This is page 263
Printer: Opaque this

14
REACH

Jiurgen Zimmermann
Alejandro P. Buchmann

ABSTRACT

REACH is an active OODBMS that was developed as a platform to exper-
iment both with the issues arising from the implementation of advanced
active functionalities, and as a platform for the development of applica-
tions that are potential beneficiaries of active database technology. To
achieve the former, we chose an experimental OODBMS, Texas Instru-
ments’ OpenOODB, for which the source code was available to us, and
tried to implement the full range of active functionality with multiple cou-
pling modes, a complete event algebra, full transaction management, and
support features, such as garbage collection of events. To achieve the lat-
ter goal, a rich set of tools was implemented to facilitate the use of the
system by application programmers. This chapter gives a brief overview
of the REACH system implemented on OpenOODB. Currently, efforts are
underway to port the REACH functionality to ObjectStore.

14.1 Introduction

The REACH project set out to build an active OODBMS with full active
functionality [BBKZ93, BBKZ92, BZBW95]. This was considered impor-
tant since previous projects had set ambitious goals and specified a broad
range of functionality [DBB'88], but no robust system with full active
functionality that could be used for actual implementation of applications
was available. The initial goal was to use a commercial OODBMS and build
REACH on top of it to speed up development and to benefit from the sta-
bility of a commercial platform. However, soon the limitations of building
on top of a closed system became evident. Problems appeared when try-
ing to implement some of the coupling modes, and when modifying the
pre-processor. Therefore, it was decided in 1993 to begin a new implemen-
tation on top of Texas Instruments’ OpenOODB [WBT92]. OpenOODB is
an experimental platform that was conceived as an extendible OODBMS
in which individual functions are specified in a modular way as policy
managers that can be exchanged or extended as needed. The policy man-
agers can be invoked in response to low-level events. This appeared to be
philosophically very close to the paradigm proposed by active databases

264 J. Zimmermann and A.P. Buchmann

and it was decided to use OpenOODB as the implementation platform.
This was particularly attractive, as we were able to obtain the source code
and were included in the list of Alpha test sites. The use of OpenOODB
proved to be a fortunate choice in that it gave us a good head start. It
was particularly useful to have access to the source code of the precompiler
that was modified to include the wrappings for method events. However,
OpenOODB was built on top of the Exodus storage manager 2.2 [CDRS86],
and since Open OODB used extensively the Exodus transaction manager
with its page locking and recovery mechanisms, it turned out quite diffi-
cult to implement necessary changes to the transaction manager, especially
parallel nested transactions. In addition, since OpenOODB is implemented
as a client to the Exodus server, the whole REACH functionality is only
available on the client side. On balance, the use of OpenOODB gave us a
significant initial boost but did not live up completely to our expectations,
in part also because of the growing pains of an experimental system.

In spite of the limitations encountered, REACH implements a fairly
complete range of active functionality. The event algebra is a superset
of the HiPAC event algebra and was adapted from the SAMOS project
[GD93a, GD93b]. The six coupling modes provided are also a superset of
the HIiPAC modes [HLM88] and the most comprehensive set of coupling
modes implemented to our knowledge. Special emphasis was placed in the
efficient and specialized implementation of event detectors, the correct com-
position of events relative to transaction boundaries, the passing of events
and parameters, the garbage collection of semi-composed events, and the
possibility for future distribution, i.e., no design decision should preclude
future use in a distributed environment.

The second major area of concern was to provide a set of tools for the
administration of rules and as a support for the application programmer.
These tools include static termination checkers, detailed event histories,
rule browsers, a graphical interface for rule specification by the naive user,
and the organization of the rule space in analogy to the directory structure
of the UNIX file system [ZBB196].

In this chapter section 14.2 briefly describes OpenOODB and its philos-
ophy. Section 14.3 describes the functionality of REACH and how it was
realized, section 14.4 describes the tools, and section 14.5 summarizes the
features of REACH in accordance with the criteria formulated in Chapter
1. Section 14.6 presents conclusions and lessons learned.

14.2 The OpenOODB Platform

Texas Instruments’ OpenOODB is an extensible OODBMS whose compu-
tational model transparently extends the behavior of operations in applica-
tion programming languages. Invocations of these operations are examples

14. REACH 265

REACH

APl ‘ ‘ Visualization ‘ ‘ Trace ‘ ‘ Error

Rule PM Event PM
i it I it e - = Nested
I H I
L Fnng || Moy 1, Time [Compostion | Transaction
fmmmm o 8 [(R S e —m—m—— - | pmmmm—— - .
! Administratioq | Base : | Primitive : | Parameter : PM
meta-ar chitecture support
Persistence PM ‘ ‘ Transaction PM ‘ ‘ Distribution PM

Address space Communication ‘ ‘ Translation ‘ Data Dictionary

FIGURE 14.1. OpenOODB architecture with REACH extensions.

of primitive method events. OpenOODB uses the C++ type system.

OpenOODB consists of two layers: the lower layer consists of support
modules for address space management, communication, translation, and
the data dictionary. The upper level is the meta-architecture module that
implements the computational model by providing events, sentries, and
policy manager interfaces. The meta-architecture module provides the ex-
tensibility mechanisms for OpenOODB and plays the role of a software bus
into which the database components can be plugged. Each database com-
ponent is realized as a policy manager. Figure 14.1 shows the OpenOODB
architecture with the REACH extensions.

The meta-architecture is philosophically close to the active database
paradigm. Any operation performed within the context of a programming
language can be an event. A sentry mechanism tracks primitive events
and invokes the appropriate policy manager (PM) which implements the
extended behavior. There must be at least one policy manager for each
database function, and the Open OODB architecture provides for the pos-
sibility of exchanging a given policy manager, e.g., the flat transaction PM
in favor of a nested transaction PM. While philosophically clean and at-
tractive, it is not easy to exchange policy managers because of interactions
and dependence on functionality of the Exodus storage manager or to add

266 J. Zimmermann and A.P. Buchmann

a new policy manager to OpenOODB, e.g., for distribution.

14.3 REACH Goals, Design Principles, and
Implementation Decisions

The long-term goal of REACH was to support complex applications and
to provide a stable testbed for applications using active capabilities, to be
extendible to open environments, and to allow for applications with timing
constraints.

To satisfy the goals that were set for REACH, we formulated some design
principles that can be summarized as follows:

e provide dynamic rule specification through orthogonality of monitor-
ing and type,

e provide a rich event set with a clear definition of event semantics,
e provide flexible rule execution through a rich set of coupling modes,

e provide efficient rule invocation through fast basic event detection
and low composition overhead,

¢ do not preclude future use in a distributed environment through cen-
tral components that can become bottlenecks, and

¢ provide the necessary maintenance mechanisms for long-term stable
operation.

Dynamic rule specification is essential in making an active OODBMS
useful for application development. The orthogonality of monitoring and
type makes it possible to treat all classes and their methods in a uniform
manner. Therefore, it is not necessary to know at the time a class is defined
which method event will eventually be relevant for a rule. Rules can be
defined independently of the object classes and subscribe to a given event
type. Since all methods are uniformly wrapped by the precompiler, no
recompilation is needed when a new rule is defined.

14.3.1 FEvent Detection and Composition

It was not a goal of the REACH project to define new event types and event
algebras. Therefore, the event hierarchy that was used is similar to that
of Sentinel [CKAK94] and SAMOS [GD93a, GD93b, GD94]. It includes
method events; flow-control events that include Begin, End, Commit and
Abort of transactions; and absolute, relative, periodic, and aperiodic time
events. State change events are not implemented, as they would require a

14. REACH 267

different basic event detection mechanism. However, in an attempt to allow
for time-constrained processing in an inherently non-real-time environment,
we defined the notion of milestone events. A milestone event is raised when
a transaction passes a certain point. If the corresponding milestone is not
reached by a certain time relative to a deadline, a rule specifying an al-
ternative action can be invoked. Detached exclusive coupling is required
to avoid two different results from becoming valid. In detached exclusive
coupling mode, the rule is executed in a separate transaction that commits
and thus becomes visible only when the triggering transaction aborts. As to
event algebra, REACH implements the three operators proposed in HiPAC,
sequence, disjunction, and closure—with their original semantics [DBM88].
In addition, it implements conjunction, negation, and history as defined in
the SAMOS project with the same semantics [GD93a, GD93b, GD94].

To allow for future use in a distributed environment, no single central
component should act as a bottleneck. This is particularly true for event
detectors/composers and the logging of event histories. Therefore, special-
ized event detectors exist for each type of composite event, and for each
instance of a composite event, a separate event hierarchy is constructed.
The event detectors create an event object. Logging of event histories occurs
in parallel by writing the event objects into partial logs with asynchronous
merging of the partial logs.

A stable active DBMS requires maintenance facilities, such as garbage
collection, to remove semicomposed events or event-log consolidation.
Through the implementation of a separate event graph for each composite
event, it is relatively easy to eliminate events for which it becomes obvious
that they will not be completed. Through careful definition of the scope of
an event, it is possible to eliminate useless events and their parameters.

14.3.2 Rule Execution and Coupling Modes

To provide an adequate support for a wide variety of applications, it was
decided to implement as complete a set of coupling modes as possible.
REACH implements the coupling modes immediate, deferred, detached,
and three variants of detached with causal dependencies, parallel, sequen-
tial, and exclusive [BBKZ93]. Detached parallel allows for parallel evalu-
ation of a rule, but termination of rule execution depends on the commit
of the spawning transaction. Detached sequential requires the beginning
of rule execution to be delayed until the spawning transaction commits.
Detached exclusive allows for parallel execution of a rule, but the rule may
only commit if the spawning transaction aborts. This coupling mode is
intended for the implementation of contingency plans through ECA rules.
The coupling of the condition and of the action part are specified separately.

To speed up rule invocation, the event detectors are specialized. A sepa-
rate event detector exists for each event type. The event detectors for prim-
itive events know which rules are directly fired by that event and whether a

268 J. Zimmermann and A.P. Buchmann

e

detached detached
Event' . independent parallel
Composition rules rules
© —— detached
immediate deferred sequential
rules 1
rules non-immediate ruies
N Manager T
/Igropagate non-immediate non-immediate
Event Detector Manager Manager
"before C::meth(int)"
create Event

o obj->meth(i) o commit() e

FIGURE 14.2. Rule execution.

complex event detector consumes a primitive event. This reduces the num-
ber of indirections. A specialized event detector exists also for each type
of composite event, and for each instance of a composite event a separate
event hierarchy is constructed. Whenever a new rule is defined and com-
piled, the corresponding event detector is created. An event detector also
includes the necessary data structures for the parameters of the event and
the necessary instructions for copying the state of the relevant objects de-
pending on the coupling mode. If an event detector already exists because
the triggering event of the new rule already is used to trigger an exist-
ing rule, the new rule only subscribes to that event detector. Subscription
means that the corresponding rule is added to the set of rules that need
to be fired by that event detector. For the condition and the action, two
functions are generated and stored in a shared library.

Figure 14.2 illustrates the processing of events and execution of the trig-
gered rules at runtime. A method detector traps a method event. Rules that
are fireable by the method event in immediate coupling mode are fired, and
the trapped method event is propagated to the non-immediate manager.
The non-immediate manager either passes the method event to the corre-
sponding composite event detector for composition, or fires the rules that
are to execute in detached or detached parallel coupling modes. REACH
does not allow composite events to trigger rules in immediate mode. The
reason is that a composite event contains several basic events with different
timestamps and parameters (see section 14.3.3). Since the parameters of the
older events could be invalid or out of scope, immediate event composition
could result in runtime errors during rule execution when the event pa-
rameters are accessed. There also exists a performance reason. If rules that
are triggered by a composite event can be executed in immediate coupling

14. REACH 269

mode, the execution of any transaction must be interrupted while event
composition occurs. This interruption lasts until it is clear that no rule
must be fired by a just-completed composite event. Detached independent
and detached parallel rules are executed in separate child processes. When-
ever the transaction manager raises the End-Of-Transaction (EOT) event,
i.e., wants to begin the commit process, the EOT event is signaled to the
non-immediate manager to trigger the deferred rules. After execution of the
deferred rules and completion of the commit process, the non-immediate
manager is invoked once more by passing it the commit event to fire the
detached sequential rules.

A separate temporal event detector handles the detection of temporal
events and the firing of the corresponding rules and passing of temporal
events to the event composers.

In REACH, the rules that are executed in immediate or in deferred cou-
pling mode are executed as closed nested transactions. The subtransactions
commit through the top with the commit and abort dependencies of Moss-
style closed nested transactions [Mos85]. Subtransactions execute sequen-
tially. When rules are executed in a detached coupling mode the possibility
of a locking conflict between the spawning transaction and the rule trans-
action exists. In particular, if the rule is executed in a detached parallel
mode that requires the spawning transaction to commit for the detached
rule to commit, hidden deadlocks are possible. Since the underlying Exodus
storage system doesn’t know how to handle rule transactions, this must be
solved at the REACH level.

Conflicts between the spawning transaction and a detached transaction
are solved in REACH through the introduction of the notion of strong and
weak transactions [Mar95]. Weak transactions are not allowed to wait for
a lock. They are aborted as soon as a conflict occurs. Strong transactions
are allowed to wait for resources and locks. Rule transactions are always
started as weak transactions and therefore cannot cause a deadlock before
finishing. However, they may be involved in a hidden deadlock where the
rule transaction has finished and is waiting for the spawning transaction
to commit. Since a rule transaction could have gained a lock on a resource
later needed by the spawning transaction which is waiting for the resource,
a hidden deadlock could occur. Since the underlying Exodus storage sys-
tem cannot handle this situation and recognize a rule transaction, REACH
solves the problem by timing out the rule transaction. Detached sequential
rules can be executed as strong transactions.

14.8.8 FEvents: Scoping, Composition, and Parameter Passing

Special attention was given to the correct scoping of events and to the com-
position of events relative to transaction boundaries. Rules triggered by a
single method event can be executed in any coupling mode. Rules fired by
a purely temporal event may be executed only as independent detached

270 J. Zimmermann and A.P. Buchmann

rules. If all the events that participate in a composite event originate in a
single transaction, all coupling modes are acceptable, but for the runtime
handling of parameters mentioned above, immediate coupling mode is dis-
allowed. If the events that make up a composite event originate in multiple
transactions, neither immediate nor deferred couplings are allowed since
no identification of the spawning transaction is possible. The other four
coupling modes are legal with the restriction that all transactions from
which primitive events originate must commit in the detached parallel and
sequential cases, and all must abort in the detached exclusive mode.

Events are consumed according to one of two consumption policies:
chronologically or most recent. In chronologic consumption, the first possi-
ble event of a type participates in a composition. Under a most recent policy
it is the latest occurrence of an event that participates in a composition.
Which policy is used depends on the semantics of an application.

One of the more difficult problems is the correct passing of parameters,
particularly the state of objects that must be acted upon. The detectors
that detect the events also are responsible for passing the appropriate pa-
rameters. These include the object reference to be acted upon, timestamp,
and the arguments that make up the signature of the method. Correct
parameter passing depends on the transaction execution model.

The condition and action parts of a rule are mapped as ordinary func-
tions that may have parameters of various types. In the case of a method
event the parameters are, in addition to the timestamp, a reference to the
object on which the method was invoked, all the arguments of the method
invocation, and in the case of an after-event, the return value. Pointer vari-
ables are always valid for the case of immediate execution. For deferred and
detached execution, the pointers may not be valid at the time the condition
or action is executed, and dereferencing of the pointer may cause a runtime
error. Therefore, in any non-immediate case, the referenced values must be
saved. This leads to a copy semantic for parameters that goes beyond the
copying of single values. This copy semantic must also be used for event
composition since the events that participate in the composition may be
raised separately and the composite event is raised at a different time than
the component events.

The goal in parameter passing is to support as many data types as possi-
ble (ideally all the C++ data types), produce as little overhead as possible
at runtime, and provide a simple interface to the rule compiler. These three
goals are contradictory and require a compromise. The compromise imple-
mented in REACH consists in supporting simple values (integers, enumer-
ated types, floats, and single characters), pointers to simple values, strings,
and persistent objects. Parameters are stored in an object called a non-
immediate parameter object that consists of a parameter bag and a pointer
array indicating the position of the parameter in the bag.

14. REACH 271

Power Plant

upd, .
- - E—a\te\oil temp,

T~ RN reduce update e
Update =5 - . _ RPM ressUre
€ Waterf,y,~ ~~ 7 Turbine [< -~ A
- - - v /
A check -7 /
- - ’ e
- - /Q@%&e
T ek @/ OQ@9 isa
Turbine | 7 %tfH
Z‘;iry K ABB update cpar : o
. 4 weeks waterflow < rigger

FIGURE 14.3. An OMT+ diagram.

14.4 REACH Environment and Tools

Application developers will use active DBMS technology only if the active
DBMS’s offer a clean interface and a set of support tools. Since REACH was
conceived as a testbed for application development, emphasis was placed
on integrating a set of tools [ZBB196] into the REACH platform. The three
main objectives were to provide

e a well-understood design methodology for rules in an active DBMS,
e a user-friendly interface, and

e 3 toolset to manage and maintain the rules and events.

14.4.1 Modeling Rules with OMT+

Rather than inventing yet another design methodology, we considered it
more appropriate to extend a well-known and widely used methodology
with a rule component. Therefore, OMT [RBP191] was extended with the
concept of ECA rules, resulting in OMT+ [ZBB*96]. This methodology
guarantees an integral approach to modelling objects and rules while min-
imizing the effort required on the part of the database and application
designers to learn new concepts. Figure 14.3 shows an OMT+ diagram.

A rule in an active OODBMS can be viewed as an n-ary relationship
between the objects in the event part and those in the action part. The
condition part is a constraint. Hence, OMT+ introduces only the notion
of a rule (represented as an oval) and a triggering relationship between
the classes. The input slots of a rule represent the (composite) events that
trigger the rule, and the output slots refer to the effects resulting from the

272 J. Zimmermann and A.P. Buchmann

rule execution. These output slots refer to methods invoked for other object
classes, and the name of the method appears next to the edge connecting
the rule to the object that is invoked. Every rule must have at least one
input slot, but there may be rules without an output slot if the rule does not
invoke a method. If the input to a rule is a method event, it will originate in
another class represented by a box. However, events may also be temporal
events or system events, in which case the triggering event is not connected
to any application class.

14.4.2 Rule Language REAL

OMT+ serves as the starting point for rule definition in REAL, the rule
language of REACH. REAL treats a rule as an atomic unit with the re-
spective clauses for event, condition, and action. Below, we illustrate a rule

from a demonstration scenario of a power plant that was implemented in
REACH:

#include "Reactor.hh"
rule /powerplant/reactor/r1 {

prio 5
decl Riverx* river;
int level;

Reactor* reactor named "BlockA";
event after river->updateWaterLevel(level);
cond imm level < 3 &&
river->getTEMP() > 24.5 &&
reactor->getHeatOutput() > 1000000;
action imm reactor->reducePlannedPower(0.05);

};

The object for which the method was invoked and all the arguments
of the method call are passed. Therefore, these parameters are declared
in the decl clause, and their types have to be provided in C++ include
files. For objects that are not directly referenced in the event clause to be
accessible in the condition and/or action part of the rule (e.g., reactor
in our example), they must be uniquely identifiable. REAL requires these
objects to be root objects (with a unique name) in the database system.
The example above also shows the declaration of the priority of the rule and
the individual coupling modes between event and condition and condition
and action.

REAL offers a structured name space modeled along the lines of the
UNIX directory structure. This is an advantage when dealing with applica-
tions that may have hundreds of rules. In such a case, it becomes difficult to
assign manageable, self-explaining names to the rules, and it is even harder
to find the rules. In a structured name space, the rules that belong to the

14. REACH 273

same context can be stored in the same rule directory that is reachable
through a hierarchical path. Since rules may not always be attached to
exactly one directory, REACH offers the possibility of creating UNIX-like
links to create multiple paths to a rule.

14.4.8 Administration Tools

REACH provides a command line interface for managing rule directories.
These commands are styled in analogy with their counterparts in UNIX,
and include commands for rule manipulation, such as copying, enabling,
disabling, changing protection mode, etc.; commands for rule inspection,
such as listing, displaying, or plotting; commands for handling of include
files and paths, such as appending or removing files and paths; and com-
mands for handling events.

A rather useful tool is the graphical rule browser that displays the whole
directory tree or it can be qualified to display only parts of the directory
tree. Through clicking on the corresponding rule name, this can be dis-
played in detail.

In the same graphical manner, a static analysis of the triggering graph
can be displayed. The triggering graph is a pessimistic approach that con-
siders potential cycles of rule firings based on the methods invoked in the
action part of a rule and the events that trigger the rules defined in the
system. REACH exploits the fact that all the necessary information is avail-
able explicitly in the event detectors which know which rules are fired by an
event. By extracting the method calls from the action part and the corre-
sponding pointers from event detector to the fired rules, one can construct
the triggering graph.

Two additional tools that have proven quite useful deserve mention: the
trace mode and the event history browser. The static information provided
by the triggering graph is not very helpful in understanding the dynamics
of applications when rules are fired. The trace mode allows the application
designer to step through the execution of rules for debugging purposes.
However, since tracing is quite expensive, two modes were implemented
with macros: a tracing and debugging mode for developing applications,
and an optimized mode without tracing that runs up to twenty times faster.
The event history browser is a useful support in tracking errors or unex-
pected system behavior and allows the system administrator or application
developer to retrace the history of events and the rules that were fired by
them.

274 J. Zimmermann and A.P. Buchmann
14.5 Summary of Features

The features of the REACH system can be organized according to the pa-
rameters outlined in Chapter 1, and are shown in the following tables:

Knowledge Model:

Event Source Structure Operation, Transaction,
Clock, Behavior Invocation
Granularity Member, Subset, Set
Type Primitive, Composite
Role Mandatory
Condition | Role Optional
Context Bindg, DB, DBc, DB4
Action Options Structure Operation, Behavior
Invocation, Abort, Do Instead,
Inform
Context BiIldE7 DBE'7 Bindc, DBA

Execution Model:

Condition-Mode Immediate, Deferred, Detached
Action-Mode Immediate, Deferred, Detached
Transition granularity | Tuple

Net-effect policy No

Cycle policy Recursive, Iterative

Priorities Numerical

Scheduling All Sequential

Error handling Abort, Contingency

Management Model:

Description | Programming Language (00)
Operations Activate, Deactivate
Adaptability | Runtime (limited)

Data Model | Object-Oriented

14.6 Conclusion

A prototype of REACH with a demonstration application showing the con-
trol of a small subsection of a powerplant was demonstrated during SIG-
MOD95, CeBIT96, and EDBT96. The development of even such a small
application illustrated many of the difficulties that will be faced until active

14. REACH 275

database systems mature. However, the small application scenario clearly
showed that the active database paradigm is well-suited to handling such
diverse applications requirements as those posed by plant control and work-
flow management. Both kinds of applications could be modeled within the
same system and could coexist. This indicates that the expressive power of
the events, the rule language, and the execution model are adequate.

The passing of parameters is a critical area both for the semantics as
well as the performance of REACH. Performance gains for non-immediate
rules and event composition are expected through further tuning of the
parameter-passing mechanism.

During the development phase of the application, the trace mode and the
event history were particularly useful. It was also during this phase that
extensive testing of the rule compiler took place and many modifications
had to be made.

The use of OpenOODB gave us an initial head start since we could
integrate the REACH functionality well into the overall concept. It was also
a great help to have a precompiler available that could be modified instead
of having to write one from scratch. It turned out to be less than ideal as
far as the concurrency control mechanism. Particularly problematic were
the Open OODB write-back mechanism of every object that was fetched in
a transaction, the duplication of shared objects if they are not root objects,
and the restriction to open only one database.

The basic ideas developed in REACH were used to expand the func-
tionality of the commercial middleware Persistence. This system offers a
C++ interface to relational databases. Active database functionality was
integrated into Persistence to provide an active object-oriented mediator
system for consistency enforcement in heterogeneous legacy systems.

Currently efforts are underway to implement the REACH ideas on top of
ObjectStore. We are convinced that the design principles described in this
chapter are the right approach. At the same time, we are humbled by the
detailed work that is still needed to make active OODBMS’s into robust
tools capable of exploiting the full potential of the technology.

14.7 Acknowledgments

A large project such as the REACH active OODBMS could not be carried
out without the help of many people. Special thanks are due to A. Deutsch,
who modified the precompiler, wrote the first event detector, and spent
many hours testing and debugging. Many students provided valuable input
and contributed to portions of REACH in their Diplom-thesis: G. Arens, C.
Tiirker, J. Marschner, W. Diirholt, T. Simon, and T. Kréhl. Other members
of the Group who contributed in early discussions are H. Branding and T.
Kudra8. J. Blakeley, S. Ford, C. Thompson, and D. Wells, all formerly at

276 J. Zimmermann and A.P. Buchmann

Texas Instruments, were instrumental in helping us to obtain OpenOODB.
Last but not least, the input from members of the ACT-NET research
network on active databases, funded by the European Union, was always
appreciated.

14.8 REFERENCES

[BBKZ92]

[BBKZ93]

[BZBWY5]

[CDRSS6]

[CKAK94]

[DBB+88]

[DBMSS]

[GD93a]

A .P. Buchmann, H. Branding, T. Kudraf}, and J. Zimmermann.
Reach: A Real-Time Active and Heterogeneous Mediator Sys-
tem. Bulletin of the TC on Database Engineering, 15, Decem-
ber 1992.

H. Branding, A.P. Buchmann, T. Kudraf}; and J. Zimmer-
mann. Rules in an Open System: The Reach Rule System.
In M. Williams N. Paton, editor, Rules in Database Systems,
Proc. 1st Intl. Workshop on Rules in Database Systems, Edin-
burgh, 1993.

A.P. Buchmann, J. Zimmermann, J. Blakeley, and D. Wells.
Building an Integrated Active OODBMS: Requirements, Archi-
tecture, and Design Decisions. In Proc. 11th Intl. Conference
on Data Engineering, Taipei, Taiwan, March 1995.

M.J. Carey, D.J. DeWitt, J.E. Richardson, and E.J. Shekita.
Object and File Management in the Exodus Extensible
Database System. In Proc. 12th VLDB, Kyoto, Japan, August
1986.

S. Chakravarthy, V. Krishnaprasad, E. Anwar, and S.-K. Kim.
Composite Events for Active Databases: Semantics, Contexts,
and Detection. In Proc. 20th Intl. Conf. on Very Large
Databases, Santiago, Chile, September 1994.

U. Dayal, B. Blaustein, A.P. Buchmann, S. Chakravarthy,
D. Goldhirsch, M. Hsu, R. Ladin, D. McCarthy, and A. Rosen-
thal. The Hipac Project: Combining Active Databases and
Timing Constraints. SIGMOD Record, 17(1), March 1988.

U. Dayal, A.P. Buchmann, and D. McCarthy. Rules Are Ob-
jects Too: A Knowledge Model for an Active Object-Oriented
Database System. In 2nd Intl. Workshop on Object-Oriented

Database Systems, Bad Miinster am Stein, Germany, Septem-
ber 1988.

S. Gatziu and K.R. Dittrich. Eine Ereignissprache fiir das
Aktive, Objektorientierte Datenbanksystem Samos. In Proc.
BTW, Braunschweig, Germany, 1993.

[GDY3b)]

[GDY4]

[HLMSS]

[Mar95]

[Mos85]

[RBP*91]

[WBT92]

[ZBB*96]

14. REACH 277

S. Gatziu and K.R. Dittrich. Events in an Active Object-
Oriented Database System. In M. Williams N. Paton, editor,
Rules in Database Systems, Proc. 1st Intl. Workshop on Rules
in Database Systems, Edinburgh, 1993.

S. Gatziu and K.R. Dittrich. Detecting Composite Events
in Active Database Systems Using Petri Nets. In Proc. th
Intl. Workshop on Research Issues in Data Engineering: Ac-
tive Database Systems (RIDE-ADS), Houston, TX, February
1994.

M. Hsu, R. Ladin, and D. McCarthy. An Execution Model
For Active Database Management Systems. In Proc. 3rd Intl.
Conf. on Data and Knowledge Bases, Jerusalem, June 1988.

J. Marschner. Non-Standard Transaktionsmanagement in inem
Aktiven Objektorientierten Datenbanksystem. Master’s thesis,
Dept. of Computer Science, Technical University Darmstadt,
1995.

E. Moss. Nested Transactions. MIT Press, Cambridge, MA,
1985.

J. Rumbaugh, M. Blaha, W. Permerlani, F. Eddy, and
W. Lorensen. Object-Oriented Modelling and Design. Prentice-
Hall, 1991.

D.L. Wells, J.A. Blakeley, and C.W. Thompson. Architecture
of an Open Object-Oriented Database Management System.
IEEE Computer, 25(10), October 1992.

J. Zimmermann, H. Branding, A.P. Buchmann, A. Deutsch,
and A. Geppert. Design, Implementation and Management of
Rules in an Active Database System. In Proc. DEXA, Septem-
ber 1996.

