
Models and Languages for Overlay Networks

Stefan Behnel, Alejandro Buchmann

Databases and Distributed Systems Group,
Darmstadt University of Technology (TUD), Germany

{behnel,buchmann}@dvs1.informatik.tu-darmstadt.de

Abstract. Implementing overlay software is non-trivial. In current pro-
jects, overlays or frameworks are built on top of low-level networking
abstractions. This leaves the implementation of topologies, their mainte-
nance and optimisation strategies, and the routing entirely to the devel-
oper. Consequently, topology characteristics are woven deaply into the
source code and the tight coupling with low-level frameworks prevents
code reuse when other frameworks prove a better match for the evolving
requirements.
This paper presents OverML, a high-level overlay specification language
that is independent of specific frameworks. The underlying system model,
named “Node Views”, abstracts from low-level issues such as I/O and
message handling and instead moves ranking nodes and selecting neigh-
bours into the heart of the overlay software development process. The
abstraction decouples maintenance components in overlay software, con-
siderably reduces their need for framework dependent source code and
enables their generic, configurable implementation in pluggable EDSM
frameworks.

1 Introduction

Recent years have seen a large body of research in decentralised, self-maintaining
overlay networks like P-Grid [1], ODRI [2], Chord [3] or Gia [4]. They are com-
monly regarded as building blocks for Internet-scale distributed applications.

Contrary to this expectation, current overlay implementations are built with
incompatible, language specific frameworks on top of low-level networking ab-
stractions. This complicates their design and prohibits code-reuse in different
frameworks. It also hinders the comparison and exchangeability of different
topologies within an application.

Our recent work [5] promotes a data abstraction as a much cleaner foundation
for the implementation of overlay software. It decouples components for routing
and maintenance and enables abstract, framework independent specifications.

This paper presents OverML, a new set of languages that were specifically
designed for the framework independent specification and implementation of
adaptable overlay networks. Section 2 briefly overviews the underlying data
driven system model that is more thoroughly explained and motivated in [5].
The remaining sections then describe OverML, a set of abstract XML spec-
ification languages for the major parts of overlay implementations: topology
specifications, event flows, messages and node attributes.

2 Node Views, the System Model

We model overlay software as data management systems by applying the well-
known Model-View-Controller pattern [6]. It aims to decouple software compo-
nents by separating the roles for data storage (model), data presentation (views)
and data manipulation (controllers).

Node
database

Controllers

configure

update tr
ig

ge
r

View
definitions Views

Nodebase for define

Overlay Routing

Overlay Application

provides/activates uses

Messages

Messages

Fig. 1. The system model

In our case, the model is
an active local database on
each node, a central storage
place for all data that a node
knows about remote nodes.
The major characteristics of
the overlay topology are then
defined in node views of the
database. They represent sets
of nodes that are of interest
to the local node (such as its
neighbours). Different views
provide different ways of selecting and categorising nodes, and therefore different
ways of adapting topology characteristics to application requirements.

The controllers are tiny EDSM states that are triggered by events like time-
outs, incoming or leaving messages or changes in the views. They perform simple
maintenance tasks like updating node attributes when new data becomes avail-
able or sending out messages to search new nodes that match the view definitions.

Controllers and other overlay components like message handlers or routers
use node views for their decisions. Database and views decouple them from each
other and simplify their design considerably. Even more so, as this architecture
can provide powerful operations like selecting and adapting topologies with a
single view selection command. The abstract view definition becomes the central
point of control for the characteristics of the overlay.

3 OverML, the XML Overlay Modelling Language

We propose the XML Overlay Modelling Language OverML for specifying the
four portable parts of overlay software: node attributes, messages, view defini-
tions and EDSM graphs. Because of space limitations, only the first three are pre-
sented here. Schema definitions are provided at http://www.dvs1.informatik.
tu-darmstadt.de/research/OverML/, which is also the XML namespace that
we abbreviated in the examples.

3.1 SLOSL, the View Specification Language

The view definitions implement adaptable topologies which makes them the
key components in overlay software. They are expressed in Slosl, the SQL-
Like Overlay Specification Language. As the XML representation of Slosl is
relatively straight forward (using Content MathML [7]), we will stick to the more

http://www.dvs1.informatik.tu-darmstadt.de/research/OverML/
http://www.dvs1.informatik.tu-darmstadt.de/research/OverML/
http://www.w3.org/TR/MathML2/

readable representation. We start with a simple example, an implementation of
an extended Chord graph [3].

1 CREATE VIEW c h o r d f i n g e r t a b l e

2 AS SELECT node . id , node . r ing d i s t , buc k e t d i s t = node . r ing d i s t−2i

3 RANKED lowest (nodes+i , node . msec latency / node . r i n g d i s t)
4 FROM node db
5 WITH l o g k = log (K) , nodes = 1
6 WHERE node . supports chord = true AND node . a l i v e = true
7 HAVING node . r i n g d i s t in (2i : 2i+1)
8 FOREACH i IN (0 : l o g k)

While most clauses behave as in SQL, the new clauses RANKED and HAVING–
FOREACH were added to provide simple statements for highly expressive over-
lay specifications. A more detailed description of the example follows, leaving
out the obvious clauses CREATE VIEW and FROM.
SELECT The interface of this view contains the attributes id and ring dist

of its nodes (ID and distance along the ring), as well as a newly calculated
attribute bucket dist.

RANKED To support topology adaptation, the nodes in the created view
are chosen by the ranking function lowest as the nodes + i top node(s) that
provide the lowest value for the given expression. Rankings are often based on
the network latency, but any arithmetic expression based on node attributes
or even user defined functions can be used.

WITH This clause defines variables or options of this view that can be set at
instantiation time and changed at run-time. Here, log k will likely keep its
default value, while nodes allows adding redundancy at runtime.

WHERE Any SQL boolean expression based on node attributes can be used
in this clause. It constrains nodes that are valid candidates for this view
(node selection). Here we use an attribute supports chord that is true for
all nodes that know the Chord protocol. The second attribute, alive, is true
for nodes that the local node considers alive.

HAVING–FOREACH This pair of clauses aggregates valid candidates into
buckets for node categorisation. In the example, the HAVING part states
that the ID distance must lie within the given half-open interval (excluding
the highest value) that depends on the bucket variable i. The FOREACH
part defines the available node buckets by declaring this bucket variable
over a range (or a list, database table, . . .) of values. It can define a single
bucket of nodes, but also a list, matrix, cube, etc. of buckets. The structure
is imposed by the occurrence of zero or more FOREACH clauses, where
each clause adds a dimension. Nodes are selected into these buckets by the
HAVING expression (which is optional and defaults to true). A node can
naturally appear in multiple buckets if the HAVING expression allows it.

The bucket abstraction is enough to implement graphs like Chord, Pastry, Kadem-
lia or de-Bruijn in less than a dozen lines and should be just as useful for a large
number of other cases. It is not limited to numbers and ranges, buckets can be
defined on any list or even on a database table. Numbers are commonly used in
structured overlays (which are based on numeric identifiers), while strings could
be used for topic-clustering in unstructured networks.

1

3

2

?

FROM

WHERE

WHERE

F
O

R
E

A
C

H

1

2

3

HAVING

HAVING

HAVING

RANKED

Fig. 2. Implementing the chord topology in Slosl

The clauses FROM, WHERE, HAVING–FOREACH, RANKED and SE-
LECT directly impact the nodes and attributes in the view. We will therefore
explain their interaction semantics in terms of an execution order as illustrated
in figure 2. Note, however, that Slosl is a declarative language and that query
optimisers and source code generators may handle specific Slosl statements
quite differently.

1. FROM selects all nodes from the parent view. Note that the database may
be globally incomplete or outdated (as the missing node in figure 2 suggests).

2. WHERE restricts this set to nodes matching a boolean expression.
3. FOREACH sorts the selected nodes into buckets by evaluating the HAVING

expression for each node and each value of the bucket variable(s).
4. RANKED restricts the maximum number of nodes in each bucket and selects

only those nodes for which the ranking expression yields the best results.
5. SELECT finally selects the attributes of each node that are visible in this

view. Note that Slosl inherits SQL’s powerful capability of calculating at-
tribute values based on arbitrary SQL expressions. If bucket variables are
used in these expressions, the same node can carry different attribute values
in different buckets of the created view.

3.2 NALA, the Node Attribute Language

Attribute definitions can currently utilise the data types of XML Schema [9] or
SQL [10].1 For SQL types, OverML allows the definition of custom data types
based on the predefined types as follows.

<types xmlns:sql=”OverML/ sq l ”>
<sql:composite type name=” tcpaddres s ” /> < !−−composite data type−−>

3 <sq l : inet name=” address ” />
<sql :short int name=”port ” />

</sql:composite>
6 <sql:decimal type name=” id128 ” bits=”128”/> < !−−r e s t r i c t e d decimals−−>

<sql:decimal type name=” id256 ” bits=”256”/>
</types>

1 The 2003 SQL/XML standard [11] defines a mapping between the two.

http://www.w3.org/TR/xmlschema-2/

Line 6 and 7 define customised descendents of the normal sql:decimal data type
that are restricted to a fixed size to represent node IDs. Note that for specific
restrictions, some implementations may not support an exact mapping to storage
types and may need to do range checking. The sql:composite meta type allows
composing multiple simple types into one new structured type.

Any base type or custom type can be used for node attributes. Attributes
have a name and a number of flags as shown in the following example.

<nala:attributes xmlns:nala=”OverML/nala ” xmlns:sql=”OverML/ sq l ”>
<nala:attribute name=” id ” type name=” id256 ” selected=” true ”>

3 <nala :stat ic /> <nala:transferable /> <nala : ident i f i er />
</nala:attribute>
<nala:attribute name=”knows chord” type name=” sq l : b o o l e an ”

6 selected=” true ”>
<nala :stat ic /> <nala:transferable />

</nala:attribute>
9 <nala:attribute name=” la tency ” type name=” s q l : i n t e r v a l ”

selected=” true ” />
</nala:attributes>

For easier extensibility, all flags except ’selected ’ are represented as XML ele-
ments. Their meaning is as follows:

identifier The attribute uniquely identifies a node. If a node carries multiple
identifiers, each one is treated independently as a unique identifier. This
allows different levels of identification, most notably physical and logical ad-
dresses. Note that multiple types (like IP address and port) can be combined
into a single new type, which can then be used as identifier.

static The attribute is static and does not change once it is known about a
node. All identifiers are implicitly static, but not all static attributes fulfil
the uniqueness requirement of an identifier.

transferable The attribute can be sent in messages. Some attributes (like net-
work latency) only make sense locally and should be marked non-transferable.

selected Selects the attribute for use in the database. Unselected attributes
can reside in the specification without actually being used during execution.
They can be dynamically activated at need, just like Slosl statements.

3.3 HIMDEL, the Hierarchical Message Description Language

Messages combine attributes and other content into well defined data units for
transmission. Their definition follows a hierarchy rooted in the top-level header,
followed by a sequence of other headers and finally a sequence of content fields.
Being an XML language, OverML presents this hierarchy in a natural way.

<msg:message hierarchy xmlns:msg=”OverML/msg” xmlns:sql=”OverML/ sq l ”>
<msg:container type name=” id s ”>

3 <msg:attribute access name=” source ” type name=” id ” />
<msg:attribute access name=” dest ” type name=” id ” />

</msg:container>
6 <msg:header access name=”main header ”>

<msg:container−ref access name=” addre s s e s ” type name=” id s ” />
<msg:message type name=” j o i n r e q u e s t ” /> < !−−1 s t message−−>

9 <msg:message type name=”view message ”> < !−−2nd message−−>
<msg:viewdata structured=” true ” access name=” f i n g e r t a b l e ”

type name=” cho r d f i n g e r t a b l e ” />
12 </msg:message>

<msg:header>
<msg:content access name=”type” type name=” s q l : sm a l l i n t ” />

15 <msg:message type name=” typed message ”> < !−−3rd message−−>
<msg:content access name=”data” type name=” s q l : t e x t ” />

</msg:message>
18 </msg:header>

</msg:header>
<msg:protocol access name=”tcp ” type name=”tcp”>

21 <msg:message−ref type name=”view message ” />
<msg:message−ref type name=” typed message ” />

</msg:protocol>
24 <msg:protocol access name=”udp” type name=”udp”>

<msg:message−ref type name=” j o i n r e q u e s t ” />
</msg:protocol>

27 </msg:message hierarchy>

In this representation, a message becomes a path through the hierarchy that
describes the ordered data fields (i.e. content and attribute elements) that are
ultimately sent through the wire. Message data is encapsulated in the hierarchy
of headers that preceed it along the path. Headers and their messages are finally
encapsulated in a network protocol, apart from their specification. This makes
it possible to send the same message through multiple channels and to decide
the best protocol at runtime.

Multiple independent messages can be defined within the same header. Mes-
sages and headers branching away from a message path are completely ignored,
i.e. the ’joined message’ in the example is not part of the ’view message’ and the
second header is not part of any of them.

This means that the tag order on the message path is important. It describes
the field order when serialising data, but it also defines the data fields that are
actually contained in a message. If a header is extended by content or container
elements after the definition of a message, the preceeding messages will not
contain the successor fields, as they are not on its path. In the example, the
’view message’ will not contain the content field named ’type’. This field is,
however, available in the ’typed message’ and all messages that are defined later
under the same header tag.

As shown in the example, container elements can also be used as children
of the message hierarchy tag. Here, their definition is not part of the message
hierarchy itself. They only predefine container modules for replicated use in
headers and messages where they are referenced by their type name attribute.

The Source code interface to messages and their fields is defined using
the access name attribute. Accessing the fields of a message from an object
oriented language should look like the following Python snippet.

def r e c e i v e v i ew mes sage (view message) :
ne t addre s s = (view message . tcp . ip , view message . tcp . port)
main header = view message . main header
s ou r c e i d = main header . addre s s e s . source
f i n g e r nod e s = view message . f i n g e r t a b l e

The following rules define the access paths. They allow for a concise, but
nevertheless structured and well defined path to each element.
1. As the basic unit of network traffic, a message is always the top-level element.
2. Everything defined within the message becomes a second level element, ref-

erenced by its access name.
3. Entries within containers are referenced recursively, namespaced by the ac-

cess name of their parent.
4. Following the path from the message back to the root header, all headers

and the protocol become second-level elements, referenced by access name.
Their child fields and container elements are referenced recursively as before.
Children of nameless headers become elements of the message itself.

The message specification allows EDSM states to be triggered by framework-
independent subscriptions to message names or header hierarchies. A simple
subset of the XPath language [8] lends itself for defining these subscriptions.
Note that even expensive abbreviations like ’//’ can be resolved at compile time
or deployment time using the message specifications.

The network serialisation of messages depends on framework and lan-
guage, whereas the specification above does not. There is a huge number of
network representations for messages that are in more or less wide-spread use.
In any case, the specified message hierarchy can directly be mapped to an XML
serialisation format. But also in flat serialisations like XDR [12], mapping the
message specification is straight forward when laying out the data fields depth-
first along the message path. Depending on the attribute ’structured ’, Views are
serialised either as bucket structure (XML subtrees or XDR arrays) or as plain
node data. The latter can avoid duplicate data if nodes appear unchanged in
multiple buckets.

4 Conclusion, Current and Future Work

This paper presented OverML, a language for abstract overlay specification.
Based on a Model-View-Controller architecture, it provides portable, framework-
independent abstractions for the major components in overlay software. The
achieved modularisation facilitates the development of generic components which
enables pluggable development and integration of overlay systems.

The Slosl language lifts the abstraction level for overlay design from messag-
ing and routing protocols to the topology level. Its short, SQL-like statements
meet the requirements for design-time specification, topology implementation
and run-time adaptation of highly configurable overlay systems.

OverML and Slosl make the design of the main characteristics of overlay
software simple, fast, and independent of languages and frameworks. Our pro-
totype implementation comprises a graphical editor for OverML specifications
as well as a proof-of-concept runtime environment. Their combination moves
the development of the remaining framework specific software components to
the very end of the design process and supports it with a powerful and generic
high-level API.

http://www.w3.org/TR/xpath

Future work will include better mechanisms for view and query optimisa-
tion. Our current PostgreSQL implementation maps Slosl statements to rather
complex, generic SQL queries. Building on the large body of literature on query
modification and optimisation, we can imagine a number of ways to investigate
for pre-optimising these statements. This is most interesting for recursive views
and for merging view definitions when sending them over the wire.

We believe that high-level, integrative overlay design is an interesting new
field that builds upon major achievements in the areas of databases, network-
ing and software engineering. We would be glad to seed interest in new imple-
mentations of OverML compatible frameworks, Slosl optimisers, source code
generators, as well as possible mappings to existing frameworks.

References

1. Aberer, K.: P-Grid: A Self-Organizing access structure for P2P information sys-
tems. In: Proc. of the Sixth Int. Conference on Cooperative Information Systems
(CoopIS 2001), Trento, Italy. (2001)

2. Loguinov, D., Kumar, A., Rai, V., Ganesh, S.: Graph-theoretic analysis of struc-
tured peer-to-peer systems: Routing distances and fault resilience. [13]

3. Stoica, I., Morris, R., Karger, D., Kaashoek, F., Balakrishnan, H.: Chord: A scal-
able peer-to-peer lookup service for internet applications. In: Proc. of the 2001
ACM SIGCOMM Conference, San Diego, California, USA (2001)

4. Chawathe, Y., Ratnasamy, S., Breslau, L., Lanham, N., Shenker, S.: Making
gnutella-like p2p systems scalable. [13]

5. Behnel, S., Buchmann, A.: Overlay networks - implementation by specification.
In: Proc. of the Int. Middleware Conference (Middleware2005), Grenoble, France
(2005)

6. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M.: Pattern-
Oriented Software Architecture: A System of Patterns. John Wiley & Sons (1996)

7. The World Wide Web Consortium: Mathematical Markup Language (MathML)
Version 2.0 (Second Edition). (2003)

8. The World Wide Web Consortium: XML Path Language (XPath) Version 1.0.
(1999)

9. The World Wide Web Consortium: XML Schema Part 2: Datatypes Second Edi-
tion. (2004)

10. ISO Document ISO/IEC 9075:2003: Database Language SQL. (2003)
11. ISO Document ISO/IEC 9075:14-2003: Database Language SQL - Part 14: XML-

Related Specifications (SQL/XML). (2003)
12. Srinivasan, R.: XDR: External Data Representation Standard. RFC 1832 (Draft

Standard) (1995)
13. The 2003 Conference on Applications, Technologies, Architectures, and Protocols

for Computer Communications (SIGCOMM). (2003)

