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Abstract. Data warehousing is a booming industry with many inter-
esting research problems. The database research community has concen-
trated on only a few aspects. In this paper, We summarize the state
of the art, suggest architectural extensions and identify research prob-
lems in the areas of warehouse modeling and design, data cleansing and
loading, data refreshing and purging, metadata management, extensions
to relational operators, alternative implementations of traditional rela-
tional operators, special index structures and query optimization with
aggregates.

1 Introduction

Data warehouses (DWs) can be viewed as an evolution of management infor-
mation systems [32]. According to a 1995 META Group survey, the DW market
(including hardware, database systems and tools) is expected to expand from $2
billion in 1995 to $8 billion in 1998. This growth is reflected by the announcement
of DW products from most major software companies in the past few years.

A DW is a repository of integrated information from operational (OLTP), and
legacy systems that provides the data for analytical processing and decision
making. The data in a DW is cleansed, temporal (historic), summarized, and
non-volatile. Table 1 summarizes the main functions of operational databases
(DBs) and DWs, and justifies the need for separate DWs.

In the DB research community, data warehousing and its problems have sparked
recent discussion. However, industry and the research community are approach-
ing the problems from different points of view. Industry appears mostly con-
cerned with multidimensional modeling [44, 40, 49], multidimensional DBs [49,
2], On-Line Analytical Processing (OLAP) [13], Relational OLAP [40, 1, 19, 3,
50, 54], SQL extensions [20, 46], indexing [18, 42, 8]. The DB research com-
munity has concentrated heavily on view-maintenance problems [26, 21, 23,
24, 43, 48, 61, 62, 14, 31, 41, 47, 7, 34, 55, 10, 22, 27, 58, 57, 60]. Update-
detection [35], view selection [25], cache management [51], query processing [15],
query languages [45, 37], and a relatively small number of papers concerning the
multidimensional model and OLAP [5, 37, 20, 53, 17] are distant seconds. Mul-
tidimensionality is gaining attention in the DB research community, especially,
the question of extending the relational model with the CUBE operator [20, 5].
However, several questions arise: a) Where is the intersection of the work pro-
posed by the research community and the requirements of industry? b) Are they



[Aspects |[Operational Databases [Data Warehouses |
User System Designer, System Ad-|[Decision Maker, Knowledge
ministrator, Data Entry Clerk |Worker, Executives
Function Daily Operations, (On-Line)[Decision Support, (On-Line)
Transaction Processing Analytical Processing
DB Design  [Application Oriented Subject Oriented
Data Current, Up-to-date Historical,
Atomic, Summarized,
Relational (Normalized), Multidimensional,
Isolated Integrated
Usage Repetitive, Routine Ad hoc
Access Read/Write Read mostly
Simple Transaction Complex Query
(usually, involving 1-3 Tables) |(involving more Tables)
System Transaction Throughput, Query Throughput,
Requirements [Data Consistency Data Accuracy

Table 1. Differences between operational databases and data warehouses

solving the problem together? c¢) What technologies do we still need for data
warehousing? To answer these questions we will examine modeling issues, archi-
tectural issues, maintenance issues, operational issues and optimization issues.
Based on that analysis we can see where the proposed work can be placed in the
problem space of data warehousing, and identify needed work.

2 Modeling Issues

The relational model and the multidimensional model are the main data models
for data warehousing discussed in the literature. In Section 2.1, we focus on the
essence of analytical processing, and try to clarify some misunderstandings about
the relative merits of both models. In Section 2.2 we discuss modeling the DW
using Select-Project-Join Views, an extreme case of using the relational model
in the DW, and show some problems. In Section 2.3 we propose a three-level
model for the DW.

2.1 Choosing a data model for the data warehouse

The essence of analytical processing

The static aspects of analytical processing include an object for analysis and a
collection of wariables. The object for analysis can be defined as a function (or
mapping) of its corresponding variables, and each variable represents a dimen-
sion of the domain space. For example, if w is defined as a function f of z, y,
z, denoted by w = f(z,y,2), then the domain of the function f is the multidi-
mensional space constructed by the three dimensions z, y and z. Suppose that
w denotes sales, and let z be the products, y the regions, and z the time. Then,
for a certain instance of (zo, o, 20), i-€., for Product zo, in Region o, at Time
20, we have the sales wg, denoted by wo = f(xo, Yo, 20)-
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Along each dimension, hierarchies can be defined. Figure 1 shows two hierar-
chies defined on the dimension x. Suppose that the domain of the variable x is
{1,...,12}, representing the months of a year. For the hierarchy in Figure 1(a),
we define ' € {a,(,7,6} as quarters, 2" € {6, ¢} as half-years and z"' € {(}
as year, where a = [1,2,3] (the first quarter), 8 = [4,5,6] (Q2), v = [7,8,9]
(Q3), § = [10,11,12] (Q4), 6 = [1,...,6] (the first half-year), ¢ = [7,...,12]
(the second half-year), and ¢ = [1,...,12]. For the hierarchy in Figure 1(b), we
define & € {u, v} as seasons and & € {{} as year, where p = [1,2,3] U [10, 11, 12]
(the winter season), v = [4,...,9] (the summer season), and { = [1,...,12].
Month, quarter, half-year, year and month, season, year form two hierarchies
of the time dimension. Month is the hierarchy element representing the atomic
data, while year is the most aggregated (summarized) hierarchy element.

- X" ‘ - X
0 0 (year) (year)
‘ }(;al); ears) f H_, v N
a B vy 3 - X’Y ‘ (seasons)
(quarters)
12345678 9‘10‘11‘12‘(m3<nth5) 12345678 9‘10‘11‘12‘(m3(nths)
€) (b)

Fig. 1. Dimension hierarchies of x

The dynamic aspects of analytical processing consist of the analytical activities,
such as forecasting, comparing, ranking, rolling up, drilling down, growth analy-
sis, etc. The primitive operations for those activities include fetching, comparing,
sorting and data consolidation.

Data consolidation is the basic operation for most of the analytical processing,
including rolling up, ranking, forecasting and growth analysis. Data consolidation
is the process of aggregating detailed data into single blocks of summarized
information. If we want to aggregate w along the dimension z to the level 2/, it
can be represented as

w' :F(mlay;z) = Z f(wayaz)
}

ze{z!

The above equation aggregates the monthly sales data to a quarterly sales sum-
mary. It is also possible to consolidate data along multiple dimensions simul-
taneously. This is referred to as multidimensional analysis. In Figure 2, we de-
pict the aggregation discussed above for part of the time dimension. In Fig-
ure 2(a), w = f(z), while in Figure 2(b), w' = F(z') = }_,c(, f(2), where
Fla) = f(1)+f(2)+ f(3), F(B) = f(4) + f(5) + f(6), F(7) = f(T)+ F(8) + £(9)
and F(0) = f(10) + f(11) + f(12).
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Misunderstandings about multidimensional and relational models
Many authors argue about the advantages and disadvantages of multidimen-
sional and relational OLAP. A multidimensional OLAP system consists of a
multidimensional DW with the OLAP tools directly built on the multidimen-
sional DW, while the relational OLAP system consists of a relational DW and
an OLAP engine with multidimensionality [50, 1, 3, 13, 40, 2, 33, 49, 19, 54].
Misunderstandings are found in some of the articles. For example, [44] states:
“Entity-Relationship modeling is the heart of the relational model. The explicit
relationships between customers and sales orders, or between hamburgers and
buns are burned into the design of the database.”

Many misunderstandings are caused by not separating carefully the conceptual
and the logical design. The data model used in the conceptual design phase need
not necessarily be the data model chosen in the logical design phase. If we choose
the multidimensional model for conceptual modeling, it does not imply that the
DW will be built on a multidimensional DB system. In fact, we propose to use
the multidimensional model for the conceptual design of a DW, and choose a
relational DB server as the data store.

The DW prepares the data for analytical processing which requires multidimen-
sionality. Therefore, the model for DW modeling should be capable and suitable
of expressing the multidimensionality. The two basic data constructs provided
by the multidimensional model are facts and dimensions. These two constructs
let the analysts view the data in the way they perform the analysis work. In Fig-
ure 3(a) shows a simple star schema that resulted from multidimensional mod-
eling. Facts correspond to sales data, and “products”, “geographical regions”
and “time” are dimensions of sales. Analysis on sales is performed along any (or
all) of the three dimensions, e.g., ‘analyze the sales growth of Product A and
B in Region West in the past two years’. As shown in Figure 3(b), multidimen-

Geographic e Re’.o’f.WESt Product=A OR B

: eographnic

250"t [Produa] [ Coggmaphi |
Time=[1994-1995]

| Time | Sales

data of interest
Fig. 3. A simple star schema of the multidimensional model
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sional data modeling provides users with a clear and natural view of data. Data
can easily be accessed by manipulating the dimensions, something that is usually
done in analytical processing. The multidimensional model meets the conceptual
modeling needs of a DW.

However, this does not imply the exclusion of other data models, such as the
ER model and the relational model. In Table 2, we show the mapping among
the constructs provided by the ER model, the multidimensional model and the
relational model. For the sake of simplicity attributes are omitted.

|ER Model |Multidimensional Model |Re1ational Model|
Relationship Fact .
Entity Dimension Relation

Table 2. Mapping among Data Models

Though the mapping among the models is possible, not all models are equally
suited. Taking the ER model as an example, the ER model is not good for
modeling analytical processing, because the model emphasizes first identifying
entities, and then defining their interrelationships, which map to dimensions
and facts in the multidimensional model, respectively. Reversely, in analytical
processing we usually define our objects for analysis first, then their dimensions.
In the relational model the only data construct provided is the relation, which
is defined as a subset of the Cartesian product of the domains of the attributes
that define the relation, denoted as r(R) C (dom(A;) X...xdom(A,)). From the
formal definition of a relation, we can see that the relational model is originally
quite good in nature to model the multidimensionality. For instance, for each
A;, it can represent a dimension of the relation R. Even so, it will not be a good
candidate in the conceptual design phase for modeling a DW, since the relational
model does not model the data in the way that human analysts usually view their
data, i.e., an analysis object and its corresponding dimensions. Nevertheless, the
relational model will be a good candidate for logical design of a DW, because of
its inherent multidimensionality and its solid mathematical foundation for query
processing.

2.2 Modeling data warehouses using SPJ-views

Modeling the DW using SPJ-Views (Select-Project-Join) is probably the quick-
est way to construct a DW!. The views are defined using SQL commands and
materialized in the DW for direct access. They are usually summary data from
the operational DB systems and are provided for periodical reports.

The primary advantages of using materialized views for modeling the DW are:
1. Ease of definition and flexibility to change. Based upon the aggregation re-
quirements of the DW users, SPJ-Views can be easily defined and redefined

! Here we assume that an integrated relational schema is available, and the SPJ-views
are defined on it, since we discuss in this section the suitability of a data model for
modeling multidimensionality, not for schema integration.



according to changes in users’ requirements.

2. Improved availability. Materialized views provide access to the data regardless
of the availability of the data sources.

3. Provision of Cumulative and Historical Data. Views with aggregates provide
summarized and historical data from sources which are no longer available.
The disadvantages, however, are

1. Lack of Multidimensionality. The SPJ-View, as its name says, is a projection
of some selected tuples which are possibly the result of joining tables from differ-
ent sources. A materialized view can be referred to as a table. A single table is
not ideal to model the multidimensional essence of analytical processing. Even if
we define a universal relation by joining all tables, the view presented to the DW
users is a mass of data containing duplicates, which consume not only storage
space but also time for maintenance.

2. Space and Time Required for Maintaining the Common Subset of Views. Be-
cause of the lack of multidimensionality, if we still want to use views to provide
different slices of the data cube, i.e., bounding all the dimensions and letting
only two of them free, the number of views will grow dramatically. For example,
for a three-dimensional data cube, there will be C3 = 3 different kinds of slicing,
and for each kind of slicing, the number of slices depends on the cardinality
of the bounded dimension, as Figure 4 shows, there are all together (n+m-+p)
slices.

product T
product 2

product m

Fig. 4. Different slices of a 3-dimensional data cube

Furthermore, if we want to store the views including some, if not all, of the rota-
tions or the roll-ups/drill-downs of the data cube, the DW will grow so rapidly
that it will be soon overloaded with maintenance work. Also, the operational
systems will be affected, since the view maintenance components keep sending
queries to evaluate the incremental changes to the views with respect to any
change in the source sites. In addition, most views will have large common sub-
sets of data. The storage space required to store the views might be far more
than simply replicating all the operational DBs.

From the above discussion, the disadvantages of using SPJ-Views to model the
DW seem to outweigh the advantages.



2.3 Three-level modeling

The three-level modeling comprises conceptual modeling, logical modeling and
physical modeling, and corresponds to the three accepted phases of database
design. We propose to use the multidimensional data model for the conceptual
modeling, and the relational model for the logical and physical modeling (due
to its solid mathematical foundation for query processing).

In Section 3, we present a logical warehouse architecture corresponding to the
three levels of schemas, and in Section 5 we will discuss the extensions to rela-
tional technology needed to make relational DB systems suitable for the data
warehousing environment.

3 Data Warehouse Architectures

In this section we discuss the architectural issues of data warehousing. In Sec-
tion 3.1, we propose a logical architecture of a DW system based on [40]. In
Section 3.2, we map some proposed physical architectures onto this logical ar-
chitecture, followed by a discussion of work to be done.

3.1 The logical architecture

The architecture of any warehouse depends on the following four factors: the
volume of goods, the characteristics of the goods, the arrangement of the goods
and the way of retailing. The architecture of a DW similarly depends on the
volume, the characteristics, the arrangement, and the usage of the data.
Volume of data A survey by the META Group, Inc. in 1996 shows that
more than 70% of the organizations plan to implement DWs larger than 50
GB, and roughly 50% are planning DWs of over 100 GB. Only about 13% of
the organizations surveyed will have DWs smaller than 10 GB. Consequently,
we need a Data Management Layer which supplies services for efficient storage,
retrieval and management of large amounts of data.

Characteristics of data To support properly a DW application a variety
of specialized storage structures are required. Therefore, we extract the func-
tionality of storing data from the Data Management Layer, and identify it as
a separate layer — the Data Store Layer. Providing the Data Store Layer, the
implementation details of the physical storage structures will be hidden from the
users of the Data Management Layer and will allow the use of special purpose
storage solutions, whereas in [40] a Database Layer was defined covering the
functionalities of both the Data Management Layer and the Data Store Layer.
Arrangement of data The arrangement of data, like that of any other prod-
uct, depends on how it will be retailed. For sugar it might mean whether 1 Kg
sacks should be packed 12 to a box or 24 to a box. Similarly, how data will be
aggregated cannot be answered till we know how they will be retailed. Therefore,
in the data warehousing architecture, an Application Interface Layer is defined,
which provides services to conceptually arrange data in the way needed by the



applications. The services for the arrangement of the data are application depen-
dent. If requirements of the applications change, only the Application Interface
Layer needs to be changed, leaving the underlying lower layers unchanged.

Usage of data The usage of the data by the decision makers will occur either
through special-purpose applications or generic OLAP front-end tools. They
form another layer, the Presentation Layer.

The system diagram of the logical architecture is shown in Figure 5.

Applications
Front End
(OLAP)
Tools
] Services of each layer
A Application Interfaces
I - conceptual view of the data
Legacy Application
Systems Interface Laydr] Warehouse Management
- data cleansing
Data - query processing (SQL extensions,
: Management aggregate selection, query processing
integrate La £ eSS
! yer using aggregate), query optimization
into Data S - data model transformation
ta St
OLTP i: ero e Storage Management Functions
Systems y - indexing (join, Bitmap indexes)
. ?ecial join algorithms
- data clustering/dat: hi
Do —— ering/data caching
Warehouse
System

Fig. 5. The logical architecture

Each layer provides services for the next higher layer, or for the intra-layer house-
keeping process. The Data Store Layer provides the Data Management Layer the
services for storing the data, building indexes (Bitmap indexes, or special join
indexes), data clustering, etc. The Data Management Layer, in turn, provides
services for higher level management of the warehouse data, e.g., load utilities,
data model transformation between external sources and the logical schema,
data cleansing, query processing, query optimization, etc. Next, the Application
Interface Layer provides data access facilities suitable for specific applications,
including data model transformation between the conceptual multidimensional
schema and the logical schema. It also contains utilities to generate extracts
that are frequently offloaded to desktop resident OLAP tools. The Presenta-
tion Layer includes graphical presentation and reporting tools. It typically runs
on a desktop environment whereas the other three layers typically exist on the
server side. The presentation layer therefore also includes the desktop-resident
processes needed for extract generation.

This architecture is an extension of that proposed by [40]. It breaks out the Data
Store Layer and redefines the functionality of the layers. Though we define the
DW as a data repository for analytical processing, we would like to keep the log-
ical architecture independent from applications and front-end tools. Therefore,
the Presentation Layer is not further defined.



3.2 The physical architectures

The logical architecture must be mapped to a physical architecture. We introduce
some proposed physical DW architectures, and discuss how they map onto the
logical architecture. In doing so we will concentrate because of space limitations
on the architecture of the DW, i.e., the back-end side.

Data warehouse architecture for multidimensional OLAP systems The
multidimensional OLAP systems utilize a multidimensional DB to store the
warehouse data and analytical applications are built directly on top of it, as
shown in Figure 6. In such an architecture, the multidimensional DB system
serves as both the Data Store Layer and the Data Management Layer. Data from
sources are conformed to the multidimensional model, and summaries along all
dimensions are precomputed for performance. Since the data is stored multidi-
mensionally, data accesses are directly submitted to the multidimensional DB
systems. The main problem of this architecture is the lack of scalability [40].

OLAP
Apphcat1ons Qeury/Reporting Tools
OLAP Analysis Tools
Interface Data Mining Applications
Data Visualization Tools
Legacy Application
Systems Interface Layer Data Conformation
___ [, Dam |, |RaaGensoldation/
data Management ata .
conformed Layer sources %
to the Multi- - =
OLTP dimensional Data Store ==E
Systems Model Layer ‘
'
Data Multidimensional
Warehouse Database System

System

Fig. 6. The warehouse architecture for the multidimensional OLAP system

Data warehouse architecture for relational OLAP systems The Re-
lational OLAP systems use a relational DB as the DW. Both the Data Store
Layer and the Data Management Layer are relational, however, extensions to
the relational model are required to support the multidimensional analysis re-
quests from the Application Interface Layer. The relational OLAP engine, at the
Application Interface Layer, views the underlying data multidimensionally, and
provides multidimensional operations for its users. The architecture maps onto
the logical architecture as shown in Figure 7.

In a DW environment, the access patterns, operations, data organization, per-
formance criteria, metadata management, transaction management and query
processing are very different from operational DB systems. Therefore, relational
DBMSs tuned for the operational environment, cannot be directly transplanted
into a DW system. For example, since most queries are read-only, the com-
plex concurrency control mechanism used in the operational DBs is an overkill.
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Fig. 7. The warehouse architecture for the relational OLAP system

Transaction management in the DW will relax some of the ACID properties, e.g.,
large table scans. In analytical applications which involve gigabytes of data, some
extent of inconsistency might be tolerated. Because of the large data volume,
we need special implementations of the traditional operators (e.g., join, parallel
scan) or special data structures (e.g., Bitmap indexes) to support the complex
operations required by OLAP.

Data marts Data marts are proposed for small data volumes (< 10 GB),
or data with less than 10 dimensions using multidimensional DBs. Data marts
usually serve as departmental OLAP systems, focusing on selected subjects and
dimensions, while DWs serve as enterprise OLAP systems spanning the entire
organization.

Virtual data warehouse A virtual DW is a collection of views, which are
usually summaries of the atomic data, and serves for efficient query processing.
It is easy to build, but does not support much multidimensionality.

4 Data Warehouse Maintenance Issues

DW maintenance issues include data cleansing, initial loading, subsequent load-
ing (refreshing), incremental loading, data purging and metadata management.

4.1 Data extraction, cleansing and initial loading

Data extraction is both a political and a technical problem, because it requires
opening up existing systems with structural and semantical discrepancies. With-
out first resolving these discrepancies, the derived information will be misleading.
In essence, methodologies proposed for schema integration and multidatabase
systems can be applied to cleanse the data (for references see e.g.,[4]). The prob-
lem is complicated by the fact that multiple, often incompatible, aggregation
hierarchies are used both in the target and in the source systems.
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Once the data is cleansed, it can be loaded into the DW. Data loading includes
scanning, filtering, sorting, partitioning, aggregating, indexing, integrity check-
ing. Data volume plays a critical role in this problem. Loading 1 TB may take
more than three months of time. In [6], a parallel loading approach using dataflow
parallelism was proposed to speed up the loading process. Besides, partitioning
and aggregating will affect query performance later. The criteria and evaluation
model for partitioning and aggregating data still need to be defined.

4.2 Data refreshing and data purging

Data refreshing After the initial loading, the updates at source DBs should
be propagated to the DW. This propagation process is called data refreshing.
When a refreshing mechanism is designed, the following issues should be consid-
ered: consistency requirements, refreshing timing, the modes of refreshing, and
refreshing techniques.

Four levels of DW consistency were defined in [62]: convergence, weak consis-
tency, strong consistency and completeness. According to the requirements of
the application, corresponding consistency criteria can be chosen for the DW.
As to the timing of refreshing, it may occur after every single update at any
source, or it can be done periodically, e.g., daily, or monthly. Refreshing can also
be performed according to the needs of the end users, or after the occurrence
of some significant event. Obviously, “when to refresh” is a trade-off between
consistency and time, the size of the window of opportunity, the slack capacity
of the OLTP systems that may be impaired by the propagation of data, etc.
The modes of refreshing are on-line or off-line refreshing. On-line refreshing
allows the applications of the DW to continue while refreshing is performed.
However, integrity of the data should be guaranteed. If an update is propagated
from one source DB to a table at the DW, and aggregates have been built on
this table, the refreshing process should include updating both the table and its
aggregates in one ACID transaction, otherwise any user query that interleaves
with the refreshing process and performs drill-downs/roll-ups on the table and its
aggregates, might discover the inconsistency. As mentioned earlier, application-
dependent correctness criteria (e.g., the significance of inconsistency) might be
needed to take into account As for off-line refreshing, all applications should be
stopped, when the refreshing is performed.

Refreshing techniques fall into two categories: recomputation and incremental
techniques. Examples of recomputations are full extraction from base tables, or
re-evaluation of the view definition against the base relations. Recomputation
is not very cost-effective, especially, if the source data is less volatile in nature.
However, for legacy systems or flat files, it might be the only choice. Incremen-
tal techniques include snapshot refresh, transaction shipping, incremental view
maintenance, detecting irrelevant updates, self-maintainability. Snapshot refresh-
ing uses triggers to update the snapshot log, which will be used later to update
the snapshot table. In the transaction shipping approach, a log transfer manager
runs at the source site, and uses the replication definition and the DB log of the
source site to detect the relevant updates. If any relevant update is detected, the
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log transfer manager transfers the log records to the replication server, which
generates SQL updates according to the log records, and executes the updates
against the replicated data. As for materialized views, incremental view mainte-
nance algorithms use the view definition to generate view update queries, which
will be sent to the sources, and answers of the queries will be applied to the
views. Self-maintainability describes the property that a materialized view can
be maintained without referring to source data other than the updated tuple,
the view definition and the view itself.

Table 3 shows the relationship between the grade of consistency, refreshing tim-
ing and refreshing modes. For example, for off-line, and continuous refreshing (re-
fresh after every update), the highest level of consistency, which can be achieved,
is Completeness; and for off-line, and periodical refreshing, the highest reachable
level of consistency is Strong Consistency. On the other hand, for on-line re-
freshing, the level of consistency can not be determined, since it still depends on
other factors, such as the activeness of the sources, self-maintainability of the
warehouse data, etc. Table 3 is not complete. It can be expanded to include more
factors, and can then serve as a guideline for determining what level of consis-
tency can be achieved by using a certain refreshing mode, strategy or technique.

Continuous On-Line |lundetermined
(after every update) Off-Line [[Completeness
On-Line |lundetermined
Off-Line |[[Strong Consistency

Periodically

Table 3. Levels of consistency achieved by different refreshing strategies

Data purging Another maintenance issue of the DW is the purging of the
old data, which is rarely mentioned in the literature. The definition of the old
data depends on regulations of the organization and the requirements of the
applications. We propose the following purging policies.

— Cleaning-Up. Old data is 100% removed from the DW, including atomic and
aggregated data, but the metadata about the old data remains in the DW. If
we want to refer to the purged data, the system will be able to tell where the
operational data resides. The re-load of the data could be manual or automatic.
— Selective Purging. Old data is selectively purged as a function of space, access
frequency and performance requirements. Figure 8 illustrates this. The data cube

Fig. 8. Aggregates in the multidimensional space
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S stores the most detailed data and can be used to derive all other aggregates
along all dimension hierarchies. Therefore, we can purge all the aggregates. How-
ever, the data cube S is very space-consuming, while the aggregates S’ and S”
are relatively small in size. If the applications will not do any sales analysis on
the old data along the “zone” hierarchy element of the geographic dimension,
we can remove S and S’ from the DW, and leave S” in the DW. Moreover, even
if we sometime need to access the old sales data at the “zone” level, it might
be much cheaper to leave both the S’ and S” in the DW and purge S than to
save S and purge S’ and S”. A mathematical model is needed to evaluate the
selection.

— Archiving. This policy stores old data on other storage devices, e.g., tapes,
or other disks, before purging them. Basically, only the most detailed data is
archived, since aggregates can be derived from them. This policy is used when the
operational DB systems or the legacy systems are not able to provide historical
data any more and the historical data will be accessed sporadically.

— Selective Purging and Archiving. This policy is the combination of Purging
and Archiving. In the cases that the operational systems do not provide histor-
ical data and the access frequency to the old data is relatively high, we could
archive the detailed data onto a tape before purging it and selectively leave some
aggregates in the DW.

Combinations of these policies could be used. What is needed are clear criteria
for data removal from the DW backed up by the corresponding cost models.

4.3 Metadata management

Metadata management is another important issue in the warehouse maintenance.
Since data is integrated from different sources, both the schematic mapping
among different sources and the semantic mapping among different data should
be maintained. In addition, since historical data might also be kept in the DW,
version control information for the metadata is required. Based on the classi-
fication of the metadata in [9], we divide the metadata into three categories:
administrative metadata, application specific metadata and auditing metadata.
The administrative metadata includes:

— Schematic metadata that consists of the warehouse schema, the schema, of the
source DBs and their mappings to the warehouse schema. The warehouse schema,
in turn, consists of the logical schema, the physical schema (table partitioning
information, indexing structures, etc), data extracting, cleansing and transfor-
mation rules, data refresh conditions and the mapping between the logical and
physical schema.

— Semantical metadata that consists of the semantic mapping among similar
data from different sources. The similar data items with mismatched semantics
are comparable, only if the mapping functions are defined. For example, suppose
that sales data from two different operational DBs is integrated into the DW.
However, one operational DB stores sales data including the value-added tax,
while the other DB stores sales amounts without it.
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— User profiles that contain all the users’ information, authorization, access con-
trol, and user groups.

— Conceptual metadata that contains the conceptual schema, which is the high
level schema for the DW users instead of DW administrators, dimensions, di-
mension hierarchies, aggregates, and the mapping to/from the logical schema.
The application specific metadata is composed of a set of common terminologies
specific to the application domain, application constraints and other policies.
The auditing metadata includes data lineage, warehouse statistics (such as value
distribution of a dimension), audit trails and error reports. The handling of meta-
data is far from perfect in today’s DW products and requires a comprehensive
approach. The Metadata Coalition is chartered to address these issues [39].

5 Operational and Optimization Issues

In Section 3, we discussed using a RDBMS as the data store and the data man-
agement components of a DW system. However, the operations provided by
relational systems do not efficiently fulfill the needs of the applications. There
are two complementary approaches to extend a relational system. One is to add
new operators, e.g., CUBE, ROLLUP, extensions to GROUP BY. The other is to
reimplement some traditional relational operators. We discuss these approaches
in Sections 5.1 and 5.2, respectively. Optimization is discussed in Section 5.3.

5.1 Extending relational operators

ROLLUP, CUBE and Cross-Tab

In analytical processing, it is essential that detailed data and summaries are
presented in cross-tabulated form (cross-tab, pivot table), as shown in Table 4.
However, to generate a common two dimensional cross-tab, requires three ag-
gregation functions, three GROUP BY operators and two UNION operators in
standard SQL.

| BIKE [1994[1995[Total|
Mountain|black| 450 | 550 [ 1000
[BIKE[[1994[1995][ Total| Bike [white| 250 | 360 | 610
black ][] 600 | 720 | 1320 City black| 150 | 170 | 320
white|| 550 | 610 | 1160 Bike |white| 300 | 250 | 550
Total || 1150 | 1330 | 2480 SubTota1|b1ack 600 | 720 [1320
(a) |white| 550 | 610 [1160
Total 1150{1330] 2480

(b)

Table 4. Sales Summary (a) two dimensional cross-tab, (b) three dimensional cross-tab

The structure of the result in Table 4 does not conform to commonly accepted
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relations.? Using standard SQL to express a multidimensional cross-tab would
be a nightmare for DW users. To let a user easily express a roll-up or a cross-tab
query, the following extension to the SQL GROUP BY was proposed in [20].

GROUP BY { ( <column name> | <expression> ) [ AS <correlation name> ]
[ <collate clause> ], ... } [ WITH ( CUBE | ROLLUP )]

Using this SQL-extension to generate Table 4(a) results in

SELECT Product_type, Year, Color, SUM(Sales)

FROM Sales

WHERE Product_type = “BIKE" AND Year BETWEEN 1994 AND 1995
GROUP BY Product_type, Year, Color WITH CUBE;

This leads to further questions. First, how to transform the relational results by
CUBE or ROLLUP operators to the multidimensional forms? In the architecture
we proposed, this task should be performed by the Application Interface Layer.
Second, how to efficiently implement the CUBE and the ROLLUP operators? As
the number of dimensions increases, the work of computation explodes exponen-
tially. Some work has been proposed in [5, 20], but many open questions remains.
Third, if some levels of summaries are available, how does the CUBE operator
take advantage of them?

Histograms and other extensions
A common operation in analytical processing is to aggregate along an aggregation
hierarchy. Usually, we model the dimension and its hierarchies into the DW.
However, some dimension hierarchies would be better expressed as functions,
e.g., the time dimension. Suppose that in a sales table, time of each trade is
recorded. Time is modeled as a long integer and stored as offset in seconds from
00:00:00 January 1900. Assume that we perform sales analysis on a daily, weekly,
monthly and quarterly basis, and we also analyze the sales distribution between
the rush-hours and the lunch-hours. Then, we have to model two hierarchies on
the time dimension in our DW. One is time — hour — day — week, and the
other is time — hour — day — month — quarter. Grouping data into a higher
hierarchy element involves a join operator, followed by a GROUP BY operator.
On the other hand, if we model the time dimension as functions, the grouping
could be done by a single table scan and a GROUP BY operator. However, stan-
dard SQL does not support functions (the construction of histograms) in the
GROUP BY clause. If functions were allowed in the GROUP BY clause, we could
simply say:

SELECT day, SUM(Sales)

FROM Sales
GROUP BY Day(Time) AS day;

2 However, it is the common format for decision makers. The data in such a cross-
tab fit well into the multidimensional model. The figures in the kernel of the table
are the facts in the multidimensional model, and the upper-most row and the left-
most column are the dimensions, i.e., the product name, the color and the years.
The right-most column and the last few rows are the summaries generated by the
operators CUBE or ROLLUP.
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For details on proposed extensions see [20]. Other useful extensions in Red Brick
Intelligent SQL (RISQL) are: Rank, Tertile, RatioT oReport, Cume, M ovingSum(n)
and MovingAvg(n), where n is an integer. For a detailed description of these
operators see [46].

Similar to CUBE and ROLLUP, we could define many new aggregation functions

to extend SQL. This, however, is only syntactic sugar. Much work needs to be
done in devising efficient implementations for the new operators.

5.2 Reimplementation of the relational technology

Traditionally, indexes map attribute values onto tuples of a table. Two separate
indexes built on two attributes of the same table do not work together to identify
the tuple set which corresponds to the combination of the two indexes. Instead,
the result sets must be combined or a compound index must be built. Besides,
the order of the attributes in a compound index matters. For example, if we want
to build compound indexes on the three attributes, {A, B, C}, it results in 3! = 6
different permutations. Indexes improve the query processing performance, but,
building and maintaining them is time consuming.

For data warehousing, some special indexing techniques, such as Bitmap index,
join index and Bitmap join index, have been rediscovered or introduced. We will
briefly discuss them to point out areas of further research.

Bitmap index The Bitmap index uses a bitmap vector to represent the mem-
bership of the tuples in a table, i.e., whether or not the tuples have an attribute
with the same value. The table R in Figure 9 has an attribute Gender, with do-
main {F, M}. We can use the bitmap vector BF to represent those tuples, which
belong to the group “female”. If BF[i] = 1, then the i-th tuple has Gender=F,
otherwise it is 0. To be complete we have to build another bitmap vector BM.
If BF[i] = BM[i] = 0, the tuple does not belong to either group.

Table: R
. [Gender|. .. BF BM
M [ 0]
¥ | 0 |
M | 0|
F | 0 |
F 1 | 0|
M [ 0]

Fig. 9. Bitmap indexing

Bitmap indexes are suitable for narrow domains, especially for membership func-
tions with 0, or 1 as function values.? Bitwise operations, such as AND and OR,
can be applied on several bitmap vectors to retrieve the tuples corresponding to
multiple indexes at one time. This is especially good for StarJoins, which will
be discussed later.

3 For attributes with higher cardinality, bitmap indexes can be selectively build on
the most frequently used attribute values. Alternatively, domain transformation or
subdomain indexing can be applied.
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A research problem, which to the best of our knowledge has not yet been properly
addressed, is using the bitmap matrix from different Bitmap indexes to cluster
data, or partition the fact table. The fact tables are usually very large in size. If
we could partition them according to access pattern into several smaller tables,
we could avoid a large table scan. However, this will also result in reorganizing
all the Bitmap indexes of the table. The problem of sparse bitmap matrixes, is
discussed in [42].

Join index and Bitmap join index A join index [56] is the result of joining
two tables on a join attribute and projecting the keys (or tuple id’s) of the two
tables. To join the two tables later, we can use the join index to fetch the tuples
from the tables followed by a join. In relational DW systems, it is of interest
to perform a multiple join (a StarJoin) on the fact tables and its surrounding
dimension tables. Therefore, it will be helpful to build join indexes between
the keys of the dimension tables and the corresponding foreign keys of the fact
table. If the join indexes are represented in bitmap matrices, a multiple join
could be replaced by a sequence of bitwise operations, followed by a relatively
small number of fetch and join operations.

The problem associated with join indexes is that two separate join indexes cannot
efficiently work together to fetch the desired tuple, like the Bitmap join index
does. On the other hand, Bitmap join index has its own problems, such as
sparsity, which the join index does not have. Algorithms for efficiently finding
the common subset of two join indexes will be desirable for compensating the
flaw of join indexes against the Bitmap join index.

StarJoin using Bitmap join index Join is an expensive operator, especially,
for large tables. In the DW environment, multiple joins are performed on the
fact table and its dimension tables to produce a report. This multiple join is
called StarJoin. In [42], an efficient method of processing StarJoin using Bitmap
join index is proposed.

For each tuple in the dimension table, a bitmap vector is constructed. This
bitmap vector records the positions of the tuples in the fact table, that will join
to the tuple in the dimension table, by setting the corresponding position in
the bitmap vector to 1. The StarJoin is carried out in three phases. In the first
phase, for each dimension, select the bitmap vectors of the tuples, that satisfy
the selection conditions. Then, a bitwise OR is performed on the bitmap vectors
selected from the same dimension table, resulting in one bitmap vector for each
dimension. In the second phase, a bitwise AND will be applied on the bitmap
vectors from all dimension tables to produce the final bitmap vector. Finally,
the resulting bitmap vector will be used to select tuples from the fact table and
join those tuples to the dimension tables.

Bitmap join indexes could greatly improve the StarJoins in the DW. However,
some improvements are still possible. First, for larger fact table, the bitmap
indexes get sparser. To solve this problem, bitmap compression using run-length
encoding, or maintaining a list of tuple id’s instead of a bitmap vector could be
used [42]. Second, combining other techniques, such as data partitioning, with
the bitmap join index, to eliminate the sparsity in the bitmap vectors and at the
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same time avoid large table scan could yield good improvements. This approach
affects the structure of the bitmaps, and is still an open question.

Parallel join Much work about parallel join has been proposed [36, 16, 38,
11, 12, 30]. In the DW environment, joins occur in the StarJoin forms, i.e.,
many tables join with one table. Beside the parallelism inside a single join, the
parallelism among the multiple joins of a StarJoin could be explored, e.g., the
first phase of executing StarJoins using Bitmap join indexes discussed above
could be performed in parallel. Further references to other special join methods
can be found in [52].

Data partitioning Partitioning a large table horizontally or vertically into
small tables can improve the query performance by avoiding scans of a large
table, or by performing the table scan in parallel. Partitioning algorithms devel-
oped as fragmentation algorithms for distributed DBs need to be reevaluated for
data warehousing and partitioning criteria need to be identified. A fact table can
be horizontally partitioned according one or more dimensions, say by product or
by (product, time). How will this affect the computation of the CUBE operator?
What performance improvement can we gain from it for the processing of Star-
Join using bitmap join indexes? How about the negative effects, e.g., inter-table
searches caused by table partitioning?

A fact table can also be vertically partitioned according to its dimensions, i.e., all
the foreign keys to the dimension tables are partitioned as separate tables. Ob-
viously, in the distributed environment where the fact tables and the dimension
tables are stored at distributed sites, a parallel semi-join can be easily applied
by sending the vertical partition of the foreign keys to the dimension table. How-
ever, reconstructing vertical partitioned tables involves join operations, which is
what we want to avoid. Intensive work on this issue is still needed.

Intelligent Large Table Scan In the DW environment, since most queries
are read-only scanning is a basic operation that can be parallelized. A piggy-
backing scan for large tables was adopted by Redbrick. The basic idea, is to avoid
redundant table scans by consecutive queries, which request access to the same
table. In other words, consecutive queries share the same results.

The idea of sharing the table scan result should be further spread to the sharing
of all common subsets of query results, not just for table scans. Moreover, this
sharing could be done by inter-process, or inter-thread communication. However,
in a client-server environment, coordination and the communication protocols
among different clients and the server are needed to be defined in order to let
queries from different clients, but in the same local sub-network, share the table
scan results.

5.3 Optimization issues

Aggregate/view selection To improve the performance of query processing,
it is desirable to precompute aggregates/views along some dimensions and store
them in the DW. However, due to space and time limitations not all possible ag-
gregates can be precomputed and stored. To decide what should be precomputed
in [53] a mathematical model was proposed to estimate the storage needed for



19

storing an aggregate. In [28] greedy algorithms were proposed to select a set of
views to materialize with respect to the storage space and the average response
time of queries. In [25] a framework is proposed for the selection of views to
optimize the query response time within polynomial-time. Much more work is
needed in this area, particularly in combination with other issues that can ben-
efit from these results or provide cross-fertilization, such as purging strategies,
and modeling/design issues.

Query processing using aggregates or views The query processor of the
DW must be capable of exploiting existing aggregates. In [15], algorithms were
proposed to identify the relationship between the queries posed by users and
the view definitions to see whether the queries could be answered by using the
views or not. In addition, there are still many research problems concerning
query processing using aggregates, especially, using the information contained
in dimension hierarchies.

Other proposed query processing techniques Many query processing and
optimization techniques can also be applied to the relational DW system. For
example, executing selections before joins, interleaving group-bys and joins [59],
parallel query processing techniques [29], etc.

6 Concluding Remarks

We tried to clarify some widespread misunderstandings about the relative merits
of the relational and the multidimensional models for data warehousing. Based
on expressiveness, scalability and mappability of the models we have adopted
a multi-tier, multi-model architecture in which the multidimensional model is
used as a conceptual model for design and user interaction in the Application
Interface Layer and the relational model is used at the lower Data Management
Layer and for the interaction with the operational source systems and the Data
Store Layer.

We identified open research problems in the areas of DW modeling, maintenance,
operation and optimization. Some of the topics have an impact in several areas.
Work needs to be done in the near future in:

1. Data warehouse modeling and design. Design methodologies and design tools
for DWs are needed with the appropriate support for aggregation hierarchies,
mapping between the multidimensional and the relational models, and cost mod-
els for partitioning and aggregation that can be used from the early design stages.
Adaptation of existing view integration work is required.

2. Data warehouse architectures. Research into future integration of legacy DWs
is required, particularly as many companies are developing data marts of limited
scope. Other interesting architectural issues concern the unbundling/streamlining
of relational DBMSs, since data warehousing does not require full DBMS capa-
bilities, such as, concurrency control and ACID properties.

3. Data cleansing and loading. Support mechanisms and metadata management
for the resolution of conflicts during data cleansing are required, as well as par-
allel loading utilities.
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4. Data refreshing and purging. Strategies for efficient data refreshing are re-
quired, and clear criteria and cost models for data removal from the DW.

5. Extension of relational operators. The set of relational operators must be ex-
tended to satisfy the user/application requirements. These extensions must in-
clude efficient mapping between the multidimensional and the relational worlds.
6. Efficient implementation of operators. The new operators must be efficiently
implemented and the traditional operators, such as joins, must be reimplemented
in an optimized manner for the warehouse requirements, particularly to sup-
port StarJoins and to take advantage of special indexing. Other operators that
need reimplementation to take advantage of DW characteristics are large table
scans, which must be parallelized, and partial results must be usable by multiple
queries.

7. Special indezing. Data warehousing has special indexing requirements that
are partially satisfied by bitmap indexes. These require extensions to deal better
with sparsity, and to perform selective indexing, domain transformations and
subdomain indexing.

8. Query optimization. Research in query optimization that exploits the infor-
mation available in aggregation hierarchies and join indexes, as well as issues of
space/time trade-offs for computed views is needed.

We identified a research agenda and pointed out areas in which the DB research
community can contribute and participate in the data warehousing boom.
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