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Architecture of Active
Database Systems

Alejandro P. Buchmann

ABSTRACT

The architecture of an active DBMS determines both its functionality and
the components that are required for its implementation. This chapter ad-
dresses first some issues that have an impact on the architecture of an
active database system, and presents the various architectural alternatives.
The basic functions of an ADBMS are identified and then related to the
architectural alternatives. This chapter discusses rule specification and reg-
istration, and rule execution. Special attention is devoted to the execution
of transactions and its relationship to the execution of ECA rules.

2.1 Introduction

The architecture of an active DBMS determines both its functionality and
the components that are required to realize it. Since an ADBMS by defini-
tion must provide the active capabilities in addition to full DBMS features,
it can be viewed as an extension of a passive DBMS. There are various
properties of the underlying DBMS and of the architectural strategy used
for implementing the active extensions that will have an impact on the func-
tionality and the performance of the active DBMS. The major dimensions
that need to be considered are:

e the degree of integration between the underlying DBMS and the ac-
tive capabilities,

e the system architecture of the underlying DBMS, and

o the data model of the DBMS and the programming language used
for the active extensions.

In this chapter we will briefly discuss the various architectural alter-
natives. We will then identify the basic functions and components of an
ADBMS and will relate them to the various architectural alternatives and
will point out the effect of an architecture on the implementation of a given
feature. We will address first the rule specification and registration func-
tionality and then the rule execution subsystem. A central aspect of rule
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execution is the integration of the active functionality with the transaction
manager of the underlying DBMS. Therefore, special attention is given to
the transaction model supported by the underlying DBMS and how the ex-
ecution of ECA rules is integrated with the execution of transactions. Since
existing products and prototypes of active systems are mostly centralized,
the discussion will concentrate on centralized active database systems.

2.2 Degree of Integration

An important dimension along which architectures can be distinguished
is the degree of integration between the underlying DBMS and the active
functionality. The two extremes along this line are a layered architecture
in which the active components of the ADBMS are built on top of the
existing DBMS in a user process, and a fully integrated architecture that
tightly couples the components providing the active features with the rest
of the DBMS. Depending on the degree of integration, some of the active
capabilities may not be implementable or may be implemented only in a
very inefficient manner.

2.2.1 Layered Architecture

Layered architectures are popular because they allow the implementation
of the active functionality on top of an existing system with little or no
modification to the underlying database management system. Event detec-
tion and rule execution is done separately from the underlying DBMS and
typically on the client-side in the user’s address space. Application pro-
grams are often preprocessed and modified in such a way that events can
be appropriately detected. Since communication between application and
DBMS is always via the client, it is relatively easy to generate the events on
the client-side when a method is executed. However, the server must com-
municate transaction events that are required by the active component.
Further, the server generally is not aware of the active component and
is not prepared to signal the necessary events. Most commercial DBMS’s
do not allow access to or direct communication with internal components
such as the transaction manager, the lock manager, and the access con-
trol module. In most cases the interfaces to these components are not laid
open. Some commercial systems go as far as isolating the user processes
in a proprietary programming environment curtailing the ability to make
system calls. In addition, some basic functions that are already performed
by the underlying DBMS, such as logging, must be reimplemented in the
user space. Other extensions, such as nested transactions, may not be im-
plementable in a layered architecture.

The advantage of low cost extensibility and the fact that the active ex-
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tensions can sometimes be used on different DBMS’s is balanced by the
limitation of functionality derived from the lack of open interfaces of the
underlying DBMS and its internal components, and a strong performance
penalty.

2.2.2  Integrated Architecture

In a fully integrated architecture, the active functionality is embedded in
the basic components of the DBMS. While some of the extensions may
be realized on the user side, others must be implemented by extending
the basic DBMS functionality. The advantages of a fully integrated archi-
tecture are most evident when dealing with the transaction manager, the
concurrency control and rollback mechanisms. Important portions of the
DBMS that must be adapted when extending a DBMS with active func-
tionality are the dispatch mechanism, the lock manager, and the commit
and abort processes. To modify these components it is necessary to have
access to the source code of the underlying DBMS. Unfortunately, sources
of full-fledged OODBMS’s are not readily available to research groups,
which has slowed progress in the development of active OODBMS’s. Ex-
tensions to commercial products have occurred mostly within companies or
through partnerships between a research group and a company. An exam-
ple of this route is the NAOS project and its cooperation with 02 [CCS94].
The use of available OODBMS research prototypes, such as Texas Instru-
ments” OpenOODB [WBT92], is a compromise. OpenOODB is built as a
client to the Exodus Storage Server [CDRS86]. While the source code for
both systems is made available to research groups, some of the problems
remain, since the OODBMS runs as a client to the Exodus server and mod-
ifications to the Exodus transaction manager are not trivial. Some of these
problems are discussed in the next section.

The advantage of fully integrating the active capabilities with the DBMS
lies both in the broader range of functionality that can be provided and in
the potential performance gains. The main drawback is the high entry price
when building from scratch or the lack of availability of a stable platform
to research groups.

2.3 Client-Server Architecture of the Underlying
DBMS

All active database systems we know of are implemented as extensions to
a DBMS based on the client-server principle.

Relational systems are usually implemented as fat servers, meaning that
event detection and trigger execution is essentially carried out on the server
side. The old and/or new states of the database on which a trigger operates
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are typically handled in the form of delta-relations. Because tuple identi-
fication in the relational model is done strictly by value, passing of tuples
as parameters is easy.

Object systems are typically distinguished based on their architecture
as page-server or object-server systems. The impact of underlying system
architecture can be seen clearly when we compare object-server and page-
server architectures for object-oriented DBMS'’s.

In a page-server architecture, the server manages I/0, page buffering,
and page locks. The data transfer unit between server and client is a page.
The client is responsible for unpacking the page and accessing individual
objects. This means that the server does not know how to interpret objects,
nor how to execute methods, and object-level locking is not provided by the
server. Therefore, most of the active functionality, such as event detection
and composition, must be realized on the client-side. On the other hand,
transaction control is clearly located on the server-side. Transaction commit
and abort is controlled by the server and the corresponding transaction
events are generated by the server.

Object servers, on the other hand, unpack pages and do understand ob-
jects and can execute their methods. Their transport unit is an object. They
can provide either page or object-level locking, which simplifies the imple-
mentation of nested transactions. Because the server can execute methods,
method events may be generated both at the client-side and the server-side,
and event handling and rule execution could be executed on either side. In
general, more degrees of freedom exist in an object-server architecture.

Most active OODBMS prototypes we are aware of have been built as
extensions to a page-server architecture, either directly at the user level on
a commercial OODBMS or as extensions to a prototype OODBMS, such
as Texas Instruments’ OpenOODB. In the latter case, OpenOODB runs as
a client process of Exodus and an application must be bound to an instan-
tiation of OpenOODB. Different applications run on different instances of
OpenOODB, thus having different address spaces. This makes the passing
of object references impossible and requires that parameter passing be done
strictly by value across applications.

2.4 Data Model and Programming Language Issues

The main difference between the relational and an object model when deal-
ing with active capabilities lies in the variety of the events that may have to
be detected. In a relational system, the triggering events are usually limited
to insert, delete, and update operations with a few systems providing also
read access as an event. Therefore, event detection on these predefined op-
erations can be hard-wired into the system. In an object model in which the
user may define new classes with arbitrary methods, every method can rep-
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resent an event and must be detected. The problem is compounded because
of inheritance and the issues of encapsulation. Object-oriented systems and
their languages have more complex scoping rules than relational systems.

A major difference with respect to rule definition exists between inter-
preted and compiled languages. The addition of a new rule is trivial in
an interpreted environment, such as Smalltalk, but is a major problem in
a statically compiled environment, such as C++. In a C++ environment,
relinking is at least required, thus making fully dynamic addition of rules
almost impossible. We will pick up these issues as we discuss the individual
components of an ADBMS architecture.

2.5 Rule Specification and Registration

Any ADBMS needs some capability for describing rules and registering
them with the system. In this section we identify the basic functions in-
volved in the specification of rules and their registration with the system,
and discuss the components needed to implement this functionality. The
important issues from an architectural point of view are:

e the model and language used,

e the time and method of creation and modification of rules,

e the process of subscription to events, and

e the handling of privileges associated with the definition of rules.

We distinguish here between the functions and components that are part
of the DBMS and those that are part of design tools. A function that is
typically associated with aDB design tools is the testing for correctness of a
rule set, specifically static tests for termination and confluence. We do not
address those. However, since new rules that are added may conflict with
the current database state, we analyze the implications in the context of
rule creation and modification privileges. Some ADBMS’s include checking
capabilities that include the current state of the database as part of the
rule specification and registration subsystem.

Rule definition: ECA rules are defined through a rule specification lan-
guage that is an extension of the schema definition language. Depending
on the data model used, the rule specification language is typically an ex-
tension of SQL in the relational case or an extension to a (persistent) OO-
programming language. The corresponding precompiler must be provided.

In the case of SQL, ECA rules are specified as triggers that are defined
on a specific relation. Triggers are compiled with the corresponding relation
and registered in the catalogue. In an object model, the issues are more di-
verse. Depending on the actual object model used, it may either be possible
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to define rules as instances of a single class Rule, or the underlying model
may in effect require the creation of a single-instance class for each new
rule. The implication from an operational point of view will be that the
definition of a new ECA rule in the latter case requires the recompilation
of the schema. A commonly used subterfuge that has an impact on system
architecture is to break up a rule into simple C-functions that are placed
into libraries that only need to be relinked when new rules are added.

Rule registration: The registration of a new rule with the ADBMS also
implies a series of administrative processes for which the necessary infra-
structure must be provided. When a new rule is registered with the system,
the event definition must be extracted and the corresponding event han-
dler must be initialized. If the triggering event is an event already known
to the system, then the new rule must subscribe to that event. If the event
was not previously known to the ADBMS as a triggering event, the corre-
sponding mechanisms for event detection/composition must be initialized.
Initialization implies the creation of the necessary event detector/composer
structures as well as the necessary metadata entries about coupling-modes,
priorities, and activation/deactivation of rules. The initialization process
may require changes to the application, for example, to include new wrap-
pers, unless a very flexible approach for the detection of base events is
provided. This is discussed in more detail in section 6.1 on primitive event
detection.

Privileges: Last but not least are the architectural issues related to privi-
leges associated with rule creation and manipulation. As much as we would
like to view rules as any other object, they are metadata that can mod-
ify the behavior of other objects. This can range from the addition of
new behaviors (e.g., an alarm when a threshold value is exceeded), to
substitution of behaviors (e.g., by using the instead modifier provided by
several ADBMS’s), or (unauthorized) tracking of data usage, and activa-
tion/deactivation of consistency constraints. All these are effects that re-
quire careful consideration of how and to whom the privilege of rule creation
and modification is granted and what support structures must be provided
by the ADBMS to make rule definition safe. We illustrate this point by
analyzing the effects of creation, activation, and deactivation of constraints
modeled by ECA rules. If consistency constraints may be added dynami-
cally or consistency-related rules may be deactivated and reactivated, the
ADBMS must provide the mechanisms for validating existing data against
the new rule and taking the proper action if a conflict arises between exist-
ing data and the new rule. Such action could be the time-stamping of data
and rules to be able to reconstruct valid states, the elimination of instances
that do not conform to the new constraint, or the flagging of these instances
to request human intervention. Some of these actions have a major impact
upon system architecture.

Figure 2.1 shows schematically the architecture of the rule registration
portion of an ADBMS.
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FIGURE 2.1. Rule registration portion of an ADBMS architecture.

2.6 Rule Processing

Once rules have been defined and registered, the rule execution component
takes over. The rule execution component of an ADBMS is responsible for

e primitive event detection,

e composition of events,

signaling of events,

scheduling of rule execution,

e processing rules and synchronizing them with the execution of user
transactions, and

e recovery and garbage collection of events.
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Figure 2.2 shows schematically a basic architecture for the run time com-
ponent of an ADBMS. We will expand this basic architecture in the sequel.

Primitive event
[] detection _
"| Event
_ | composition
Absolute .
temporal event
detection

»| Rule scheduling

i

Rule execution

FIGURE 2.2. Schematic representation of the run time component architecture.

2.6.1 Primitive Event Detector Architecture

Detection of primitive events is a basic function in an ADBMS and must
be realized in a very efficient manner. How primitive event detection is
implemented will have an impact on the overall flexibility of an ADBMS
and on the rule registration process. Depending on the underlying model,
different primitive events are typically identified.

Relational systems generally handle the modification events insert, delete,
and update. Object models consider method invocation as the basic prim-
itive event. To account for the duration of a method execution, modifiers
before and after have been introduced, meaning that a rule subscribing to a
method event should execute either before the method is invoked or after it
returns. Depending on the particular object model used, state changes may
be considered. State change events are typically introduced when an object
model distinguishes between attributes that are modified through meth-
ods and values that are manipulated through generic accessor functions.
Temporal events may be absolute or relative. Absolute temporal events are
considered primitive events that are signaled by the system clock. Another
class of primitive events that deserves special attention from the archi-
tectural point of view comprises the transaction events, such as begin of
transaction, end of transaction, commit, and abort. Some ADBMS’s also
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provide explicit external events. We will discuss each class briefly for its
architectural implications.

A variety of mechanisms exist to detect primitive method events (we will
subsume insert, delete, and update events). Early implementations used an
existing DBMS-component, such as the lock manager, to detect update
events. The disadvantage of such an approach is that the signaling of a
primitive event is tied to another property of the data, such as persistence.
Monitoring of primitive events should be independent of other properties
of an object. Expressed differently, we want to be able to detect a primitive
event, such as a method event, independently of an object being persistent
or transient, being a system-object or a user-defined object. This property
is known as orthogonality of monitoring and type [BZBW95].

Among the mechanisms that have been proposed for method-event de-
tection, the most popular is method wrapping. Method wrapping consists
in bracketing a method with a begin-method and an end-method signal.
Depending on whether a rule exists that subscribes to this method event
(either before or after), the corresponding primitive method-event is sig-
naled. If no rule subscribed to this event, execution just continues. Figure
2.3 illustrates the principle of method wrapping. The dashed return line
indicates that control is immediately returned only if no rule will require
this event. If a rule has subscribed, the event is propagated and control is
returned after some additional processing.

m1l

Subscription .
after-method(ml) =™ checking Mon
before-method(m2) =,
m2

after-method(m2) ——

FIGURE 2.3. Method wrapping and subscription checking.

A basic difference from an architectural point of view is whether method
wrapping is done manually or by the rule preprocessor, and whether all
methods are wrapped or only those methods for which rules are known to
exist. Wrapping every method improves flexibility since a new rule that con-
sumes a given method event that has no previous subscription can be added
without having to wrap the corresponding method and recompiling the
object class definition. This approach was taken in [BZBW95, BDZH95].
However, this flexibility comes at a price. If every method is wrapped inde-
pendently of whether a rule subscribes to that event or not, some overhead
is paid before and after the execution of each rule to check if a subscrip-
tion exists. Hand-wrapping a method that should be monitored was used
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in [GD93, GGDY95]. A compromise solution adopted in [CKAK94, Cha97]
consists in distinguishing between passive objects, reactive objects, and
notifiable objects. The interface for reactive objects is modified and only
methods in reactive objects are wrapped.

Detection of state change events requires modification of the generic
accessor functions. The detection of transaction events requires redefinition
of the transaction bracketing and the commit and abort mechanism to
signal the corresponding event to the event handler.

Detection of external events is a somewhat controversial issue. While
external events are a needed extension in relational systems that other-
wise are restricted to insert, delete, update, and selection events, they are
easily represented in an object system through methods. In an object sys-
tem, anything that is known to the system is represented by an object, an
attribute, or a method. Therefore, external events can be easily handled
by the method-event detector. In relational systems, external events may
be represented explicitly in the database and signaled through an update
event. However, many systems, both relational and object-oriented, pro-
vide an additional, explicit signaling mechanism for external events that
interprets messages.

Absolute temporal events are signaled by the system clock. This mech-
anism is straightforward if all processes run on a single machine. However,
in a client-server environment, in which clients are running on different
machines, the options are either to have one master providing the absolute
temporal events, in which case different propagation delays are possible,
or have multiple clocks which may drift apart. For practical reasons, most
prototypes opt for one common clock with a coarse time granularity that
is assumed to be greater than the expected propagation delays.

2.6.2 Composite Event Detector Architecture

Event composition is an essential feature of any active system that provides
more than the basic active functionality. The basis of composite events is
the event algebra that is supported by the ADBMS. Event algebras may
vary in expressive power, but they all offer at the minimum the basic com-
position for sequences of events, disjunctions, and conjunctions. A popular
optimization is the closure operator, which accumulates repeated occur-
rences of the same event and triggers the corresponding rule only once.
Negation and other history operators are also common.

From an architectural point of view, the event composer consists of the
data structures needed to describe event types and their instantiations, and
the operations on these structures. The most popular structures are finite
state automata, variations of Petri-nets, and query-graphs. When finite
state automata are used, a separate automaton is constructed for each
event. A problem of finite state automata is their inability to associate
the state of objects. The same is true for basic Petri-nets and is corrected
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by colored Petri-nets, for example. In a Petri-net, a primitive event-token
enters the Petri-net and progresses through the net according to the state at
the decision points. In the case of query-graph-like composers, the structure
of the composite event is represented as a tree with the operators of the
algebra at the inner nodes. Primitive events and their parameters enter the
graph through the leaf nodes and the event composition is completed when
the root node is processed.

Garbage collection of semicomposed events is necessary, whenever the
validity interval of a composite event expires. This could be either at the
time a transaction commits or aborts, or after an interval defined by tem-
poral or other events has lapsed. Once the validity interval has expired,
we know that the missing primitive events that are required to complete a
composition will never occur. To prevent the system from being swamped
with semi-composed events, garbage collection is needed.

A major distinction in event composer architectures is whether the com-
posite event graph is kept as a single monolithic structure or as specialized
graphs, one for each event. There are advantages and disadvantages to each
approach, particularly with respect to parameter passing, distribution, and
garbage collection.

A single event graph minimizes redundancy. This is particularly the case
whenever the same primitive event is used by many composite events lim-
ited to a single address space. On the negative side, it can be a bottleneck.
It makes implementation in a distributed environment difficult and is very
time-consuming to garbage-collect, since an extensive graph needs to be
traversed and the semicomposed events need to be identified and removed.

Specialized event composers keep a separate event composition graph
for each composite event. This carries an overhead in passing the appropri-
ate parameters but makes distribution and garbage collection much easier.
Particularly garbage collection is more efficient, since the whole graph can
be eliminated once the validity interval has expired. Each specialized event
composer corresponds to a specialized event handler. Therefore, each event
handler has all the necessary information about the rules that need to be
triggered or what other event handlers need to be notified. This eliminates
the lookup process in a centralized rule manager.

2.6.3 FEvent Consumption and Logging

An important architectural issue related to event composition is the event
consumption policy that is enforced by the ADBMS. First, it must be clear
whether events may participate in multiple composite events or not. It is
generally accepted that events may participate in multiple compositions.
This requires either event replication or additional bookkeeping mecha-
nisms to decide when an event can be discarded.

When composing events, there exist multiple event consumption strate-
gies that are application-dependent. Events could actually be consumed
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in chronological order (typical for workflow applications), in a most recent
manner in which the latest event of a kind supersedes previous occurrences
(typical for control applications), continuous, in which windows are estab-
lished by two events and other events of interest in that window are de-
tected (typical for trend monitoring applications), or a cumulative policy,
in which all instances of the participating primitive events are accumulated
and consumed at once when the composition is completed [CKAK94].

To support any of these policies, events and their parameters must be
logged. Event logging can be a major performance factor in an ADBMS.
For every event of interest, i.e., an event that has at least one subscriber, its
occurrence must be recorded with a time stamp, the transaction in which
the event occurred (if it is an event that can be associated with a par-
ticular transaction), and the necessary parameters that must be passed.
Since events and their parameters may be used in a non immediate mode,
they must be recorded for later use. This means multiple write operations
to the log and a potential bottleneck. To avoid this hotspot, some sys-
tems use distributed logging with deferred consolidation of the partial logs
[BZBW95].

2.6.4 Guarded FEvents, Light-Weight Vs. Heavy- Weight
FEvents

An important design decision that is still debated concerns how much in-
formation should be attached to events and how much processing should
be done by the event detectors. One school of thought (represented, for
example, by the HiPAC project [DBM88]) states that events should be
as lightweight as possible, i.e., they should only signal that a rule is to
be processed and get out of the way. Any further testing as to whether
the action ought to be executed should be pushed into the condition part
of a rule. This has the advantage of not blocking further event detection,
and that the condition is processed as any other query. The other school
of thought (represented among others by the Ode project [GJS92]) states
that lightweight events cause too many rules to be triggered unnecessarily
just to detect in the condition evaluation part that no action is required.
Therefore, events are provided with additional conditions, so-called guards,
that allow the specification of rather complex conditions on the events. In
the extreme, such an approach would make the condition evaluation super-
fluous and revert to (complex) event-action rules. The implication is also
that the event handler must contain filtering mechanisms that otherwise
are provided by the query processor.
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2.6.5 Rule Scheduling

Once an event is raised, the rule(s) triggered by that event must be identi-
fied and scheduled for execution. The identification of the rule(s) that are
triggered by an event can be done either by a specialized event handler that
knows locally what rules are to be fired once the event has been raised, or
through the use of a separate registration mechanism and an additional
lookup. The rules that are fired are then scheduled and the requests for
their execution must be passed to the DBMS’s transaction manager. Con-
dition and action can either be processed together or separate.

Depending on the coupling mode specified and the origin and type of the
triggering event, a rule may either execute within the transaction in which
the triggering event was raised or outside the user transaction.

If the rule executes within the triggering transaction, it may either be
immediately after the event was raised, in which case the transaction’s ex-
ecution is halted until the rule completes execution (immediate coupling
mode), or at the end of the triggering transaction and before the trig-
gering transaction commits (deferred coupling mode). If a rule executes
outside the triggering transaction in a separate transaction, then it may
either begin in parallel and finish independently of the triggering transac-
tion (detached coupling mode), it may begin in parallel but wait for the
triggering transaction to commit before being allowed to commit (parallel
causally dependent coupling mode), it may have to wait until the triggering
transaction commits before being allowed to execute (sequential causally
dependent coupling mode), or it may not begin execution unless the trig-
gering transaction aborts (exclusive causally dependent coupling mode).

Rules triggered by absolute temporal events always execute in separate
transactions. Rules triggered by events that are composed from events orig-
inating in multiple transactions must execute as detached transactions. If
they execute in causally dependent detached mode, the causal dependence
exists with all transactions in which the component events were raised
[BZBW95].

Rule scheduling and execution is highly dependent on the DBMS’s trans-
action management and must be synchronized with the execution of user
transactions. How the user transactions and rule executions are synchro-
nized depends on the transaction model supported by the underlying DBMS,
the interfaces to the transaction manager provided by the underlying DBMS,
and the way the active database system takes advantage of the provided
facilities. We briefly review the alternatives.

2.6.6 Transaction Models

The two main alternatives when dealing with transaction models are flat
transactions and nested transactions.
Within both groups, special extensions are needed to properly execute
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rules.

Flat transactions are the transactions commonly supported by today’s
DBMS’s and need little further explanation. However, when building active
functionality on top of a flat transaction model, several limitations arise.
Flat transaction models support only a single transactional thread of con-
trol. Therefore, whenever a rule needs to be executed, it has to be done one
at a time without any parallelism. The transaction manager must provide a
transaction handle to the rule system. It must further signal the end of the
user transaction and transfer control to the rule manager and allow for the
execution of deferred rules before committing the transaction and releasing
the locks. No locks may be released prior to the execution of the deferred
rules. Since rules may require new locks during their execution, two-phase
locking would be violated otherwise. Flat transaction models typically do
not provide for spawning additional transactions. Extensions for spawned
detached transactions are straightforward, as long as no parameters are
passed. If parameters that refer to objects modified within the transaction
are passed to the spawned transaction, the isolation is compromised and
the spawned transaction may execute with dirty data. If extended with
the capability of spawning causally dependent transactions, the possibility
exists that the spawned transaction competes with the spawning transac-
tion for the same data, thus causing a deadlock. The transaction manager
must be modified in such a way that the spawned transaction is always de-
clared the victim when resolving a conflict. In [Mar95], these transactions
are introduced as weak transactions.

Nested transactions have been proposed to increase intra-transaction par-
allelism. Common to all nested transaction models is the fact that new
subtransactions can be spawned from within a transaction, and that the
related transactions are organized in the form of a transaction tree. In the
basic nested transaction model proposed in [Mos85], a nested subtransac-
tion is started explicitly by the parent transaction, which is suspended until
the nested transaction commits or aborts. Commitment of a subtransaction
is conditional and occurs through the top. If the top transaction aborts, the
whole transaction tree is aborted. In [HR93], a variation to the basic nested
transaction model is proposed. This model allows for exploitation of intra-
transaction parallelism through the introduction of downward inheritance
of locks. This mechanism modifies the visibility rules for nested transac-
tions and makes it possible for children to access the data manipulated by
the parent.

For parallel execution of rules in active databases under a variety of cou-
pling modes, a modified nested transaction model is presented in [DHL90].
The nested subtransactions of [Mos85] are used for the execution of imme-
diate rules. In addition, three more types of nested (sub)transactions are
defined. Deferred subtransactions are subtransactions whose execution is
explicitly delayed until the end of the user’s top transaction. If more than
one deferred subtransaction is spawned within a user’s transaction, they
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all execute in parallel at the end of the user’s transaction. If any of these
deferred subtransactions spawns itself another subtransaction, this is exe-
cuted immediately if the rule is to be executed in immediate mode or it is
deferred until all deferred transactions from the level above have finished.
Nested top-transactions are top transactions started from within another
transaction and are represented by their own tree. However, a nested top-
transaction has no privileges with respect to the spawning transaction,
i.e., it may not see any non-committed objects and is not automatically
aborted when the spawning transaction aborts. Causally-dependent-top-
transactions (CDtop) are spawned from within another transaction and
are like nested top-transactions that have their own transaction tree but
are commit-dependent on the parent. Aborting the spawning transaction
aborts the CD-top transaction. However, aborting the CD-top transaction
has no effect whatsoever on the spawning transaction. A combination of
this transaction model with downward inheritance of locks is a meaningful
extension.

2.6.7 Rule Execution

Rules that are executed in immediate coupling mode just cause the ex-
ecution of the user transaction to pause until the rule finishes and then
control is returned to the user transaction. For all rules that are executed
in a non-immediate coupling mode, the corresponding scheduler elaborates
a schedule that is then passed for processing. Depending on the correctness
criteria supported by the ADBMS, the transaction model provided and
the number of rule processing threads, a scheduler may either create an
ordering of the rules or allow for their parallel execution.

The execution of sets of rules triggered by the same event or sets of
rules that are to be executed in a deferred mode at the end of the transac-
tion requires either an ordering of the rules and their sequential execution
in priority order as an extension of the user transaction, or it requires
a nested transaction model to execute the rules as parallel subtransac-
tions. The nested transactions presently offered by commercial DBMS’s do
provide transaction hierarchies but with sequential execution of the sub-
transactions. Since none of the commercial DBMS’s offers parallel nested
transactions, they must be implemented as part of the active extensions.

Some aOODBMS prototypes [Cha97] implement nested transactions in
user space on top of the flat transaction model provided by the server. For
example, if the underlying page server offers only flat transactions and page
locks, it is possible to implement an additional object-locking mechanism in
the user address space and provide the visibility and local commit and abort
dependencies of the nested subtransactions proposed in [HR93]. However,
in case of failure, the whole user transaction must be rolled back by the
server.

Rules that execute in a detached mode as separate transactions can be
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scheduled like any other user transaction. However, a major problem arising
when executing transactions in any detached mode that allows for parallel
execution is the passing of the parameters. Quite often the parameters to
be passed include the state of the object that was just modified in the user
transaction. If the user transaction has not committed, the lock on the ob-
ject has not been released. Waiting for the commit of the user transaction
before the rule can execute precludes parallelism, but making dirty data
visible to other transactions reduces the isolation level. Some prototypes
have opted for implementing lock sharing mechanisms between the trigger-
ing and the triggered transaction. Others restrict the detached execution
of rules to those rules that do not share data between the triggering and
the triggered transaction.

The causally dependent coupling modes imply additional commit or
abort dependencies that are typically not supported by a DBMS’s transac-
tion manager. Therefore, the causally dependent coupling modes are often
not implementable in layered architectures in which the active capabilities
run completely at the user level or where modifications to the commit and
abort process are not possible.

Processing may be done either by a single rule processor or in paral-
lel among multiple rule processors. Most rule processors we are aware of
are implemented as user processes or threads within a user process in the
user’s address space. This may be acceptable for prototypes but poses risks
of interference in case of rule failure. Some systems [KRSR97] offer the pos-
sibility of dynamically assigning new threads for additional rule processors
or giving up rule processors when the load falls below a threshold.

2.7 Recovery

Recovery, i.e., the ability to restore the database to a consistent state in the
case of transaction or system failure, is one of the distinguishing features of
database management systems. Therefore, active databases must provide
the same resilience to failure.

The problem of recovery in active databases is more complex mainly
because of three reasons: some events may be non-recoverable, some ex-
ternal actions may be irreversible, and certain coupling modes may allow
transactions to commit ahead of the triggering transaction.

Closed nested transactions that always commit through the top are per-
fectly recoverable and do not require additional precautions. In general, to
guarantee recoverability, a transaction should not be allowed to commit
unless both its database updates and the events signaled by it are logged
on stable storage.

The exact meaning of recoverability of events is still an open research is-
sue and might have to be considered in the context of specific applications.
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Database events are always recoverable. Other events, such as temporal
events, may or may not be recoverable. The event log should contain explic-
itly all the relevant events, including temporal events, that either triggered
a rule or were part of an event composition. As a general rule it is stated in
[DHLI0] that events signaled by committed transactions and for which the
action was executed before the failure occurred should always be recovered.
Events that are signaled by committed transactions and whose action had
not completed before failing should only be signaled on reexecution if they
are recoverable.

Rules that were triggered and are scheduled for execution in a detached
mode must be guaranteed execution. An interesting situation arises when a
rule that is being executed in a causally dependent transaction does not ter-
minate because of a system failure during its execution while the spawning
transaction committed. The active DBMS must provide the mechanisms
to guarantee the execution of these rules, since the triggering transaction
already committed and the user cannot be aware of the failure of the trig-
gered transaction.

The problem of non-recoverable actions arises when the active database
system allows either detached transactions that may commit independently
of the spawning transaction, or when external actions that are irreversible
are carried out as actions of a rule. To deal with the latter situation,
[BBKZ93] introduced the detached sequential causally dependent coupling
mode, in which a triggered action may only begin execution once the trig-
gering transaction committed. Detached transactions that have no depen-
dencies upon the spawning transaction should be used only in those sit-
uations in which their execution can be tolerated independently of the
spawning transaction or where a compensating transaction can be defined.

Figure 2.4 puts the components of the rule processing subsystem together
and shows schematically their interplay.

2.8 Conclusion

In this chapter the major factors affecting the architecture of active DBMS’s
were outlined. These are the degree of integration between the active func-
tionality and the underlying DBMS, the architecture of the underlying
DBMS, and the data model and language of implementation used. We dis-
cussed the basic subsystems of the active component: the rule specification
and registration component, and the event detection and rule execution
component. For each component we analyzed its functionality and tried to
view it in the perspective of integration, and in terms of the limitations
imposed by the underlying DBMS and language of implementation.

As with any generic architecture, much detail had to be omitted. Details
about individual components can be found in the corresponding chapters
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FIGURE 2.4. Schematic representation of the rule execution subsystem architec-

ture.

that will treat each topic in depth. Details on the design decisions that were
made in specific systems can be found in the chapters describing each of
them. Hopefully this discussion served to set the stage for the more detailed
discussions to follow.
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