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Abstract. Implementing overlay software is non-trivial and time-consu-
ming. Current projects build overlays or intermediate frameworks on top
of low-level networking abstractions. This leads to far reaching incompat-
ibilities between overlay implementations, tight coupling to frameworks
and limited adaptability to different deployment environments.
We present a new approach to rapid overlay implementation that com-
bines a modelling framework for overlay design with a dynamic com-
ponent architecture for run-time adaptation. It is the first architecture
in the overlay area that tackles the complete design process from mod-
elling, through code generation and implementation down to adaptive
deployment. To demonstrate the effectiveness of this architecture, we
describe the step-by-step procedure of designing an overlay and deploy-
ing it within an adaptive middleware framework.

1 Introduction

Recent years have seen a large body of research in decentralised, self-maintaining
overlay networks like Chord [1], ODRI [2] or Gia [3]. They are commonly re-
garded as building blocks for Internet-scale distributed applications. Current
overlay implementations are built with incompatible, language specific frame-
works on top of low level networking abstractions. This complicates their design
and hinders the comparison and integration of different topologies. Apart from a
recently proposed API for the specific use case of structured overlay networks [4],
there is little standardisation effort in the rest of the overlay area. And a common
API by no means simplifies the design of the overlay implementation itself.

Currently, programmers who want to use overlays for their applications must
decide in advance, at a very early design phase, which of the distinct overlay im-
plementations they want to use and must invest time to understand its specific
usage. This effectively prohibits testing the final product with different topologies
or delivering versions with specialised overlays. There is no support for deploy-
ment time or run time adaptation to changing environments or quality-of-service
requirements. Consequently, the actual usefulness of overlays for application de-
sign is currently very limited.



This exposes a clear requirement for the high-level specification, development
and automated deployment of overlay networks. In this paper, we investigate
a specific case of this. Gridkit [5] is a middleware framework that underpins
different middleware services: event notification, group communication, media
streaming, etc. with an array of overlay network types; this is because the de-
ployment of these services can be across highly diverse environments, and hence
they require different properties from an overlay network, e.g. in terms of QoS at-
tributes like robustness, scalability, ability to handle particular traffic patterns,
etc. Hence, Gridkit developers need to rapidly generate and evaluate overlays
that will best support particular middleware configurations; for example, which
overlay will best support multicast in an ad-hoc network; and which will best
support large-scale data storage in the Internet.

Therefore, this paper investigates a high-level specification-to-deployment ar-
chitecture for overlay networks. It aims to provide developers with clean models
for overlay design, implementation support using a model driven approach, and
run-time deployment and dynamic adaptation using a component-based infra-
structure. To evaluate our solution, we document an example case study which
illustrates how a complex overlay implementation for the Gridkit middleware is
specified, developed and deployed by our architecture. We chose to implement
the Scribe [6] multicast tree atop the Chord [1] key-based routing overlay.

In the remainder of this paper, we first examine in section 2 the highly
complementary work effected by two research groups at Lancaster University and
the University of Darmstadt; namely, the Gridkit middleware and the OverML
overlay specification tools respectively. In section 3, we then present OverGrid, an
architecture that completes the edit-compile-deploy loop for developing overlays
that can underpin middleware services. Then in section 4, we exemplify the
development of a particular overlay. Finally, in section 5, we describe related
work in this area, and draw conclusions in section 6.

2 Background on Gridkit and OverML

2.1 Gridkit

Motivation for Overlay-based Middleware. Gridkit3 [5] is a reflective mid-
dleware whose key aim is to support application development for pervasive com-
puting in the face of increasing diversity at both the infrastructure level and the
“middleware service” level. There is diversity in the types of devices (worksta-
tions, mobile devices, sensors, and clusters) and in the types of networks em-
ployed (e.g high-speed LAN, infrastructure-based wireless networks, and ad-hoc
wireless networks). Furthermore, the requirements of middleware have exploded
in the range of “middleware service types” that must be available to applica-
tion developers; beginning with basic point-to-point interactions (e.g. RPC and
SOAP messaging), the range of interaction paradigms is expanding to include

3 https://sourceforge.net/projects/gridkit/

https://sourceforge.net/projects/gridkit/
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Fig. 1: The per-node Gridkit software framework

(amongst others): reliable and unreliable multicast; work flow; media stream-
ing; publish-subscribe; tuple-space/ generative communication; and peer-to-peer
based resource location or file sharing.

Gridkit’s key approach to tackle these challenges is to deploy an extensive and
extensible set of middleware services over an infrastructure of overlay networks
that best support particular interaction types. For example, a publish-subscribe
service can be built atop a multicast network service e.g. an application-level
multicast overlay; and a tuple-space middleware can by layered atop a DHT
key-based routing overlay e.g. Chord. Notably, one of the key research ques-
tions posed by Gridkit is how to select appropriate overlay networks to support
individual middleware services.

Software Architecture. In terms of software architecture, the Gridkit frame-
work (illustrated in figure 1) is deployed on each participating node of a mid-
dleware service. In this paper, we concentrate on the bottom two parts: the
OpenCOM runtime and the overlays framework; for further information about
the higher level services, see [5].

At the bottom level, Gridkit employs a minimal runtime for the loading
and binding of lightweight software components, known as OpenCOM compo-
nents [7]. Components are language-independent encapsulated units of function-
ality and deployment that interact with other components exclusively through
interfaces and receptacles. Fundamentally, OpenCOM supports both reflection
and component frameworks. Reflection is used to reason about component config-
urations and to dynamically alter configurations at runtime. Component frame-
works are scoped compositions of components that accept plug-in components
that are validated according to component framework specific constraint rules
(cf. the overlay framework described later). A further key feature of the Open-
COM model is the support for component caplets. Essentially, these are separate
address spaces into which heterogeneous component types can be loaded. The
component runtime then manages the bindings between components in different
caplets. For example, applications and systems software can easily be composed
of Java, C++, python, and other OpenCOM components.

The layer above (the overlays framework) is a distributed framework for the
deployment of multiple overlay networks. In practice, this amounts to hosting,
in a set of distributed overlay framework instances, a set of per-overlay plug-
in overlay components (see figure 2). Each of these represents a single overlay
network node and consists of a control element that cooperates with its peers on
other hosts to build and maintain some virtual network topology, a forwarding
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element that appropriately routes messages over its virtual topology, and a state
element that contains per-overlay-node state such as a next-neighbours list.

The state component is specific to the overlay, and communicates through
an overlay-specific state interface. Whereas, the control component and forward-
ing component implement the common interfaces IControl and IForward listed
below. This is because overlays are plugged vertically into the framework using
just the control and forward interfaces; state communication is horizontal. The
control operations are: Create a specified overlay, Join an overlay or Leave an
overlay. The forward operations are: Send forwards messages to an identified des-
tination, Receive blocks awaiting messages from the overlay, and EventReceive
does the same in a non-blocking style.

1 interface IContro l {
2 ResultCode Create ( String netId , Object params ) ;
3 ResultCode Join ( String netId , Object params ) ;
4 ResultCode Leave ( String netId ) ;
5 }
6 interface IForward {
7 public byte [ ] Send ( String destID , byte [ ] msg , int param ) ;
8 public byte [ ] Receive ( String netId ) ;
9 public void EventReceive ( String netId , IDeliver evHandler ) ;

10 }

Cost of Developing Gridkit Overlays. Gridkit requires overlays that best
support a middleware service in the current environmental conditions; hence, a
key question to be answered is: which overlay meets the requirement set for this
environment? To best answer this, multiple overlay types should be developed
and tested to determine the right choice. Gridkit represents a considerable im-
provement on the basic approach of implementing overlays without a software
framework. So far, we have implemented 7 types of overlay networks; this work
has been carried out by 8 different developers. However, developing overlays in
the Gridkit style is still a relatively expensive, time-consuming task. The follow-
ing table illustrates both the length of code produced, and the time taken for each
overlay to be developed. It can be seen that a new individual implementation
will require a significant development expense.

Overlay Type Code Lines Man Days

Chord Key-based Routing [1] 790 42
Chord-based Distributed Hash Table [1] 570 35
Scribe[6] 880 42
Tree-Building Control Protocol [8] 7406 35
SCAMP [9] 1000 35
Minimum Spanning Tree 1300 20
Gossip-based Failure Monitor [10] 450 28



We further analysed the development process by examining the produced code,
and questioning the developers. This exercise discovered these key points:

• Developers easily followed the framework structure e.g. the IForward and
IControl interfaces i.e. the code behaved correctly for the create, join, leave,
send, and receive operations. Hence, third-party overlay implementations
were directly plugged in and out of the Gridkit framework.

• Developers sometimes had difficulty separating the overlay behaviour for
control, forward and state into distinct components. It was noticeable that
the code for these were often interleaved across the three components. Hence,
this hinders the ability for a third party to effectively perform fine-grained
dynamic reconfiguration e.g. replacement of the routing algorithm.

• The implementations of all the overlays are in Java. However, certain devices
e.g. sensor motes cannot run a Java virtual machine. Hence, overlays would
need to be reimplemented in order to operate on such devices. OpenCOM
supports this level of portability, however, at present this requires overlay
reimplementation and hence significant duplicated effort.

We therefore argue that the high-level development of portable overlay code is
needed to overcome the identified problems, and provide the following benefits:

• Reduced development time, will aid experimentation of component configu-
rations, leading to better supported middleware services.

• Generated overlay code will better follow the control-forward-state split,
avoiding the high level of programmer skill needed for this task. The resultant
implementation will then be easily reconfigurable by third parties.

• Portable overlay implementations can be generated for heterogeneous set-
tings, reducing the duplication of overlay implementations.

2.2 OverML

The Overlay Modelling Language OverML [11] is an integrated set of domain
specific XML specification languages for node attribute schemas, messages, view
definitions, routing decisions and event graphs. There are obviously many differ-
ent ways of specifying data schemas, messages and graphs. The main advantage
of OverML is the clear focus on the domain of overlay design and the integra-
tion between the languages. This allows OverML models to provide a rich set of
semantics for generative overlay implementation.

The architectural idea behind OverML is illustrated in figure 3. It clearly
borrows from the Model-View-Controller Pattern for software design. The locally
available knowledge about remote nodes (node attributes) and about the system
state is stored in a local node database. View definitions select nodes from it
according to topological rules and overlay adaptation strategies. The resulting
database views present these nodes to software components. Note that the local
database may well be incomplete or globally inconsistent. No guarantees are
made on the data storage and representation side of the architecture.
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Routers (or message forwarders) need these views for their forwarding de-
cisions, controllers use them for their maintenance decisions. Controllers are
event-triggered maintenance components that are integrated into the system
at deployment time or run time. OverML event graphs are used to specify the
connection between the events generated from views and messages, and the trig-
gered controller actions that update the database or request new data from
remote nodes.

The overlap between Gridkit and OverML should be clear from the figure.
Just like Gridkit, OverML targets a clean separation of control, forwarding and
state. However, its modelling approach allows it to impose further structure on
these components and to leave a major part of their implementation to code
generators and generic infrastructure components.

The OverML languages are briefly described here and in more detail in [11].
For brevity, NALA and HIMDEL , which specify node attributes and overlay mes-
sages respectively, are restricted to an exemplary description later on.

SLOSL, the SQL-Like Overlay Specification Language. The view definitions
for topology rules and adaptation are expressed in SLOSL. We present it here using
a simple example, an advanced implementation of the Chord graph [1].

1 CREATE VIEW c h o r d f i n g e r t a b l e

2 AS SELECT node . id , node . r ing d i s t , bd i s t=node . r ing d i s t−2i

3 FROM node db
4 WITH l o g k = log ( |K | ) , backups = 1
5 WHERE node . supports chord = true AND node . a l i v e = true
6 HAVING node . r i n g d i s t in [ 2i , 2i+1 )
7 FOREACH i IN (0 , l o g k )
8 RANKED lowest ( backups+i , node . msec latency / node . r i n g d i s t )

The first three clauses behave as in SQL. The WHERE clause specifically
selects nodes based on their attributes. Note that SLOSL is not concerned with
the source of the information that node attributes contain. This is left entirely to
the controllers. SLOSL only constrains and categorises the presentation of locally
available data. The remaining clauses do the following:

WITH This clause defines variables or options of this view that can be set
at instantiation time and changed at run-time. Here, log k is a global con-
stant for the life-time of an overlay, while backups allows adding neighbour
redundancy at runtime.



HAVING–FOREACH This pair of clauses aggregates the selected nodes into
buckets (or equivalence classes) to categorise them. In the example, the (con-
stant) node attribute ring dist refers to the logical distance between the lo-
cal node and the remote node. The HAVING expression states that it must
lie within the given half-open interval (excluding the highest value) that
depends on the bucket variable i. The FOREACH part defines the avail-
able node buckets by declaring this bucket variable over a range (or a list,
database table, . . . ) of values. It defines either a single bucket of nodes,
or a list, matrix, cube, etc. of buckets. The structure is imposed by the
occurrence of zero or more FOREACH clauses, where each clause adds a
dimension. Nodes are selected into these buckets by the (optional) HAVING
expression. In the example, a Chord node sorts remote nodes into ring in-
tervals of increasing size and distance that designate equivalent neighbours:
itself → 21 → 22 → 23 . . .

RANKED To support topological adaptation and optimisation, the nodes in
the chord fingertable view are chosen by the ranking function lowest as
the (backups + i) top node(s) of each bucket that provide the lowest value
for the given expression. Rankings are often based on the network latency,
but any arithmetic expression based on node attributes can be used. The ex-
pression in the example implements a simple tradeoff between the network
latency and the distance travelled in the identifier space. Other overlays may
require more complex expressions or user defined functions in the ranking ex-
pression. The original Chord implementation selects exactly one node based
only on its ring distance.

EDGAR, Extensible Decision Graphs for Adaptive Routing. EDGAR is a
small graph language that models routing decisions. As opposed to other routing
languages, it is not concerned with topology decisions. This is entirely left to
SLOSL views. EDGAR only combines views and conditions into a decision graph. A
general graph is shown in figure 4.

EDSL, the Event Driven State-machine Language. EDSL is the language
that connects the OverML specification with external controller components. It
defines the event flow in the overlay implementation, including the protocol and
maintenance strategies. EDSL is a special event-driven state machine language in
that it knows about the events specified by the other OverML languages. States
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are defined using a number of generic interfaces that handle incoming messages
or that respond to view events. Event flows are visually described as automata,
as shown in figure 5. An important feature of EDSL is the support for subgraphs.
This allows the creation of EDSL implemented complex components for database
update strategies and maintenance, and their integration in different designs.

The SLOSL Overlay Workbench. Major work went into the implementation of
a graphical overlay design tool, named the SLOSL Overlay Workbench. The screen-
shots in figure 5 give an idea about the interfaces for the different languages of
OverML [11]. They support the semantically integrated specification of node
attributes, messages, SLOSL view statements and component event flow graphs.
EDGAR routing support is currently worked on. The workbench exports platform
independent XML descriptions of the designed overlay, which can be passed into
translators and source code generators. The development of the workbench is
now continued as an Open Source project at the Berlios developer site:
http://developer.berlios.de/projects/slow/

Attributes and Messages Event flows

SLOSL view definitions SLOSL visualisation

Fig. 5: A Glipse at the SLOSL Overlay Workbench

http://developer.berlios.de/projects/slow/


3 OverGrid – the best of both worlds

OverML and Gridkit are very complementary approaches. OverML focuses on
the design aspects of overlay implementations and tries to provide platform-
independent models for model driven code generation. Gridkit, on the other
hand, provides a dynamic component environment and a layered software ar-
chitecture for run-time adaptation of overlay systems. Where OverML lacks the
support for modelling and designing the controllers in source-level detail, Grid-
kit provides a dynamic software component infrastructure and generic, layered
networking interfaces. Where Gridkit lacks the support for rapid overlay de-
velopment and code portability, OverML excels with its platform-independent
models and the generation of efficient, platform-specific source code.

Physical Networks
Ethernet, IP, WiFi, MANET, ...

Communication Abstractions
TCP, UDP, Broadcast, ...

DB

Overlay Networking Stack

Controllers

ForwardingSLOSL Views

Controllers

ForwardingSLOSL Views
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Fig. 6: The OverGrid Architecture

The resulting architecture is presented in figure 6. The vertical separation fol-
lows Gridkit’s interface layers. The horizontal separation represents the OverML
implemented overlay architecture. The main idea is to use OverML for the
platform-independent design of overlay topologies, routing strategies etc., and
then generate very specialised Gridkit components and glue code from the model.
We will now briefly overview major parts of the infrastructure that OverML re-
quires in Gridkit: database and views, control and forwarding components, and
event handling.

3.1 Database and SLOSL Views

OverGrid replaces individual overlay state components in Gridkit overlays with
a database exposing views to the control and forwarder components. Hence,
the number of executing components is reduced, and state is more easily shared
across overlay implementations. This obviously requires a platform-specific SLOSL

infrastructure in Gridkit, namely a database and a view evaluator. However,
both of them are partially generated from OverML. The node attribute language



(NALA) describes the data schema and SLOSL describes the evaluation of nodes
and node attributes into views (or sets of nodes). In its simplest incarnation, the
database can even be a hash table with node objects that are linearly scanned
during evaluation. View updates can then be triggered by updates to the node
objects. The trigger paths are entirely known through the dependencies of the
SLOSL statements, which allows efficient view update code to be generated.

The tradeoff between the complexity of the code generation process and that
of static components is up to the specific requirements of the target environment.
Gridkit can easily provide different implementations and select between them at
deployment time.

3.2 Control

Control components are generated mainly from the SLOSL and EDSL models.
The resulting code is wrapped in an OpenCOM component that implements
the IControl interface and interacts with the database through the modelled
views. Currently, Gridkit provides general, re-usable overlay control components
(termed generic controllers here), that provide repair and backup strategies for
overlays [12]. These can be remodelled using EDSL to make their internal struc-
ture visible and subject to adaptation in OverGrid.

3.3 Forwarding

Forwarding is entirely driven by code generation. EDGAR is easily mapped to
conditions in source code. SLOSL views, however, require the decision code to be
executed in a SLOSL infrastructure or by code generated for SLOSL. This is mainly
identical to normal SLOSL evaluation and thus integrates with the database im-
plementation. OverGrid wraps the generated code within an individual Open-
COM component that implements the IForward interface, and binds to the state
database.

3.4 Event Infrastructure

EDSL describes the component interaction in terms of events. Implementations
can follow two possible paths:

EDSM. The implementation uses a generic event-driven state machine imple-
mentation. This can either interpret the EDSL graph directly or can be spe-
cialised by OverML code generators. Such a specialisation can be the gener-
ation of unique event IDs that speed up the dispatching process. It can also
mean the generation of specific event objects that are forwarded between
states, or of event-specific handler code. The exact implementation depends
on the constrains of the target environment and the effort required for the
specialisation of the code generators.

Interface code. Implementations can choose to generate glue code for compo-
nents that directly interconnects them according to the event flow graph.
The extreme incarnation is direct interaction of components through their
generic interfaces. This requires run time setup code for OpenCOM that con-
nects the correct components. Note that this approach allows for threaded
implementations, such as one thread per event path.



3.5 Network Layers

The FROM clause in SLOSL describes a layering of topologies that maps directly
to layers in Gridkit as in figure 6. In combination with EDSL event flow graphs
(and its component subgraphs), this nicely describes the event flow through the
network layers and the dependencies of local decisions on lower layers.

4 Case Study: Scribe over Chord

This section describes a case study of designing a complex overlay implementa-
tion with OverGrid. We specify the overlay using the SLOSL Overlay Workbench
and then map the resulting OverML specification to Gridkit components. This
simple walk-through does not honour the fact that design usually evolves incre-
mentally. The real-world design process would normally follow edit-compile-test
and edit-compile-deploy cycles. Due to space constraints, we only present the de-
sign steps in summaries. Note, however, that the support for incremental design
is a major advantage of our high-level architecture.

4.1 Node attributes for Scribe/Chord

The first step in the design process is to provide a database schema, expressed as
node attributes in NALA. Chord nodes require logical IDs, which are essentially
large integers. We define them as having 256 bits. We will see later on that the
SLOSL views for Chord and Scribe require the following additional attributes:

ring dist is a dependent attribute based on the id attribute. It contains the
locally calculated ring distance towards a node based on the Chord metric.

supports chord is a boolean flag that states whether a node is known to sup-
port the Chord protocol.

alive is another boolean flag that is only true for live nodes.
triggered is a boolean attribute. It is set to true when the node did not respond

to a message and is considered to be in a state between dead and alive.
Another way of specifying this would be a bounded counter.

subscribed groups is a set of group identifiers (256 bit IDs) that a node is
known to be subscribed to in Scribe.

4.2 SLOSL implemented Chord topology

Chord [1] deploys two different views: the finger table defines the major char-
acteristics of its topology and the neighbour set contains the predecessor and
successor along the ring. SLOSL implements the finger table as follows.

1 CREATE VIEW cho rd f i n g e r t a b l e
2 AS SELECT node . id , node . r ing d i s t , chord bucket=i
3 FROM node db
4 WITH l o g k = log ( |K |)
5 WHERE node . supports chord = true AND node . a l i v e = true

6 HAVING node . r i n g d i s t in [ 2i , 2i+1 )
7 FOREACH i IN [ 0 , l o g k )
8 RANKED lowest (1 , node . r i n g d i s t )



The neighbour set implementation contains the node with the lowest node
ID further along the ring (the successor) and the node with the highest node
ID backwards on the ring (the predecessor). For resilience reasons, the view
specified below stores a larger number of nodes, as encouraged by the original
Chord paper.

1 CREATE VIEW c i r c l e n e i g hb ou r s
2 AS SELECT node . id , s ide=s ign
3 FROM node db
4 WITH ncount=10, max id=|K | − 1
5 WHERE node . a l i v e = true
6 HAVING abs (node . id − l o c a l . id ) <= max id / 2
7 AND s ign ∗(node . id − l o c a l . id ) < 0
8 OR abs (node . id − l o c a l . id ) > max id / 2
9 AND s ign ∗(node . id − l o c a l . id ) > 0

10 FOREACH s ign IN {−1,1}
11 RANKED lowest (ncount , node . r i n g d i s t )

4.3 Chord routing through SLOSL views

[ for me? ]

first match

finger
table

neighbour
sethandle error or drop

handle locally

The routing decision graph for Chord is shown in the figure. Messages are
pushed through the tree from the left. The outcome is either some kind of local
handling (boxes) or message forwarding through views (circles). At the first
match of a target amongst the sequence of child branches (top-to-bottom order),
the execution is terminated and the message is handed to the target. One of the
transitions has a predicate associated with it. Its implementation is provided by
an external component.

If the target is a view, the message is forwarded via its equivalence classes.
The receiver node is locally instantiated as a possibly incomplete node, for which
the HAVING–FOREACH and RANKED clauses are evaluated. This yields a
number of nodes to which the message is then broadcasted. If the view evaluation
fails, the tree traversal continues.

4.4 SLOSL implemented Scribe on Chord

The Scribe [6] multicast scheme requires an additional view for routing publica-
tions. It forwards them towards the rendezvous node of the respective group and
at each hop along the path broadcasts it to all subscribed children. Forward-
ing towards the rendezvous simply deploys Chord routing, but the broadcast
requires an additional view on top of the Chord topology that selects only sub-
scribed neighbours.

The selection is based on the active subscriptions of nodes in the finger table.
All locally active subscriptions are given by the well defined set containing the



subscriptions of the local node or its children towards the parents. It includes
the group IDs for which the local node is the rendezvous node and for which
children or the local node are subscribed. The Scribe implementation requires a
view for each of the locally active groups as follows.

1 CREATE VIEW sc r i b e s u b s c r i b e d c h i l d r e n
2 AS SELECT node . id
3 FROM cho rd f i n g e r t a b l e
4 WITH sub
5 WHERE sub in node . subscr ibed groups

4.5 Multicast routing through SLOSL views
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fork
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The routing decision graph for Scribe publications on Chord is shown in the
figure. Along the path, the execution is forked into different branches, which treat
the message independently. The “exclude last” property is a common helper that
prevents the last hop of a received message from appearing amongst the selection
of next hops further down the tree.

4.6 Message specifications in HIMDEL

Instead of presenting the XML representation of HIMDEL, we will stick to a shorter
form here. The following messages are used in our implementation. The name
in brackets is used for accessing fields and structure of messages. Note that the
programmatic interface of messages also defines a last hop field (if it is known)
and a next hop field (if it was determined by a router).

• Header [chord]

• Container [ids]

• id [sender]
• id [receiver]

• Message [chord joined]

• Message [chord find successor]

• Message [chord find predecessor]

• Message [chord notify]

• Message [chord update fingertable]

• View-Data [finger table bucket] → chord fingertable/bucket

• Header [scribe]

• Message [scribe create rendezvous]
• Message [scribe join]
• Message [scribe leave]
• Message [scribe publish]

• Data [event]



4.7 Event handling in EDSL

This is the main part where Gridkit integrates with the code generation process.
Gridkit components implement the controllers that are connected by the EDSL

graph specification. Due to space constraints, we cannot present the entire pro-
tocol graph of Scribe on Chord that implements the IControl component. We
must therefore content ourselves with an example event processing cycle that
shows how the system responds to events in a non-trivial way. We chose the
leave process in Scribe for this purpose, i.e. the propagation of unsubscriptions
from groups. The complete process is presented in figure 7. The vertices are
EDSL states (Gridkit implemented controllers), solid lines represent EDSL transi-
tions and dashed lines represent programmatic actions of controllers, that are
not covered by EDSL.

There are three cases in Scribe that trigger a leave. The first one is the
local leave that unsubscribes the local node. The second one is the explicit leave
where a neighbour sends an unsubscribe message for a group. The third one
is the implicit leave where the local node loses the connection to a subscribed
neighbour. The first two cases are mainly identical in handling, the implicit one
requires additional logic to decide that a leave must be triggered.

In this case, any component that sends messages and expects some kind of
acknowledgement for them has two transitions coming out of it: one for receiving
the ACK and one for a timeout. Only one of them will ever be triggered, so
whatever comes first will determine the further execution path.

If the ACK is received first, all is fine. If, however, the timeout comes first,
it triggers the destination state of the timeout, which is a generic ACK handler
controller. This controller looks up the next hop in the respective message and
switches its triggered attribute through the database API. If it becomes true,
the controller triggers the node by sending it a ping and then terminates. The
same controller will handle the timeout of this ping. If, however, the attribute
was true already and becomes false now, the controller sets the alive attribute of
that node to false. These changes will trigger events from the database. In our
example, the update event of the triggered attribute is not used, but all SLOSL

views must be updated for the alive event.
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Fig. 7: The event processing cycle for explicit and implicit leaves in Scribe



For simplicity, we will assume that the node was only contained in the finger
table view and has open subscriptions in the Scribe subscriptions view. Con-
tainment can be decided in different ways depending on the database and view
implementations. If materialised views are used (which may be the simplest im-
plementation anyway), it is easy to check if a node is visible in a view. Otherwise,
the view has to be evaluated for the node, once with the original attributes and
once with the modified attributes, to determine a change. If the node update
did not impact the view content, no view update is needed and no events are
generated. Note that the SLOSL statements in an OverML specification provide all
semantics necessary to determine efficient evaluation plans at compilation time.

In our example, we assumed that the node was contained in the finger table.
It will therefore disappear from the view after the alive update. This triggers
the event that the node left the finger table view. The same will happen for
the scribe subscribed children views that inherit from the finger table. Our cur-
rent Chord implementation can ignore these events, as its routers only use the
consistently updated views and do not require any notifications about updates.
Similarly, Scribe can ignore them as long as there are nodes left in all subscription
views. Therefore, in the simplest case, event handling ends just here.

In the case where the failed node was the only subscriber for a group, however,
Scribe has to unsubscribe from that group. This is done through the view empty
event that is triggered whenever a view update leaves the view empty. Note that
the same event is triggered when a controller receives an explicit unsubscription
from the last subscribed neighbour in a group and deletes the group ID from its
subscribed groups attribute. This will delete the last node from the subscription
view of that group and thus trigger the event.

The view empty event of subscription views is therefore connected to an
unsubscribe controller in the Scribe implementation. For each event, it sends out
an unsubscribe message towards the rendezvous node of the respective group by
using the underlying chord router.

4.8 From specification to deployment

Once the major characteristics of the overlay stack are defined, we can make
the system runnable step by step. We start by running tests within the work-
bench. The SLOSL visualiser in figure 5 allows the developer to play with simple
scenarios. Based on the evaluation of SLOSL views against a global database, it
supports per-node restrictions on the local view to simulate global differences
and inconsistencies in the local state of each node. This helps in finding topo-
logical problems in the specification before starting to work on the controllers.

Overlay specifications are then used to generate OpenCOM components that
fit the Overlay framework. Since the router components are generated completely
based on SLOSL and EDGAR, the main portion that remains to be implemented is
the logic behind the IControl interface. It is internally structured by the EDSL

graph. At the beginning of the coding step, it is helpful to use dummies for
controllers that are not yet implemented. Their interfaces are defined by their
EDSL interaction, so this is simple to do in code generators. Also, as figure 7



suggests, controllers generally tend to be very simple and small, which allows
for pre-implemented components and quick-and-dirty stub implementations to
get the system working. From the EDSL graph, it is immediately clear which
components are required to make a specific portion of the protocols work.

The following steps obviously depend on the available tool support. Envi-
ronments for testing, debugging and simulating overlay implementations are not
yet available for the OverGrid architecture. Our main achievements in this area,
however, are the rich semantics that become available to debuggers and the
possibility to write these tools for generic OverML models and the generic Grid-
kit/OpenCOM component architecture. Once available, these developer tools
will not require any adaptation to the specific overlay implementations. Current
overlay simulators are very much focused on specific requirements of the specific
overlays they were written for. OverGrid implemented overlays, on the other
hand, will seamlessly move between different OverGrid compatible simulators,
visualisers, debuggers and deployment environments without major redesign or
rewrites. Throughout the testing phase, the designer will be free to go back to
the design phase, modify the models and regenerate the overlay implementation.

5 Related Work

There are middlewares and application toolkits that provide principled support
for p2p application development. JXTA (http://www.jxta.org) is a framework
where p2p applications are developed atop a resource search abstraction; this
supports grouping and contacting nodes. This abstraction can be implemented
using a number of overlay topologies. Hence, like Gridkit the developer must
follow the implementation specification.

Furthermore, like OverML there are high-level languages and tools for reduc-
ing the development effort of overlay networks. iOverlay [13] provides a message
switch abstraction for the design of the local routing algorithm. The neighbours
of a node are instantiated as local I/O queues between which the user provided
implementation switches messages. This simplifies the design of overlay algo-
rithms by hiding the lower networking levels. However, unlike OverML there is
no further support for topology rules, maintenance or adaptation.

Macedon [14] is a state machine compiler for overlay protocol design and
forms the most interesting approach so far. Event-driven state machines (EDSMs)
have been used over decades for protocol design and specification. Macedon ex-
tends this approach to an overlay specific, C++ based language from which it
generates source code for overlay maintenance and routing. In a number of differ-
ent proof-of-concept overlay implementations, this was shown to be very useful
for implementing and testing algorithms for routing and maintenance.

However, overlays must automatically configure themselves and adapt to a
changes; it is not just a matter of routing protocol design. Each node in an overlay
needs to take local decisions. The sum of these decisions is the distributed algo-
rithm that maintains the overlay. iOverlay bases these decisions on the currently
available connections. It does not provide means for selecting the “right” connec-

http://www.jxta.org


tions or categorising them, neither does it support ranking connection candidates
for adaptation and fall-back mechanisms. Similarly, Macedon does not support
candidate nodes or adaptability of topologies. Modelling adaptivity in state ma-
chines is likely to be complex and lead to state explosion. Neither framework
supports a fine-grained componentisation of the implementation. Consequently,
in these incompatible and language dependent frameworks, the designer models
local decisions in framework specific source code.

In the P2/Overlog project [15], applications use a declarative logic language
to specify their requirements of the overlay network. This is combined with a
data flow approach, as opposed to a finite state machine approach, to maintain
the overlay at runtime. Like Macedon, this simplifies the development process of
overlays in specific cases. Apart from the implementation of overlay protocols,
however, P2 offers no support for overlay applications or their deployment.

In this section, we have investigated solutions from both the middleware and
overlay development domains. However, as far as we are aware, there has been
no work similar to OverGrid that has investigated the combining of the two ap-
proaches; whereby the best of both worlds allows the creation of highly tailorable
overlays to better support actual deployed applications and middleware services.

6 Conclusions

OverGrid is not yet a ready-to-run overlay suite. It is the main purpose of this
paper to outline the possibilities of an integrated specification-to-deployment
approach to overlay implementation. The combination of OverML models with
the Gridkit infrastructure shows extremely promising results for the simplified
design, automated generation and adaptive deployment of overlay applications.

A major advantage of OverGrid is the clean separation into forward, state
and control components, that is otherwise hard to achieve by hand. Even more,
this separation is done by OverML in a completely platform-independent way.
Radical moves to new deployment environments become possible through the
reduced dependency on platform-specific source code of overlay implementations.
A generic, platform-specific OverGrid implementation can host a broad variety
of overlays and topologies. Configuration and adaptation is moved into code
generators and deployment- or run-time component architectures.

To back our promises for OverGrid, we have presented specifications of com-
plex overlays. The simplicity of the abstract models that shines from the exam-
ples translates into a better understanding of the system and faster development
cycles through early edit-compile-run feedback. However, a problem of OverGrid
in this early project phase is the lack of tool support. Besides the SLOSL Overlay
Workbench prototype there are no simulators or debugging environments that
could support developers in their work. However, we expect that these tools can
be integrated into the Gridkit/OpenCOM component infrastructure; especially
debuggers will benefit from the semantically rich execution environment.

To our knowledge, OverGrid is the first in the area of overlay middleware and
frameworks, to tackle the entire design process from the specification in platform-
independent models to the adaptable deployment in changing environments.
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