
SLOSL – A Modelling Language for Topologies
and Routing in Overlay Networks

Stefan Behnel
Databases and Distributed Systems Group,

Darmstadt University of Technology (TUD), Germany
behnel@dvs1.informatik.tu-darmstadt.de

Abstract— Overlay networks are a fascinating field in the
area of distributed systems. They combine challenges from self-
organisation to extreme scalability and provide an interesting
middleware layer for server-free Internet applications. The design
aspects of their implementations, however, remained largely
at the prototype level, which renders their integration and
deployment in real applications hard.

This paper describes an integrative, platform independent
design approach for overlay networks that models topologies as
data management systems. Local decisions about neighbours and
message forwarding are expressed in an SQL-like language. The
mapping to runnable implementations follows the Model Driven
Architecture approach.

I. INTRODUCTION

Recent years have seen a large body of research in de-
centralised, self-maintaining overlay networks like P-Grid [1],
Chord [2] or Pastry [3]. They form interesting building blocks
for server-free, Internet-scale applications.

Contrary to this expectation, current overlay implementa-
tions are built with incompatible, language specific frame-
works on top of low level networking abstractions. This
complicates their design and hinders the comparison and inte-
gration of different topologies. Apart from a recently proposed
API for the specific case of structured overlay networks [4],
there is little standardisation effort in the rest of the overlay
area. And a common API does by no means simplify the
design of the overlay implementation itself.

Currently, programmers who want to use overlays for their
applications must decide in advance, at a very early design
phase, which of the distinct overlay implementations they want
to use and must invest time to understand its specific usage.
This effectively prevents testing the final product with different
topologies or delivering versions with specialised overlays.
Therefore, the actual usefulness of overlays for application
design is currently very limited.

Throughout the large number of available systems, the
most common approach for implementing overlay networks
seems to be writing them from scratch, based on sockets or
networking frameworks. Even dedicated overlay frameworks,
like JXTA (http://www.jxta.org), have failed to reduce
the design effort. They make programmers write systems with
tens of thousands of code lines for an implementation that
remains closely tied to the framework.

A more recent approach, called Macedon [5], introduced
domain specific languages to this area. It focuses on network-

ing protocols, which are commonly specified in Event-Driven
State Machines. EDSMs are finite automata that interconnect
processing states by event triggered transitions. Macedon pro-
vides an EDSM language that is targeted at message exchange
and message handling in overlays. It hides trivial tasks like
message serialisation and triggers programmer provided code
blocks on incoming messages.

There are a number of problems that result from the
approach taken by Macedon. It is generally tied to the C++
language, which forces application designers into a specific
language environment. More importantly, it is designed en-
tirely as an EDSM language, which enforces code modularisa-
tion based on I/O events rather than component semantics. As
most EDSM frameworks, it even hides the graph that describes
the handling and chaining of events inside of hand-written
source code. This significantly complicates understanding the
architecture of the resulting implementations.

EDSM models are helpful for the parts of the implemen-
tation that actually deal with event handling. For the entire
system, however, the protocol design approach diverts the
attention of the designer from topological properties of the
overlay towards low-level tasks like message handling. It
becomes hard to understand and compare the actual features
of overlay systems without external, explicit descriptions of
the topology and the local decisions that were intended by the
specific implementation.

Another problem with protocol design is the low reusability
of source code. Code blocks are closely tied to specific
messages and not portable between different overlay types.
This prevents integration and multiplies the resource usage of a
single computer participating in multiple overlays, as different
protocols cannot easily share state or maintenance procedures
through components.

The sum of these problems calls for new abstractions in
the design of overlay systems. In 2005, two research groups
have independently discovered a relation between database
technology and overlay design. This lead to the development
of the domain specific languages SLOSL [6] and Overlog [7].
While Overlog is mainly concerned with recursive protocol
design in these systems, SLOSL integrates with a set of XML
languages named OverML (Overlay Modelling Language),
that form a Model Driven Architecture for the integrative
design of overlay software.

This paper builds upon previous publications by the same

http://www.jxta.org

author [8], [6]. It models overlay topologies and the local
decisions of their nodes as data management problems. Com-
bined with models for protocols and messages, this integrates
into a high-level approach to platform-independent overlay
modelling.

The remainder of this paper is structured as follows. Sec-
tion II presents the general requirements on overlay design
approaches and frameworks. Sections III and IV then present
abstractions that facilitate a higher level design of overlay
topologies and decoupled components. SLOSL and its appli-
cation to topology implementation and routing is presented
in sections V and VI. Sections VII and VIII describe the
proposed ways for generating optimised source code from
the semantically rich models and the current status of the
implementation.

II. REQUIREMENTS ON MODELS FOR OVERLAY
NETWORKS

The currently wide-spread practice leaves overlay designers
and overlay application developers alone with the problems
described in the introduction. These problems, however, allow
us to extract a number of requirements for more promising
overlay modelling approaches.

A. Domain-specific, high-level, platform-independent models

First of all, such an approach must provide simplified,
domain-specific models for overlay development. They must
allow the overlay designer to move away from reinventing
the wheel in low-level implementations and to focus on the
main features of the specific overlay. These are defined by
the overlay topology and the algorithms for local decisions in
routing and maintenance.

An important design factor is programming language inde-
pendence, including the choice of a suitable execution envi-
ronment. If the designer can start with abstract specifications
of the overlay, it becomes possible to implement the final
system in different environments without major redesigns.
This is vital for distributed systems that are expected to run
on diverse architectures, like large servers, standard PCs and
mobile devices.

Platform independence is also vital for the development
process. The later the decision about the applied environment
and language can be taken, the easier it becomes to base
the decision on those performance and design aspects that
ultimately prove to be most relevant.

It further allows using different environments for different
steps of the development process. Environments for rapid
prototyping may look very different from those enabling
high-performance execution. High-level, language independent
models and the resulting high-level design are crucial to
support this choice of environments.

B. Integration with custom software components

To integrate the high-level design with language specific
code, the abstraction requires a component model that makes
reactive components reusable.

1) Reusable components: Most importantly, software com-
ponents should be reusable in different implementations to
reduce the necessary amount of hand written source code.
Code reusability requires well-defined, generic interfaces be-
tween the high-level models and specialised components. If
components are written solely against the abstract models, they
can become part of a middleware tool set. This provides a
common base of pluggable components and further reduces
the effort necessary to design new overlays.

This obviously regards also the lower networking levels.
Serialising messages, sending and receiving them, is a basic
feature of any networking middleware. While a middleware
may support a diversity of serialisation formats (XML, XDR,
IIOP, custom binary, ...) as well as different point-to-point
networking protocols (such as TCP/IP, RTP or VPNs), it
should hide their deployment behind simple interfaces and
generic use patterns to make their usage a matter of selection
and configuration rather than programming.

2) Reactive components: As in any networking software,
the components of an overlay system are naturally reactive.
They respond to events such as incoming or locally generated
messages, time-outs and changes to the local model. The
model must therefore support the management of such events
and the coordination between different components.

This property is often implemented by means of Event-
Driven State Machines. Their event model is simple: messages
are locally received or produced and time-outs are triggered.
The system then dispatches these events to states according to
the available transitions. Some systems additionally support
processing chains that hand generated data objects from one
processing state to the next. The output of such an object
from a state becomes an additional event for the system. This
reduces the complexity of each state and moves more of the
control logic into the event model.

The expressiveness of the event model directly impacts the
complexity of its components. Domain specific, expressive
events become a key factor for the decoupling of generic,
reusable components. They help in lifting the implementation
dependency on specific environments and frameworks.

C. Integrative management of state and node data

A large part of an overlay implementation deals with the
relation of the local node to remote nodes. Overlay models
must provide support for managing this relation. This com-
prises handling the connections to neighbours in the topology,
the decision of adding them to the local view, removing them
or keeping fall-back candidates for failures. Nodes often have
to store further state about their neighbours, such as running
time-outs, measured latencies or active subscriptions. This
form of state keeping and decision making determines the
main characteristics of an overlay implementation.

To support taking local decisions about other nodes, the
model cannot restrict their representation to connections. It
must support the selection of neighbours and communication
partners based on various criteria, even if there is not currently
an open connection to them. It needs an abstraction for the

local decisions that current systems implement by hand in
platform specific source code. The cross-cutting ubiquity of
state management throughout current implementations is an
indicator for necessary support in the modelling process.

Moving the node data management into models allows
us to integrate the state handling in different overlays and
applications that run on a node. Supporting different topologies
obviously makes sense for debugging, testing and bench-
marking at design-time. However, it is just as useful at run-
time if an application has to adapt to diverse quality-of-
service requirements, such as different preferences regarding
reliability, throughput and latency. A given topology may excel
in one or the other and this specialisation allows it to provide
high performance while keeping a simple design. Supporting a
choice of topologies allows an application to provide optimised
solutions for different cases.

Such an integration obviously relies on the integration of
different overlay implementations to make their topologies
available to a single application. This is especially necessary
to avoid duplication in effort when maintaining multiple
topologies and switching between them. It is not efficient, for
example, to have an application maintain several overlays if
each of them independently sends pings to determine the avail-
ability of nodes1. Integrative approaches become crucial here.
They allow us to apply automated inter-overlay optimisation
techniques that reduce the accumulated maintenance overhead.

III. THE TOPOLOGY PERSPECTIVE ON OVERLAY
SOFTWARE

The main problem with current overlay frameworks is their
lack of support for integration and reusability. They focus
on the design of protocols and reactive components, but
fail to provide abstraction layers that simplify the reuse of
components in different systems. They also fail to support the
management of nodes and state. This leaves the developer with
the sole responsibility for the design and implementation of
mechanisms for overlay integration and efficient state sharing.
These mechanisms become source code level tasks that do not
match well with the design of an event-driven protocol archi-
tecture. The reduced readability of their non-componentized,
cross-cutting implementation hinders portability and reuse of
code.

The modelling approach described in this paper moves the
abstraction level for overlay systems towards the design of
local decisions about their topology. To achieve this, it has
to deal with four major functional levels in overlay software:
topology rules, maintenance, routing and adaptation.

A. Local topology rules

Local topology rules play the most important role in overlay
software which makes them a very interesting abstraction
level. The global topology of an overlay is established by a
distributed algorithm that each member node executes. The

1According to [9], PlanetLab applications (http://planet-lab.
org/), as an extreme example, generated a total of up to 1GB of ping traffic
per day in 2003.

topology rules on each node form the part that actually
implements this algorithm by accepting neighbour candidates
or objecting to them.

There are two sides to topology rules. Node selection
allows an application to show interest in certain nodes and
ignore others based on their status, attributes and capabilities.
Generally, applications are only interested in nodes that they
know (or assume) to be alive, usually based on the information
when the last message from them arrived. But not even all
locally known live nodes are interesting to the application that
can select nodes for communication based on quality of service
requirements. Furthermore, if a heterogeneous application uses
multiple overlays, its participants do not necessarily support
all running protocols. Each node must select the others only
into overlays that they support.

Where selection is the black-and-white decision of seeing
a node or not, node categorisation determines how nodes
are seen. Nearly all overlay networks know different kinds of
neighbours: close and far ones, fast and slow ones, parents
and children, super-nodes and peers, or nodes that store data
of type A and nodes that store data of type B. Node categori-
sation lets a node sort other nodes into different buckets (or
equivalence classes) to distinguish different types of equivalent
nodes. Common overlay tasks are then implemented on top of
the node categorisation.

It is a hard problem but also an interesting question to what
extent the process of inferring the global guarantees provided
by a topology from the local rules can be automated. In current
structured overlay networks, topology rules are stated apart
from the implementation as a local invariant whose global
properties are either proven by hand or found in experiments.

B. Topology maintenance

Topology maintenance is the perpetual process of repairing
the topology whenever it breaks the rules. Above all, this
means integrating new nodes (i.e. selecting and categorising
them) and replacing failed ones. The detection of a situation
that “breaks the rules” is obviously an event that must be ex-
tracted from the topology rules. Support for this functionality
is very limited among current overlay frameworks, despite its
obvious importance for the intended self-maintenance in these
systems.

C. Topology adaptation

Topology adaptation is the ability of a given overlay topol-
ogy to adapt to specific requirements. As opposed to the
error correction provided by topology maintenance, adaptation
handles the freedom of choice allowed by the topology rules.
The rules therefore draw the line between maintenance and
adaptation. Topology adaptation usually defines some kind of
metric for choosing new edges from a valid set of candidates.

Current overlays are designed with some kind of adaptation
in mind, whereas the available frameworks do not provide sup-
port for its implementation. What is needed here is a ranking
mechanism for connection candidates. Overlays usually aim to
provide an “efficient” topology. The term efficiency, however,

http://planet-lab.org/
http://planet-lab.org/

is always based on a specific choice of relevant metrics, such
as end-to-end hop-count or edge latency, but possibly also
the node degree or the expected quality of query results. The
respective metric determines the node ranking which in turn
parametrises the global properties of the topology.

D. Topological Routing

Routing is the local decision which of the neighbours a
message should be forwarded to. The aim is to deliver it to
the final destination (single-hop) or to bring it at least one step
closer (multi-hop). The routing algorithm exploits topology
rules and adaptation to determine the best next recipients. The
complete process of taking a forwarding decision is typically
executed in multiple inter-dependent steps. A part of this is the
decision if the local node is the destination of an incoming
message. The message is then either locally delivered to a
message receiver component or further treated to determine
the responsible neighbour.

IV. NODE VIEWS, THE SYSTEM MODEL

We propose to model overlay software as data management
systems by applying the well-known Model-View-Controller
pattern [10]. The model is an active local database on each
node, a central storage place for all data that a node knows
about remote nodes. Once the data is stored in a single
place, software components no longer have to care about any
data management themselves. They benefit from a locally
consistent data store and from notifications about changes.

The major characteristics of the overlay topology are then
defined in views of the database. They represent sets of nodes
that are of interest to the local node (such as its neighbours).
Different views provide different ways of selecting and cate-
gorising nodes, and different ways of adapting topologies. The
SLOSL view definition language allows their specification in a
platform-independent way.

The controllers are tiny EDSM states that operate on the
views. They are triggered by events like incoming or leaving
messages, timers or changes in the views and update the
database according to the view definitions. They are the
actual maintenance components that perform simple tasks like
updating single attributes of nodes when new data becomes
available or sending out messages to search new nodes that
match the current view definitions. Note that the controllers
do not aim to provide a global view for the local node. They

1: Components of the System Model

Node
database

Controllers

configure

update tr
ig

ge
r

View
definitions Views

Nodebase for define

Overlay Routing

Overlay Application

provides/activates uses

Messages

Messages

continuously update and repair the restricted and possibly
globally inconsistent local view. The node database decouples
them from other parts of the overlay software and the node
views provide them with simplified, decoupled layers and a
common interface to make them generic, reusable components
in frameworks.

Another very important part of the architecture is an expres-
sive event system for view events and messages. A notification
about changes in views is triggered whenever nodes enter or
leave a view, or when visible node attributes change. Views
filter notifications and software components only react to
events from the views that they are subscribed to.

Message handling components are still part of the overlay
specific implementation, but they now respond to expressive
events and use node views for their decisions. The OverML
model defines messages as hierarchical data structures and
expresses subscriptions in a subset of the XPath language
that is evaluated at compile time. It allows the developer
to subscribe components to specific headers and data fields
instead of monolithic messages. This reduces their dependency
on specific overlay protocols and helps in writing generic
components.

Database and views decouple the message handlers from the
maintenance components and simplify the design of both con-
siderably. Even more so, as a Node Views based architecture
can provide powerful operations like selecting topologies and
adaptation strategies with a single view selection command.
The abstract view definition becomes the central point of
control for the characteristics of the overlay.

V. SLOSL, THE VIEW DEFINITION LANGUAGE

OverML [8] is an integrated set of domain specific XML
specification languages for node attribute schemas, messages,
view definitions and event graphs. The view definitions for
topology rules and adaptation are expressed in SLOSL, the
SQL-Like Overlay Specification Language. The following is
a simple example, an advanced implementation of the Chord
graph [2].

CREATE VIEW c h o r d f i n g e r t a b l e
AS SELECT node . id , node . r i n g d i s t , b d i s t =node . r i n g d i s t−2i

FROM node db
WITH l o g k = l o g (|K |) , backups = 1
WHERE node . s u p p o r t s c h o r d = t rue AND node . a l i v e = t rue
HAVING node . r i n g d i s t in [2i , 2i+1)
FOREACH i IN (0 , l o g k)
RANKED l o w e s t (backups + i , node . m s e c l a t e n c y / node . r i n g d i s t)

The statements CREATE VIEW, SELECT, FROM and
WHERE behave as in SQL. The WHERE clause specifically
implements node selection based on node attributes. Note that
SLOSL is not concerned with the source of the information that
node attributes contain. This is left entirely to the controllers.
SLOSL only constrains and categorises the presentation of
locally available data. The remaining clauses do the following:

• WITH: This clause defines variables or options of this
view that can be set at instantiation time and changed at
run-time. Here, log k is a global constant for the life-time

of an overlay, while backups allows adding neighbour
redundancy at runtime.

• HAVING–FOREACH: This pair of clauses aggregates
the selected nodes into buckets to implement node cate-
gorisation. In the example, the (constant) node attribute
ring dist refers to the logical distance between the local
node and the remote node. The HAVING expression
states that it must lie within the given half-open interval
(excluding the highest value) that depends on the bucket
variable i. The FOREACH part defines the available node
buckets by declaring this bucket variable over a range
(or a list, database table, . . .) of values. It defines either
a single bucket of nodes, or a list, matrix, cube, etc. of
buckets. The structure is imposed by the occurrence of
zero or more FOREACH clauses, where each clause adds
a dimension. Nodes are selected into these buckets by the
(optional) HAVING expression. In the example, a Chord
node sorts remote nodes into ring intervals of increasing
size and distance that designate equivalent neighbours:
itself → 21 → 22 → 23 . . .
The example also shows a case where the SELECT clause
gives nodes a new attribute bdist representing their
position inside the bucket. Calculating attribute values is
particularly useful for HAVING expressions that allow a
node to appear in multiple buckets of the same view.

• RANKED: To support topology adaptation, the nodes
in the chord fingertable view are chosen by the
ranking function lowest as the (backups+ i) top node(s)
of each bucket that provide the lowest value for the given
expression. Rankings are often based on the network
latency, but any arithmetic expression based on node
attributes can be used. The expression in the example
implements a simple tradeoff between the network la-
tency and the distance travelled in the identifier space.
Other overlays may require more complex expressions
or user defined functions in the ranking expression. The
original Chord implementation selects exactly one node
based only on its ring distance.

Other topology specifications are similarly simple. For ex-
ample, Scribe [11] is a multicast scheme that was initially
implemented for the Pastry overlay [3]. It is, however, ap-
plicable to many other so-called key-based routing overlays,
including Chord. Scribe essentially exploits the key mapping
provided by the overlay network to determine a rendezvous
node for each multicast group. Subscriptions are sent towards
the rendezvous that serves as the root of a multicast tree.
They build up forwarding state along the way and publications
follow them backwards. Subscriptions and publications simply
follow the Chord routing policy towards the rendezvous node.
Once a match was found however, the publications must be
forwarded according to rules that are specific to Scribe.

SLOSL can model subscription state as a set of group
identifiers that it keeps for each neighbour. It then builds
up one view for each group topology that the local node
participates in. The view selects only those Chord fingers that

are subscribed for messages of this group. Publications are
simply broadcasted to all nodes in the view to forward them
along the multicast tree.

CREATE VIEW s c r i b e s u b s c r i b e d f i n g e r s
AS SELECT node . i d
FROM c h o r d f i n g e r t a b l e
WITH group
WHERE group in node . s u b s c r i b e d g r o u p s

VI. SLOSL ROUTING

The SLOSL view definitions allow for a simple extension
towards a complete routing strategy. Most overlay systems
base their routing decisions on more than one view. They often
use different views for semantically close and far neighbours,
such as the successor table and the finger table in Chord.

When a router looks for the next hop towards a given
destination, it simply tests views in a sensible order to see
if it knows equivalent nodes. This process exploits both the
node categorisation and ranking features of SLOSL as follows.

1) The SLOSL clauses HAVING–FOREACH are evaluated
against the (partially) known attributes of the destination
node to find the corresponding bucket. If that fails, the
complete process fails for this view.

2) On success, the RANKED clause determines the best
target for the bucket.

Note that the WHERE clause is not required to be evaluated. In
fact, there may not even be enough local information about the
destination node to do node selection. The node may only be
known from the destination field of the currently forwarded
message and thus may not appear in the view or even in
the database. To find the next hop that corresponds to the
destination, however, it is sufficient to find the category that
it would be in if it was known. The category determines the
local bucket of equivalent nodes.

Furthermore, there is nothing that prevents the router from
first querying the local database for a node that matches the
destination exactly. If it is found, its physical address can be
used to send the message directly. This can reduce the hop-
count and therefore the latency towards certain nodes that
are not regular neighbours of the local node in the overlay
topology.

So far, we only regarded unicast, i.e. forwarding the mes-
sage to exactly one neighbour. Some protocols will require
broadcast or multicast. In SLOSL overlays, the unicast, multi-
cast and broadcast schemes turn out to be identical, as SLOSL

already selects a set of nodes. Multicasting to a subset of
the neighbours is the same as broadcasting to a view that
selects them. Broadcasting to a view that selects a single
neighbour from the only corresponding bucket is the same as
unicasting to that neighbour. SLOSL routing therefore unifies
all three communication patterns into a general broadcast to
all targets that result from the evaluation of a view. Note that
the abstraction level does not prevent frameworks from using
network level broadcast or multicast as implementations.

Figure 2 shows a general decision graph for SLOSL routing.
A directed acyclic graph of this kind is all that is required to

handle locally

[f
or

 m
e?

]

send directly

first match
dest in DB?

first match

View 1

exclude last

fork

View 3

View 2

handle locally

fall−back

handle error or drop

2: General graph for SLOSL routing decisions

[for me?]

first match

finger
table

neighbour
sethandle error or drop

handle locally

3: Chord routing, modelled using SLOSL views

fully describe routing components. Within the graph, messages
arrive from the left and are routed as follows.

The first match edges simply traverse their ordered children
depth-first. If a target is found, the routing process terminates
and the message is forwarded to the target. This corresponds
to an ordered XOR evaluation.

The first child at the top-left has a predicate associated with
it that tests if the message is to be accepted locally. If this
predicate succeeds, the previous first match edge succeeds on
this transition, independent of the further evaluation down the
tree. Predicates are external to the graph and must be provided
by the overlay implementation. Depending on the topology,
however, the same decision may be available as a generic fall-
back if the attempts to route through the views fail. This is
shown at the bottom of the figure.

The fork edge splits up the routing process and continues it
in all of its child branches independently, thus yielding an OR
evaluation. In the graph shown in the figure this means that
the message is broadcasted to both the views 2 and 3 if no
matching target is found during the evaluation of view 1. If
neither of the three views yields a target, the routing procedure
backtracks.

The exclude last edge is used to tag a sub-tree. It prevents
the node that last forwarded the message from appearing in
any of the target sets that are found further down the decision
tree. This is commonly used to avoid duplicates in broadcast
or multicast forwarding, since the last hop has already received
the message. The feature obviously requires the previous hop
to be identifiable, which is the case in most physical networks.
If not available from the physical layer, identifiers can always
be explicitly provided within higher-level message headers.
When this edge is used in combination with a first match
edge, the last hop is always discarded before testing the target
set for success.

Typically, specific routing strategies have simpler graphs,
as they do not exploit all possibilities. The Chord routing
algorithm, for example, is specified as in figure 3. More

[am I rendezvous?]

[am I su
bscribed?]

exclude last

first matchfork

fork

subscribed
fingers

forward (Chord)

handle locally

4: Multicast routing over Chord, modelled using SLOSL views

complex routing strategies, like the routing of multicast mes-
sages over a Chord graph (similar to the approach taken in
Scribe [11]), become easily understandable when expressed
using SLOSL routing decision graphs. Figure 4 shows the
complete implementation for the forwarding of publications.
The rendezvous predicate is the same as the local delivery
decision in Chord. Mapping a routing graph to efficient source
code is a straight forward transformation.

VII. SOURCE CODE GENERATION FROM SLOSL

The execution of SLOSL statements is naturally event-driven.
When controllers update attributes and add or discard nodes,
the architecture must determine which views are affected and
reevaluate them. The naive way of independently evaluating
all of them can quickly become exhaustive, as it depends on
the number of locally known nodes, the deployed views and
their bucket structure.

SLOSL, however, is a declarative language that provides
high-level semantics. Its evaluation can be implemented in dif-
ferent ways, depending on the requirements. The redundancies
and particularities between the deployed view specifications
can be exploited to further integrate their evaluation and to
minimise the impact of changes in the database on event-
triggered components.

SLOSL provides two main features that help in integrating
views. First of all, it provides separate clauses for semanti-
cally different parts of a specification. This allows to extract
overlapping expressions that follow the same semantics and
to pre-calculate them for use in different views. Secondly, it
makes it easy to determine the dependencies between node
attributes and single clauses of views. They follow from the
attributes and bucket variables used in the expressions of
SLOSL statements and allow to select a minimum set of views
(and clauses) for evaluation when attributes change. Note also
that the schema part of OverML can declare these attributes
as identifiers or otherwise static data, which allows to drop
their update dependencies from the implementation.

As a result, the run-time performance of the locally running
software in a SLOSL implemented system is directly linked to
the preparation of an efficient multi-statement query execution
plan at compile time. A SLOSL optimiser will therefore start by
building a dependency graph like in figure 5a. It states which
attributes each view depends on. Only the dependent views
have to be re-evaluated on updates.

The next step is to open up the view declarations and to
split them into their different clauses. We can then build an
extended dependency graph for the clauses of each view, as
in figure 5b. As in the previous examples, different clauses

DB Node

Attribute 4

Attribute 3

Attribute 2

Attribute 1

. . .

. . .

View 2

View 3

View 1

(a) Attribute dependencies

DB Node

Attribute 4

Attribute 3

Attribute 2

Attribute 1

. . .

. . .

View 1
WHERE

HAVING

RANKED

FOREACH

WITH

(b) Dependencies between clauses

5: Example dependency graphs for attributes and clauses

do not necessarily depend on the same attributes. If an
attribute changes, it can therefore not affect independent
clauses. However, the clauses may also provide their own inter-
dependencies. While the WHERE clause can only depend on
the parents of the view, the RANKED expression may depend
on bucket variables, i.e. the FOREACH and HAVING clauses.
The dependency graph is therefore needed to determine an
efficient execution plan.

For example, a change to attribute 1 would enforce a
reevaluation of the WHERE clause for the respective node.
If that succeeds, evaluating the HAVING–FOREACH clauses
will tell us into which buckets the node belongs so that we can
re-run the ranking only for these. Storing the information if a
node is already part of a view or caching the previous result of
the boolean WHERE expression can even prevent the further
view evaluation entirely if the result of the WHERE clause
stays unchanged. Similarly, a change to the second attribute
enforces the evaluation of the RANKED expression if (and
only if) the WHERE clause succeeds.

Independent expressions (even partial expressions) become
candidates for pre-evaluation. Their results can be stored in
the database as so-called dependent attributes. For example,
the presented Chord statement allows for pre-evaluation of the
ranking expression and the WHERE clause.

In SLOSL implemented overlay software, the detailedness of
the dependency graph and the application of possible optimi-
sations are the two main factors for the efficient execution
of local decisions. The best strategies can be determined at
compile time or deployment time, so that the overhead of
finding them does not effect the run time performance. SLOSL

optimisers can generate optimal evaluation plans for each
specific update event in the model and source code generators
can build efficient execution paths from each of them.

Different frameworks can take their place within the range
of optimisations between additional storage for pre-calculated
results, hashing, indexing and linear scans. They can trade
the compile time overhead against the complexity and per-
formance of the resulting implementation. It is an important
achievement of the SLOSL language to move these trade-offs
into configurations and parametrisations of frameworks and
translators, away from source code implementations of overlay
systems. Profiling a specific overlay implementation can yield
new platform independent optimisations that all other SLOSL

implemented overlays can immediately benefit from.

VIII. IMPLEMENTATION, CURRENT AND FUTURE WORK

A major part of previous work went into the implementation
of a graphical overlay design tool, named the SLOSL Overlay
Workbench. The screen-shots in figure 6 show the interfaces
for the different languages of OverML [8]. They support
the semantically integrated specification of node attributes,
messages, SLOSL statements and event flow graphs. The work-
bench exports platform independent XML descriptions of the
designed overlay, which can be passed into translators and
source code generators. The development of the workbench
is now continued as an Open Source project at the Berlios
developer site2.

Current work is mainly guided towards the generation of ef-
ficient platform specific models and source code from OverML
specifications, as well as run-time configurable component
systems. This is joint work with the Reflective Middleware
Group at the University of Lancaster.

For the future, we hope for diverse implementations of
OverML compatible frameworks as well as mappings to
existing frameworks. The high abstraction level easily allows
specialised environments for simulation and analysis, testing
and debugging, and different deployment scenarios – without
changes to the overlay specification.

IX. CONCLUSION

This paper presented a platform-independent modelling
technique for local decisions about topologies and routing
in overlay networks. The specification of topology rules and
adaptation strategies is expressed in a domain specific lan-
guage called SLOSL. A simple extension through decision
graphs allow it to support complex overlay routing decisions.

The Node Views model enforces a modularisation of state
within the implementation. It decouples maintenance com-
ponents from routers and shares the state between different
components and overlays. It further replaces the monolithic
message handlers in current implementations by control com-
ponents that respond to expressive, well defined events based
on structured messages and changes in the local view. This
reduces their dependency on specific overlays and allows for
more generic, pluggable components in frameworks that can
be shared between different overlay implementations.

The general approach of modelling local decisions in dis-
tributed systems as high-level data management problems

2http://developer.berlios.de/projects/slow/

http://developer.berlios.de/projects/slow/

opens up a very interesting field of research. The proposed
Model Driven Architecture combines challenges from the
areas of distributed systems, databases, modelling and software
engineering.

REFERENCES

[1] Aberer, K.: P-Grid: A Self-Organizing access structure for P2P infor-
mation systems. In: Proc. of the Sixth Int. Conference on Cooperative
Information Systems (CoopIS 2001), Trento, Italy. (2001)

[2] Stoica, I., Morris, R., Karger, D., Kaashoek, F., Balakrishnan, H.: Chord:
A scalable peer-to-peer lookup service for internet applications. In: Proc.
of the 2001 ACM SIGCOMM Conference, San Diego, CA, USA (2001)

[3] Rowstron, A., Druschel, P.: Pastry: Scalable, decentralized object
location, and routing for large-scale Peer-to-Peer systems. In: Proc.
of the Int. Middleware Conference (Middleware2001). (2001)

[4] Dabek, F., Zhao, B., Druschel, P., Stoica, I.: Towards a common API
for structured peer-to-peer overlays. In: Proc. of the 2nd International
Workshop on Peer-to-Peer Systems (IPTPS03), Berkeley, CA, USA
(2003)

[5] Rodriguez, A., Killian, C., Bhat, S., Kostić, D., Vahdat, A.: MACEDON:
Methodology for automatically creating, evaluating, and designing over-
lay networks. In: Proc. of the USENIX/ACM Symposium on Networked
Systems Design and Implementation (NSDI2004), San Francisco, CA,
USA (2004)

[6] ANONYMISED: Overlay Networks – Implementation by Specification.
In: Proc. of the Int. Middleware Conference (Middleware2005), Greno-
ble, France (2005)

[7] Loo, B.T., Hellerstein, J.M., Stoica, I., Ramakrishnan, R.: Declarative
routing: Extensible routing with declarative queries. In: Proc. of the
2005 ACM SIGCOMM Conference, Philadelphia, PA, USA (2005)

[8] ANONYMISED: Models and Languages for Overlay Networks. In:
Proc. of the 3rd Int. VLDB Workshop on Databases, Information
Systems and Peer-to-Peer Computing (DBISP2P 2005), Trondheim,
Norway (2005)

[9] Nakao, A., Peterson, L., Bavier, A.: A routing underlay for overlay net-
works. In: Proc. of the 2003 ACM SIGCOMM Conference, Karlsruhe,
Germany (2003)

[10] Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M.:
Pattern-Oriented Software Architecture: A System of Patterns. John
Wiley & Sons (1996)

[11] Rowstron, A., Kermarrec, A.M., Castro, M., Druschel, P.: SCRIBE: The
design of a large-scale event notification infrastructure. In Crowcroft,
J., Hofmann, M., eds.: Proc. of the 3rd Int. Workshop on Networked
Group Communications (NGC’01), London, UK (2001)

Attributes and Messages

Event flows

SLOSL visualisation

6: The SLOSL Overlay Workbench

	I Introduction
	II Requirements on Models for Overlay Networks
	II-A Domain-specific, high-level, platform-independent models
	II-B Integration with custom software components
	II-B.1 Reusable components
	II-B.2 Reactive components

	II-C Integrative management of state and node data

	III The Topology Perspective on Overlay Software
	III-A Local topology rules
	III-B Topology maintenance
	III-C Topology adaptation
	III-D Topological Routing

	IV Node Views, the System Model
	V S[2]LOSL, the View Definition Language
	VI SLOSL routing
	VII Source Code Generation from S[2]LOSL
	VIII Implementation, current and future work
	IX Conclusion
	References

