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Abstract. Implementing overlay software is non-trivial. Current projects
build overlays or intermediate frameworks on top of low-level networking
abstractions. This leaves implementing the topologies, their maintenance
and optimisation strategies, and the routing to the developer.
We take a novel approach to overlay implementation by modelling topolo-
gies as a distributed database. This approach, named “Node Views”,
abstracts from low-level issues like I/O and message handling. Instead,
it moves ranking nodes and selecting neighbours into the heart of the
overlay software development process. It decouples maintenance compo-
nents in overlay software and allows implementing them in a generic,
configurable way for pluggable integration in frameworks.

1 Introduction

Recent years have seen a large body of research in decentralised, self-maintaining
overlay networks like P-Grid [1], Chord [2], ODRI [3] or Gia [4]. They are com-
monly regarded as building blocks for Internet-scale distributed applications.

Contrary to this expectation, current overlay implementations are built with
incompatible, language specific frameworks on top of low level networking ab-
stractions. This complicates their design and hinders the comparison and in-
tegration of different topologies. Apart from a recently proposed API for the
specific case of structured overlay networks [5], there is little standardisation
effort in the rest of the overlay area. And a common API does by no means
simplify the design of the overlay implementation itself.

Currently, programmers who want to use overlays for their applications must
decide in advance, at a very early design phase, which of the distinct overlay
implementations they want to use and must invest time to understand its specific
usage. This effectively prohibits testing the final product with different topologies
or delivering versions with specialised overlays. Therefore, the actual usefulness
of overlays for application design is currently very limited.

This paper explores the design space of overlay design frameworks and the
abstractions they provide. It proposes an integrative high-level approach at a
data management level rather than the networking and messaging level. Similar
to the way standard DBMS’s have decoupled and modularised today’s server ap-
plications, the presented approach allows for a separation of concerns in overlay
software and for pluggable, decoupled components in overlay design frameworks.



Section 2 investigates the major functionality blocks of overlay software and
matches them with the current framework support. Section 3 then presents the
Node Views abstraction that facilitates a higher level design of overlay topolo-
gies and decoupled components. The SQL-like language that we designed for
topology implementation is outlined in section 4. We describe the status of our
implementation in section 5.

2 Functionality of overlay software

Overlay networks form a layer for organisation and communication in distributed
applications. This section describes their different levels of functionality as illus-
trated in figure 1. While the development process of overlay software deals with
all of them, only few level are well supported by design aids and frameworks.

The lowest two levels comprise the general operating system support for
Internet-level network I/O and edge-level message passing. These levels are
not specific to overlays and are usually hidden by higher layers.

A number of overlays, such as Bamboo [6], are implemented on top of generic
event-driven state machines like SEDA [7] that model message processing in
Internet servers. While EDSMs were not designed for overlay development, they
still provide a good abstraction level for scalable event processing (see 2.2).

Overlay routing protocols then deal with local routing decisions for scal-
able end-to-end message forwarding. They are distributed algorithms, executed
at each member node, with the purpose of forwarding messages at the overlay
level from senders to receivers. Routing is left out of figure 1 for clarity reasons.
While situated at the message processing layer, it actually uses the topology
rules as explained in the next section.

2.1 Overlay Software from the Topology Perspective

Where current frameworks focus on message forwarding and the protocol design
part of overlay software, we propose raising the abstraction level to topology
design. This is motivated by four more functional levels in overlay software.

Local topology rules play a major role in overlay software which makes
them a very interesting abstraction level. The global topology of an overlay is
established by a distributed algorithm that each member node executes. The
topology rules on each node implement this algorithm by accepting neighbour
candidates or objecting to them. Overlays traditionally implement these rules
implicitly as part of their routing and maintenance algorithms, which is why
frameworks currently ignore this level.

Fig. 1: Framework Support for Overlay Software
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There are two sides to topology rules. Node selection allows an application
to show interest in certain nodes and ignore others based on their status, at-
tributes and capabilities. Generally, applications are only interested in nodes
that they know (or assume) to be alive, usually based on the information when
the last message from them arrived. But not even all locally known live nodes
are interesting to the application that can select nodes for communication based
on quality-of-service requirements. Furthermore, if a heterogeneous application
uses multiple overlays, its participants do not necessarily support all running
protocols. Each node must see the others only in overlays that they support.

Node categorisation is the second part. Where node selection is the black-
and-white decision of seeing a node or not, categorisation determines how nodes
are seen. Nearly all overlay networks know different kinds of neighbours: close
and far ones, fast and slow ones, parents and children, super-nodes and peers,
or nodes that store data of type A, B or C. Node categorisation lets a node
sort other nodes into different buckets to distinguish them. Overlay routing and
other overlay tasks are then implemented on top of the node categorisation.

In current structured overlay networks [1,2,3,6], topology rules are stated
apart from the implementation as a local invariant whose global properties are
either proven by hand or found in experiments. It is a hard problem but also
an interesting question to what extent the process of building routing protocols
from local rules and inferring the guarantees they provide can be automated.

Topology maintenance is the perpetual process of repairing the topol-
ogy whenever it breaks the rules. Above all, this means integrating new nodes
(i.e. selecting and categorising them) and replacing failed ones. Support for this
functionality is very limited among the current frameworks, despite its obvious
importance for self-maintaining overlays.

Topology adaptation is the ability of a given overlay topology to adapt
to specific requirements. As opposed to the error correction of topology mainte-
nance, adaptation handles the freedom of choice allowed by the topology rules.
The rules therefore draw the line between maintenance and adaptation. An ex-
ample is Pastry where evaluations have shown [8] that redundant entries in
the routing table can be exploited for adaptation to achieve better resilience and
lower latency. Topology adaptation usually defines some kind of metric for choos-
ing new edges out of a valid set of candidates. Building the “right” sub-groups
of nodes in hierarchical topologies also fits into this scheme.

Current overlays are designed with some kind of adaptation in mind, whereas
the available frameworks do not provide support for its implementation. What is
needed here is a ranking mechanism for connection candidates. Overlays usually
aim to provide an “efficient” topology. The term efficiency, however, is always
based on a specific choice of relevant metrics, such as end-to-end hop-count
or edge latency, but possibly also the node degree or the expected quality of
query results. The respective metric determines the node ranking which in turn
parametrises the global properties of the topology.

Topology selection is the choice of different topologies that an overlay
application can build on. Supporting multiple topologies obviously makes sense



for debugging and testing at design-time. However, it is just as useful at run-
time if an application has to adapt to diverse quality-of-service requirements,
such as different preferences regarding reliability, throughput and latency. A
given topology may excel in one or the other and this specialisation allows it
to provide high performance while keeping a simple design. Topology selection
allows an application to provide optimised solutions for different cases.

Topology adaptation and selection play the most important role for QoS sup-
port in overlays. However, selection obviously relies on the integration of different
overlay implementations to make their topologies available to a single applica-
tion. This is especially necessary to avoid duplication in effort when maintaining
multiple topologies and switching between them. It is not efficient, for example,
to have an application maintain several overlays if each of them independently
sends pings to determine the availability of nodes. Integrative approaches like
Node Views (as presented in section 3) become crucial here.

2.2 Frameworks and Middleware for Overlay Implementation

There have been a number of recent proposals for overlay frameworks and
middleware. Macedon [9] and iOverlay [10] are under development and eval-
uation in the corresponding projects. Other frameworks, like SEDA [7] or JXTA
(http://www.jxta.org), have also been used for overlay implementations, al-
though they do not provide any higher-level support for topologies and other
overlay specific tasks.

iOverlay essentially provides a message switch abstraction for the design of
the local routing algorithm. The neighbours of a node are instantiated as local
I/O queues between which the user provided implementation switches messages.
This generally simplifies the design of overlay algorithms by hiding the lower
networking levels. However, there is no further support for topology rules, main-
tenance or adaptation.

Macedon is a state machine compiler for overlay protocol design and forms
the most interesting approach so far. Event-driven state machines (EDSMs)
have been used over decades for protocol design and specification. Macedon
extends this approach to an overlay specific, C++ based language from which
it generates source code for overlay maintenance and routing. In a number of
different proof-of-concept overlay implementations, this was shown to be very
useful for implementing and testing algorithms for routing and maintenance.

Overlays must operate autonomously. This means that they must configure
themselves and automatically adapt to a changing environment. However, this
is not only a matter of designing a routing protocol. Each node in an overlay
needs to take local decisions. The sum of these local decisions is the distributed
algorithm that maintains the overlay. What are these local decisions based on?

iOverlay bases them on the currently available connections. It does not pro-
vide means for selecting the “right” connections or categorising them, neither
does it support ranking connection candidates for adaptation and fall-back mech-
anisms. Similarly, Macedon does not support candidate nodes or adaptability of
topologies. Modelling adaptivity in state machines is even likely to be rather
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complex and can lead to state explosion. Consequently, in all of these incompat-
ible and language dependent frameworks, the designer is forced to model local
decisions in framework specific source code.

2.3 Local Decisions and Data about Nodes

The local decisions, that each participant in a distributed algorithm takes, rely
on the local view of that node. The local view is a node’s combined knowledge
about the other nodes in the system, above all its neighbours in the topology.

To establish a local view, each node has to keep data about other nodes. Exam-
ples are addresses and identifiers, measured or estimated latencies and references
to data stored on these nodes. Furthermore, it is generally of interest when a
node was last contacted (time-stamps or history) to determine if it is alive.

Data about remote nodes is gathered from diverse sources. Some data can
be determined locally (IP address, ping latency, . . . ), while other information
is received in dedicated messages - either directly from the node it describes or
indirectly via hearsay of intermediate nodes. There is often more than one way
of finding equivalent data. Latencies, for example, can be measured (ping) or
estimated [11,12]. A node A knows that a node B is alive if A received a ping
response or other message from B, if it heard about it from other nodes (gossip),
etc. Different quality-of-service levels in an overlay application can trade load
against certainty by selecting different sources.

Topology rules, maintenance, adaptation and selection mainly deal with man-
aging data about nodes. The topology rules put constraints on the data about
possible neighbour nodes. Maintenance needs to keep data about fall-back can-
didates that may currently not be neighbours. It also deals with gathering data
about nodes that joined or finding conflicts between local and remote views.
Adaptation does a ranking between candidate nodes before it decides about
the instantiation as neighbours or fall-backs. Topology selection then switches
between different views, i.e. ranking metrics and sets of neighbours.

A data abstraction is obviously a good way of dealing with this diversity of
sources, data characteristics and data management tasks. It allows an overlay to
lift dependencies on specific algorithms and to take advantage of the different
characteristics of different implementations as the need arises.

3 Node Views, the System Model

We propose to design overlay frameworks as data management systems using
the well-known Model-View-Controller pattern [13]. The model is an active lo-
cal database on each node, a central storage place for all data that a node knows
about remote nodes. Once the data is stored in a single place, software com-
ponents no longer have to care about any data management themselves. They
benefit from a locally consistent data store and from notifications about changes.

The major characteristics of the overlay topology are then defined in views of
the database. They represent sets of nodes that are of interest to the local node



(such as its neighbours). Different views provide different ways of selecting and
categorising nodes, and different ways of adapting topologies. Topology selection
is then mainly a matter of selecting the right set of views.

Fig. 2: Components of the System Model
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As the views form the most important overlay specific part of the imple-
mentation, they are also the most crucial part for an abstract and framework-
independent specification. Their definition is the main goal of the Slosl language
that is briefly presented in the next section.

The controllers are tiny EDSM states that operate on the views. They are
triggered by events like incoming or leaving messages, timers or changes in the
views and update the database according to the view definitions. They are the
actual maintenance components that perform simple tasks like updating single
attributes of nodes when new data becomes available or sending out messages
to search new nodes that match the current view definitions. Note that the
controllers do not aim to provide a global view for the model. They continuously
update and repair the restricted and possibly globally inconsistent local view.
The node database decouples them from other parts of the overlay software and
the node views provide them with simplified, decoupled layers and a common
interface to make them generic, reusable components in frameworks.

Another very important part of the architecture is an expressive event system
for view events and messages. A notification about changes in views is fired
whenever nodes enter or leave a view, or when visible node attributes change.
Views filter notifications and software components only react to events from the
views that they are subscribed to.

Components like message handlers or routers are still part of the overlay spe-
cific implementation, but they can now respond to specific events and use node
views for their decisions. Defining messages as hierarchical structures allows com-
ponents to subscribe to data fields instead of monolithic messages. This further
helps in writing generic components. Database and views decouple them from the
maintenance components and simplify their design considerably. Even more so,
as this architecture can provide powerful operations like topology selection and
adaptation with a single view selection command. The abstract view definition
becomes the central point of control for the characteristics of the overlay.



4 SLOSL, the View Specification Language

For the view definitions that implement topology rules and adaptation, we de-
veloped Slosl, the SQL-Like Overlay Specification Language [14]. We present
it here using a simple example, an implementation of the Chord graph [2].

1 CREATE VIEW c h o r d f i n g e r t a b l e
2 AS SELECT node . id , node . r i n g d i s t , bd i s t=node . r i n g d i s t −2i

3 RANKED lowest ( backups+i , node . msec la tency / node . r i n g d i s t )
4 FROM node db
5 WITH l o g k = log ( |K | ) , backups = 1
6 WHERE node . suppor t s chord = true AND node . a l i v e = true
7 HAVING node . r i n g d i s t in (2i : 2i+1 )
8 FOREACH i IN ( 0 : l o g k )

The statements CREATE VIEW, SELECT, FROM and WHERE behave
as in SQL. The WHERE clause specifically implements node selection based
on node attributes. Note that Slosl is not concerned with the source of the
information that node attributes contain. It only constrains and categorises the
presentation of locally available data. The remaining clauses do the following:
WITH This clause defines variables or options of this view that can be set at

instantiation time and changed at run-time. Here, log k will likely keep its
default value, while backups allows adding redundancy at runtime.

HAVING–FOREACH This pair of clauses aggregates the selected nodes into
buckets to implement node categorisation. In the example, the (constant)
node attribute ring dist refers to the logical distance between the local node
and the remote node. The HAVING expression states that it must lie within
the given half-open interval (excluding the highest value) that depends on
the bucket variable i.
The FOREACH part defines the available node buckets by declaring this
bucket variable over a range (or a list, database table, . . . ) of values. It defines
either a single bucket of nodes, or a list, matrix, cube, etc. of buckets. The
structure is imposed by the occurrence of zero or more FOREACH clauses,
where each clause adds a dimension. Nodes are selected into these buckets
by the optional HAVING expression.
The example shows a case where the SELECT clause gives nodes a new
attribute bdist representing their position inside the bucket. Calculating
attribute values is particularly useful for HAVING expressions that allow a
node to appear in multiple buckets of the same view.

RANKED To support topology adaptation, the nodes in the chord finger-
table view are chosen by the ranking function lowest as the backups+ i top
node(s) of each bucket that provide the lowest value for the given expres-
sion. Rankings are often based on the network latency, but any arithmetic
expression based on node attributes can be used. The expression in the ex-
ample implements a simple tradeoff between the network latency and the
distance travelled in the ID space. Other overlays may require more complex
expressions or user defined functions in the ranking expression.



5 Implementation, current and future work

We are developing two different proof-of-concept implementations of this archi-
tecture as overlay execution environments. A first, light-weight prototype was
written in Python, while our current work builds on the PostgreSQL database.
It is targeted as a reference system rather than a high performance one. Once
the APIs have become stable enough, we can let the architecture benefit from
standard approaches used in Internet servers and application server designs.

As a major step towards simplified, abstract overlay development, we have
designed a graphical editor (fig. 3) based on our system model. It allows the
framework independent specification of overlay systems and outputs abstract
overlay specifications in OverML [14], a new XML specification language for
node attributes, Slosl statements, messages and EDSM flow descriptions.

Attributes/Messages Slosl statements Event flows

Fig. 3: The Slosl Overlay Workbench

For the future, we hope for diverse implementations of OverML compatible
frameworks as well as mappings to existing frameworks. The high abstraction
level easily allows specialised environments for simulation and analysis, testing
and debugging, and different deployment scenarios – without changes to the
overlay specification. Deployment environments can use a rather lightweight or
custom database. An interesting topic to investigate here is (partial) source
code generation from Slosl statements. This should allow customised overlay
implementations for very efficient deployment.

Simulators and debuggers may prefer a single global database to enable trac-
ing, verifying and visualising the system state. Recent proposals for scalable
simulation environments [15] already take a layered approach. Simulations are
carried out at a higher abstraction level and are then mapped to the network
link level. We propose the database layer as a comfortable abstraction level.

Future work will also include better mechanisms for view and query optimisa-
tion. Our current PostgreSQL implementation maps Slosl statements to rather
complex, generic SQL queries. Building on the large body of literature on query
modification and optimisation, we can imagine a number of ways to investigate
for pre-optimising these statements. This is most interesting for views of views
and for merging view definitions when sending them over the wire (like in gossip
overlays [16] or hierarchical environments [17]).



6 Conclusion

This paper presented Node Views, a novel approach to overlay design frameworks
that enables support for topology rules, maintenance, adaptation and selection
at a very high level. Based on an active database, it allows for a separation of
topology implementation, maintenance and message handling. This facilitates
the development of generic components which enables pluggable development
and integration of overlay systems.

The Slosl language lifts the abstraction level for overlay design from messag-
ing and routing protocols to the topology level. Its short, SQL-like statements
meet the requirements for design-time specification, topology implementation
and run-time adaptation of highly configurable overlay systems.

The current state of our implementation does not allow a performance com-
parison between the available hand-optimised overlay implementations and Slosl
based ones. In any case, the high abstraction level of Node Views will likely lead
to slower systems in direct comparisons - but in a couple of hours implementation
time compared to weeks for writing a traditional overlay from scratch.

Even compared to the days it takes to understand and start using one of the
available overlay systems, Slosl wins by being much easier to read and allowing
overlays to gain orders of magnitude in configurability, adaptability and inte-
gration. The Slosl Overlay Workbench makes overlay software easy and fast
to write and shifts more of the development time towards testing and optimis-
ing the topology itself and choosing the right maintenance strategies. As with
any other high-level language, long-term optimisations of OverML compatible
platforms will improve the performance of overlays using them.

The Node Views approach encourages completely new ways of designing and
testing overlays. Modifying compact Slosl statements allows the designer to
easily test and compare the impact of different selection and ranking functions
on an application. Switching between different views and controllers, at design-
time or run-time, enables overlay applications to adapt to the broad range from
static to dynamic environments and to diverse quality-of-service requirements.
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