
be exploited by the rule dispatcher. Further, detec-
tion, composition, and triggering interact with other
parts of the system in distinct ways. Event detection
must be tightly integrated with the type system and
operations of the programming language of the appli-
cation being monitored or with the hardware platform
on which it runs. By contrast, event composition is in-
dependent. Rule triggering must have some capabil-
ity to execute operations, possibly spawning processes
and transactions.

This section describes the need for orthogonality
of event monitoring relative to the type system, the
low-level primitive event detection mechanism used in
Open OODB, the event composition and rule execu-
tion mechanisms of REACH, and their interplay.

6.1 FEvent monitoring orthogonal to type

The REACH system uses the C4++ type system as
its underlying data model. To illustrate how REACH
rules are mapped onto C++ classes we use an envi-
ronmental rule that must be enforced in power-plant
operation. Whenever the water level of the river from
which the cooling water is drawn reaches a lower mark
and the water temperature is above a maximum tem-
perature and the heat-load given off is above a thresh-
old, then the Planned Power Output must be reduced
by 5%:

#include '"River.h"
#include '"Reactor.h'
rule WaterLevel {
prio 5;
decl River #river, int x, Reactor *reactor named '"BlockA"
event after river->updateWaterLevel(x);
cond imm x < 37 and river->getWaterTemp() > 24.5
and reactor->getHeatOutput() > 1000000;
action imm reactor->reducePlannedPower(0.05);

};

This rule is mapped onto one rule object and two
C functions for condition evaluation and action exe-
cution. All those functions are archived in a shared

’ Application Programming I nterface

Meta Architectur e Support (Sentries)

\ \ \ [[
Persistence| |Transaction |Distribution| | Change Indexing Query | .,
PM PM M PM PM PM
[[[[[[
key:
,,
I)
! Support Modules ! Meta Architecture Modules
‘ ‘ L]
I
! I
I
| | |
I
Address G icati . Data | Extender Modules
Space mnucation Translation Dictionary ! |:|

Figure 1: Open OODB Architecture.

library and are extracted using the naming conven-
tion that the rule’s name is appended by “Cond” and
“Action”, respectively. The base class Rule contains
methods evalCond() and execAction() which call
the C functions belonging to the relevant rule object.
Specialized rule classes for consistency management,
replication management, and so forth can be derived
from this base class.

"Reach.h"

#include '"River.h"

#include '"Reactor.h'

extern "C" boolean_t WaterLevelCond (void #*args) {

#include

River *river = (River*) args[0];

int x = (int) *args[i];

Reactor *reactor = (Reactor#) OpenO0DB->fetch('Block A");
boolean_t rc;

if (x < 37 && river->getWaterTemp() > 24.5 &&
reactor->getHeatOutput() > 1000000) rc = B_TRUE;

else rc = B_FALSE;

args[0] = (void#) reactor; // reorganize argument list
args[1] = (void#) NULL;

return rc;

This example reveals several requirements when ex-
tending an existing programming language type sys-
tem with active capabilities:

e Rich data types must be sentried. The sentry
mechanism must be able to monitor instances
of C++ classes, structs, arrays, and unions uni-
formly, since irregularities make systems very dif-
ficult to use properly.

e Monitoring of events must be possible regardless
of other object properties such as persistence, dis-
tribution, or versioning.

e Trapping member function invocation must be
supported. We require that C++ virtual member
functions of classes, and class and struct accessors
be trappable.

There are several places where a poorly designed sen-
try could become apparent. It is better to “trans-
parently” detect events than to force applications to

“announce” them, since the former does not clutter a
program or force changes in existing code. Further, it
is not always known in advance which events may be
of interest to a particular Open OODB extension or
aDBMS rule set. Therefore, we require that:

e Type declarations for monitored types must be
the same as for the equivalent unmonitored types.

e Object manipulation and function invocation
must be the same for monitored types and for
the equivalent unmonitored types. The mech-
anism must support all C++ pointer conver-
sions, accessibility of state variables (public,
private or protected), inheritance hierarchy in-
cluding multiple inheritance and base class in-
formation, friend functions/classes, copy con-
structors and assignment operators, construc-
tor/destructor functions, and function properties
such as virtual, non-virtual, and static.

6.2 FEfficient Detection of Primitive
Events

Detection of events is performed by the Open
OODB sentry mechanism which is used internally by
Open OODB as described in Section 5. Because Open
OODB relies heavily on sentries, both in support of
applications and for its own internal activities, per-
formance overhead associated with sentries is critical.
The same holds for active DBMSs. There are three
categories of overhead associated with sentries: use-
ful overhead is caused by a sentry that must always
trigger an extension; useless overhead is caused by a
sentry that will never trigger an extension; potentially
useful overhead is caused by a sentry that is not cur-
rently triggering an extension but might in the future.
Ideally, useless overhead should be avoided. This can
be achieved by filtering low-level events and aggregat-
ing them before invoking a rule or policy manager.

Many sentry-like mechanisms exist in a variety of
domains. Examples are hardware interrupts, illegal
type tags, virtual memory traps, language mechanisms
and redefinition of function dispatch, traps defined in
root classes, and in-line wrappers. The goal is finding
a sentry mechanism that is applicable in a wide vari-
ety of situations and adopting it as the prime sentry
mechanism. However, the architecture must allow the
use of other sentry mechanisms for special purposes.

Hardware nterrupts and illegal type tags can be
used to interrupt the flow of machine instructions.
Such interrupts are machine-specific, only cover a
small category of possible events and are defined at
a different level of abstraction (machine language in-
structions) than the application programs to be ex-
tended, which are written in C4++.

Virtual memory traps [LLOW91] allow objects to
be transparently retrieved. This technique, while fast,
has three drawbacks: it is hardware-specific; it cannot
trap function invocation, precluding its use for sev-
eral kinds of extensions; and it is dependent upon the
physical memory layout of data.

Programming languages like Lisp and its extension,
the Common Lisp Object System (CLOS), provide
language mechanisms to dynamically modify the be-
havior of certain functions associated with particular
classes of objects. The CLOS Meta Object Protocol,
which allows redefinition of function dispatch, can be
used to ensure that any declared extensions are ex-
ecuted as part of “normal” dispatch. In C++, it is
possible [BCL93] for different instances of a class to
have distinct virtual function dispatch tables (instead
of the usual one per class), each of which can be inde-
pendently populated with modified virtual functions
that extend or change behavior. This is compiler-
dependent, and cannot trap memory access, which
precludes its use to ensure residency of objects whose
state is accessed without using a virtual function; how-
ever, it does appear to have excellent properties for
other kinds of language extensions. Managing a wide
variety of such tables can make the application’s code
size increase dramatically.

Traps defined in a root class(es) can be inherited by
application classes. Unfortunately, this changes sim-
ple single inheritance into more complex multiple in-
heritance, which, while supported by C++, is idiosyn-
cratic in definition and implementation, thus making
certain operations that are legal under single inheri-
tance not work under multiple inheritance. A surro-
gate object stands in for some other object that may or
may not be present, intercepts all messages directed at
the actual object, and performs any necessary actions

before forwarding the original message to the actual
object for execution (possibly including instantiating
the object by retrieving it from a database). Since in
C++ the state of an object can be manipulated with-
out using a member function, it is possible to affect
the object without activating the sentry, a semantic
error that would cause the behavioral extensions to
be omitted.

Open OODB implements, for C++, a sentry via
in-line wrappers, that treats all extendible classes as
logically inheriting from a conceptual base class of
extendible-objects. This conceptual base class de-
fines the structures and functions necessary to make
all classes inheriting from it sentried. Unlike the use
of normal inheritance to implement sentries, the class
extendible-objects is never seen by a C++ com-
piler. Rather, all classes logically inheriting it are
modified by a language preprocessor to insert the
defined structures and functionality into each actual
class. These augmented classes are then compiled as
usual. By placing the sentrying code before the com-
piler sees the application, it is possible to avoid ar-
tificially created multiple inheritance, and to use nor-
mal C++ compilers to ensure that pointer conversion,
base class offsets, friend functions, etc. work properly.
They work properly because, as far as the compiler
is concerned, it is compiling a normal C4++ program,
not an augmented one. The generation process takes
a C++ program as input and preprocesses it to col-
lect type information and to generate an equivalent
program with extensions added.

Preliminary performance figures for the implemen-
ted sentry mechanism in Open OODB comparing use-
ful overhead, useless overhead, and execution of un-
monitored types is reported in [WSTR93].

6.3 Efficient Event Composition

The clue for an efficient event management is to
keep event composition simple and to execute it in
parallel. We believe that large, monolithic event man-
agers that are based on a single graph should be
avoided. Instead, many small compositors that can
be executed by parallel threads should be supported.
This approach makes the garbage-collection of semi-
composed events much simpler. Since in REACH the
life-span of composite events is well-defined, when the
life-span of a semi-composed event elapses, the whole
composition graph instance for that event occurrence
is simply removed. Many small event composers are
also a necessary step toward distributed event detec-
tion/composition.

FEvent hierarchy: Each ECA-manager for a primi-
tive event type contains two kinds of information: the

rules that are directly fired by the primitive event and
the composite events that contain the primitive event.
Primitive events are thus passed first to the rules for
firing and then to other ECA-managers for compo-
sition of the corresponding composite events. ECA-
managers know what parameters must be passed with
a primitive event, such as OID of the object to be acted
upon, transaction-id, timestamp, and other attributes
that can be taken from the method invocation mes-
sage. The collection of all the ECA-managers serves
as a repository of event specifications.

Event history: ECA-managers create an event ob-
ject and keep local histories of the created event oc-
currences. The maintenance of a highly distributed
history eliminates the bottleneck that would result
from centrally logging the occurrence of events. The
price one pays for the distributed histories is an over-
head when the effects of a rule must be compensated.
Therefore, a global history is maintained by a back-
ground process after a transaction has committed or
has been aborted.

6.4 Efficient Rule Firing

To make rule firing efficient the crucial part is to
minimize the search for the rule that is to be fired,
reduce the levels of indirection (messages) needed be-
tween the point of event detection and the firing of the
rule, and to eliminate unnecessary delays in the firing
of rules triggered by simple events due to the presence
of rules waiting for the composition of complex events.

To provide an efficient and highly selective rule fir-
ing mechanism, we use the ECA-managers. ECA-
managers are dedicated to a given event type. There-
fore, they know which set of rules is fired by an event.
If a rule can be triggered by a simple event, the ECA-
manager passes the event and fires the rule. The cou-
pling mode between a rule and the user-submitted
transaction is specified as part of the rule but the
ECA-manager is aware of what rules are fired and in
what mode. If a primitive event is part of a compos-
ite event, the primitive event is passed along to the
corresponding event composer. To eliminate a major
performance-killer we decided that only rules that are
fired by primitive events can be executed in an im-
mediate coupling mode, because otherwise the execu-
tion of a program must be halted until it is clear that
no composite event that could fire an immediately-
coupled rule will be completed by the detected primi-
tive method event. This wait for negative acknowl-
edgements is not acceptable. In the case of the rules
that are triggered by the primitive events, the primi-
tive event ECA-manager knows whether a rule must
be executed in an immediate coupling mode and can

give the application program the go-ahead. Rules that
are fired by composite events can be executed in the
coupling modes deferred, detached, or detached with
causal dependencies.

Figure 2 shows schematically the flow of infor-
mation between the actual primitive event detectors
(implicitly sentried), the corresponding primitive and
composite ECA-managers, and the rule objects. Ar-
rows represent messages. For example, a method-
event is detected and a message is sent to the corre-
sponding ECA-manager. This manager produces the
corresponding event object, passes it to the rules that
are fired by it (if any) and to the composite ECA-
managers (if any). The primitive ECA-manager sends
a message to the execution engine as soon as it is clear
that no immediately-coupled rules are fired.

g
= Non-Immediate fire
o Rule
c Rule PM (X X
[}
I
<
®]
store
fire OO0 store
propagate
---------- F* Method ECAmanager 000 Composite ECAmanager
create %eate
lookup
? Method Call Event
= e.g. begin Transaction object
o
c
[}
I
-
&

Figure 2: ECA-oriented architecture (method part).

When rules are fired, there are two situations in
which the system must deal with parallelism: a) when
multiple rules are fired by the same event, and b) when
multiple rules are fired by different events and are to
be executed in deferred mode.

In REACH we aim at providing parallel rule exe-
cution. In this case, the triggered rules can execute as
sibling subtransactions. However, at present, Open-
OODB does not provide nested transactions. There-
fore, we are providing in the first prototype a mecha-
nism for mapping a set of rules that could potentially
be executed in parallel to an ordered firing-sequence.
This decision, taken out of necessity to proceed with
the implementation while the transaction model is
being extended, has the advantage that we will be
able to perform actual measurements comparing the
gain of parallel rule execution with the overhead in-
curred for setting up the parallel subtransactions. It

also enables us to provide the best execution strat-
egy depending on the actual requirements of an ap-
plication. At present, the issues of termination, the
need for determinism in rule execution and the devel-
opment of correctness criteria, such as confluence for
rules in an object-oriented environment are still evolv-
ing [AWH92], [BCW93], [VS93]. Tools for testing and
debugging are just emerging [DJ93]. Therefore, we
want to provide the possibility of enforcing different
rule execution strategies.

When multiple rules are fired by a single event, in
the absence of nested transactions, the ECA-manager
must determine the order in which they are to be fired.
Since we do not consider rules fired by a composite
event in immediate coupling mode, only one ECA-
manager is involved at a time and control resides with
it. Rules can be prioritized and the ECA-manager
will execute them in this order. Even if the rules are
conceptually fired in parallel or no priorities have been
defined, an ordering is required at a lower level for
creating child processes and the initialization of Solaris
threads. In the absence of priorities or in the case of
a tie, the ECA-manager uses the rule’s timestamp to
enforce an oldest rule first (default) or a newest rule
first (optional) tie-break policy.

When multiple rules are fired in deferred mode by
many different events, the control over the execution
cannot any longer reside with a single ECA-manager.
Instead, the control now resides with the transaction
policy manager who knows that at commit-time the
deferred rules can be executed. Again, priorities can
be enforced as the main ordering criterion, but in ad-
dition to the previous two tie-breaking policies a third
policy that fires rules with simple events ahead of rules
with complex events can be enforced.

7 Conclusions and Future Work

We presented the architecture of REACH, a tightly
integrated active OODBMS. We focused on a clean
integration of database management and active capa-
bilities. To this end we extended TI’s Open OODB,
an extensible DBMS that supports low-level event de-
tection as the basic mechanisms for providing exten-
sibility. The main contributions of this paper are:

e A characterization of the requirements of active

OODBMSs.

e A description of the crucial issues of flexible and
efficient event detection, composition, and rule
processing.

e A clarification of the semantics of event composi-
tion relative to transaction execution.

e An experience report summarizing the pitfalls
we encountered while trying to build an ac-
tive OODBMS on top of two closed commercial
database management systems.

e A clean integration of the Open OODB sentry
mechanism with the REACH ECA managers.
This is the core architectural component of a
tightly integrated active OODBMS which we ex-
pect to become a stable platform for future re-
search.

The REACH active OODBMS is being built at the
Technical University of Darmstadt. A first prototype
became operational in August 1994 based on Open
OODB’s alpha release 0.2. Open OODB is still evolv-
ing, hence, to start working on the development of
the active capabilities we had to make some design
decisions that accommodate some of the missing fea-
tures, such as nested transactions. We are developing
anested transaction model for Open OODB which will
provide the parallel execution of rules that is part of
the execution model, and enable us to obtain actual
performance results for sequential and parallel rule ex-
ecutions. Ongoing work is concerned with efficient
event composition comparing different strategies, with
efficient garbage-collection of semi-composed events,
performance measurement and the implementation of
a GUI for rule definition and management. We plan
on further developing Open OODB’s intrinsic event-
orientation to express other system properties such
as index maintenance PMs with the active database
paradigm. This includes extending the set of sentry
mechanisms to include virtual memory traps. Another
area of great interest is the combination of the ECA-
rule description with Open OODB’s query language,
OQL[C++]. At the application level, different appli-
cations will be tested once an operational platform is
available. Feedback from these applications will drive
further development of the REACH prototype, partic-
ularly the user interface and timing constraints.

References

[AWH92] Aiken, A., Widom, J., Hellerstein, J.M.; Be-
havior of database production rules: termination, con-
fluence, and observable determinism, Proc. ACM SIG-
MOD 1992.

[BCW93] Baralis, E., Ceri, S., Widom, J.; Better Termi-
nation Analysis for Active Databases, in [PW93].
[BMG93] Blakeley, J. A., McKenna, W. J., Graefe, G;

Experiences Building the Open OODB Query Opti-
mizer. Proc. ACM SIGMOD, 1993.
[BCL93] Bracha, G., Clark, C. F., Lindstrom, G., and Orr,

D. B. Modules as values in a persistent object store.
Dept. of CS, University of Utah.

[BBK93] Branding, H., Buchmann, A., Kudrass, T., Zim-
mermann, J.; Rules in an Open System: The REACH
Rule System, in [PW93].

[BBK92] Buchmann, A., Branding, H., Kudrass, T., Zim-
mermann, J.; REACH: a REal-time ACtive and Het-
erogeneous mediator system, Bulletin of the TC on
Database Engineering, Vol. 15, Dec. 1992.

[CDR86] Carey, M.J., DeWitt, D.J., Richardson, J.E.,
Shekita, E.J.; Object and File Management in the
EXODUS Extensible Database System, Proc. 12th
VLDB, 1986

[CW91] Ceri, S., Widom, J.; Deriving Production Rules
for Incremental View Maintenance. Proc 17th VLDB,
1991.

[CBB89] Chakravarthy, S., Blaustein, B., Buchmann, A.,
Carey, M., Dayal, U., Goldhirsch, D., Hsu, M.,
Jauhari, R., Ladin, R., Livny, M., McCarthy, D., Mc-
Kee, R., Rosenthal, A.; HIPAC: A Research Project
in Active, Time-Constrained Database Management.

Final Tech Report, XAIT, July 1989.

[CM91] Chakravarthy, S., Mishra, D. An Event Specifica-
tion Language (SNOOP) for Active Databases and its
Detection. TR-91-23, U. Florida, 1991.

[CKA93] Chakravarthy, S., Krishnaprasad, V., Anwar, E.,
Kim, S.-K; Anatomy of a Composite Event Detector.
TR-93-039, U. Florida, 1993.

[DBB88] Dayal, U., Blaustein, B., Buchmann, A,
Chakravarthy, S. , Goldhirsch, D., Hsu, M., Ladin,
R., McCarthy, D., Rosenthal, A.; The HiPAC Project:
Combining Active Databases and Timing Constraints,

SIGMOD RECORD, 17(1), March 1988.

[DBM88] Dayal, U., Buchmann, A., McCarthy, D. Rules
are Objects Too: A Knowledge Model for an Active
Object-Oriented Database System, 2nd Workshop on
OODB, Bad Minster, Germany, 1988

[Deu94] Deutsch, A. Detection of Method and Composite
Events in the Active DBMS REACH, Tech. University
Darmstadt, M.S. Thesis, 1994.

[DJ93] Diaz, O., Jaime, A.; DEAR: A DEbugger for Ac-
tive Rules in an O-O Context, in [PW93].

[DPGI1] Diaz, O., Paton, N.W, Gray, P. Rule Manage-
ment in Object-Oriented Databases: A Uniform Ap-
proach, Proc. 17th VLDB, 1991.

[GD93a] Gatziu, S., Dittrich, K.R.; Eine Ereignissprache
fir das aktive, objektorientierte Datenbanksystem
SAMOS, Proc. BTW, Germany, 1993.

[GD93b] Gatziu, S., Dittrich, K.R. Events in an Active
Object-Oriented Database System, in [PW93].

[GJ91] Gehani, N.; Jagadish, H.V.; ODE as an Ac-
tive Database: Constraints and Triggers, Proc. 17th
VLDB, 1991.

[GJS92] Gehani, N.; Jagadish, H.V., Shmueli, O. Compos-
ite Event Specification in Active Databases: Model &
Implementation, Proc. 18th VLDB, 1992.

[Han92] Hanson, E. N.; Rule Condition testing and Action
Execution in Ariel, ACM SIGMOD, 1992.

[HLM88] Hsu, M., Ladin, R., McCarthy, D.; An Execu-
tion Model for Active Database Management Systems,
Proc. 3rd Int. Conf. on Data and Knowledge Bases,
Jerusalem, 1988.

[KOT93] Kotz-Dittrich A.; Adding Active Functionality
to an Object-Oriented Database System - a Layered
Approach, Proc. BTW, Germany, 1993.

[LLOW9Y1] Lamb, C., Landis, G., Orenstein, J., Weinreb,
D.; The ObjectStore Database System. CACM 34(10),
Oct. 1991.

[OODBY3] Open OODB Project. Open OODB Toolkit:
Release 0.2 (Alpha). Texas Instruments, Inc., Sept.
1993.

[PW93] Paton, N., Williams, M. (Eds.); Rules in Database
Systems, Proc. 1st Int. Workshop on Rules in Database
Systems, Edinburgh, 1993.

[SHP88] Stonebraker, M., Hanson, E., Potamianos, S.;
The POSTGRES Rule Manager, IEEE TSE, Vol 14,
No. 7, July 1988.

[SHP89] Stonebraker, M., Hearst, M., Potamianos,S. A
Commentary on the POSTGRES Rules System, SIG-
MOD RECORD, Vol 18, No. 3, Sept., 1989.

[VS93] van der Voort, M.H., Sibes, A.; Enforcing Conflu-
ence of Rule Execution, in [PW93].

[Wel91] Wells, D. L. ARPA Open Object-Oriented
Database Meta Architecture Support Module Specifi-
cation. TR Vers 6, ARPA Open OODB Project, CSL,

Texas Instruments, Inc., Nov. 1991.

[WBT92] Wells, D. L., Blakeley, J. A., Thompson, C. W.;
Architecture of an Open Object-Oriented Database
Management System. Computer 25(10), Oct. 1992.

[WSTR93] Wells, D. L., Srivastava, A., Thompson, C. W.,
Ramey, J.; A Mechanism for Extending and Evolv-
ing C++ Programs. TR, ARPA Open OODB Project,
CSL, Texas Instruments, Inc., Oct. 1993.

[WB94] Wells, D. L., Blakeley, J. A.; Distribution and
Persistence in the Open Object-Oriented Database
System. In Distributed Object Management, M. T.
Ozsu, U. Dayal, and P. Valduriez (Eds.), Morgan Kauf-
mann, 1994.

[WF90] Widom, J., Finkelstein, S.J. Set-Oriental Produc-
tion Rules in Relational Database Systems, Proc. ACM
SIGMOD, 1990.

