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ABSTRACT
Distributed summation is computed in asymptotically mini-
mal rounds by Kempe et al’s Push-Sum algorithm. Unfor-
tunately it has minor problems in practise, resolved here.
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1. INTRODUCTION
Although peer-to-peer systems strive to interact solely

with a few neighbours, there are many useful metrics that
capture global state. Examples include network size, churn
rate, and average bandwidth. We are primarily concerned
with computing sums across all peers in an expander graph
(many peer-to-peer networks). Approaches to computing
aggregate functions efficiently and in a fully decentralized
manner are a hot research topic [2–5]. Competing solutions
can be compared by convergence speed and message count.

Computing the maximum (or minimum) is relatively sim-
ple and well-understood: each peer gossips about the largest
value it currently knows. Whenever a neighbour informs
a peer of a larger value, the peer updates its value. Av-
erages can be computed with so-called mass conservation,
explained well in [3]. Kempe et al’s Push-Sum is asymptot-
ically optimal with respect to the convergence speed. While
sums are slightly harder, both recent approaches from PODC
2006 [4, 5] do not build on the optimal mass conservation,
but start anew, with sub-optimal convergence speed.

There are valid concerns about the Push-Sum algorithm
raised in [5], but it is not the case that the Push-Sum algo-
rithm requires a complete graph. It also operates over ex-
pander graphs [3]. The main Push-Sum problem we resolve
here is that sum computation and termination co-ordination
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Listing 1: The Push-Sum Algorithm
currentEst imate =

my water / my f i sh ;
P e r i o d i c a l l y :

my f i sh /= my degree+1;
my water /= my degree+1;
sendToAllNeighbours ( my fish , my water ) ;

Rece ive ( f i s h , water ) :
my f i sh += f i s h ;
my water += water ;

require a designated leader. The remaining problem, that
Push-Sum as stated is synchronous, is only a problem with
its proof. Kempe conjectures synchrony is unnecessary in
practise, a claim we validate here by simulation. Similar
asynchronous algorithms [2] have been shown correct.

2. THE PUSH-SUM ALGORITHM
We explain the intuition behind the Push-Sum algorithm

by analogy. By letting loose a school of fish into a lake, and
assuming they spread out uniformly, one can measure the
lake’s volume by counting the fish in a cubic metre of water.
To compute a sum, every peer initially manages some lake
region (its volume is the variable to sum). When gossipping,
peer v mixes its lake region with its neighbours and itself;
everyone gets 1

deg(v)+1
of this water and fish. Thus the fish

swim/diffuse throughout the lake until they are uniformly
distributed. Listing 1 implements this asynchronously.

Kempe et al proved that for an expander graph with n
peers, after O(log n + log 1

ε
) rounds every peer’s ratio of

water to fish is within ε relative error of the sum. In our
opinion, their key insight was to introduce a unit of measure
(the fish) which also diffuses throughout the network. This
allows some peers to possess more water and fish (due to, for
example, higher degree), yet still compute the same ratio.

3. MAKING IT WORK IN PRACTISE
The main problem with Push-Sum is the need for a desig-

nated leader. One of the leader’s responsibilities is to release
the school of fish into the lake. We avoid this problem. Ev-
ery peer releases 1.0 fish with distinct fish size; a unique size
can be a random number or the IP:Port of the peer. Bigger
fish eat smaller fish (just as larger numbers dominate when
computing a maximum) until only the largest fish remains.
Thus the steady state contains a total of exactly 1.0 fish.



The other responsibility of a Push-Sum leader is deciding
when to finalize a measurement. For most uses of aggregate
statistics, one wants to recompute the statistic at regular
intervals. Therefore, we include a cyclically rotating 16-bit
measurement identifier. Whenever a peer receives a message
pertaining to a new measurement, it finalizes its current es-
timate and initializes a new value. Any peer can decide to
finalize the calculation with relative error ε once it has par-
ticipated in Θ(log n+ log 1

ε
) rounds. Note that this requires

an estimate of n; we are not alone in this regard [4,5]. It is
possible to calculate n iteratively using Push-Sum itself.

Message loss can be an additional problem with Push-Sum
in practise. If fish or water go missing, mass conservation is
not observed and the correctness proof fails. The simple so-
lution we take is to send incremental sums in each message.
So instead of sending wi we send

∑
j≤i wj . The receiving

peer can now easily derive water lost in any messages prior
to the currently received message. This requires keeping
some additional state for each neighbour a peer has.

After solving these problems, there is some additional low-
hanging fruit. If IP:Port is used as fish size, a peer far from
the graph centre might be selected, every time. A simple
way to rotate the fish is to feed the IP:Port through a dif-
ferent bijective function for each measurement number. For
example, interpret the IP:Port and measurement number as
elements of the the finite field GF(248) and multiply them.

Another easy improvement is packing multiple statistics
into each gossip exchange. The protocol described thus far
contains (measurement number, fish size, fish quantity, wa-
ter) in each message. If one wants to compute several statis-
tics, which is quite typical, it suffices to additionally send
only the water for each further statistic; the fish size/quan-
tity and measurement number can be reused.

4. SIMULATION
We use the improved Push-Sum algorithm in the P2P

BubbleStorm system [6]. Figure 1 shows the simulated con-
vergence of seven consecutive network size measurements.
The network is a 10-regular random graph; such graphs are
known to have good expansion with high probability [1].
The scenario starts with one million nodes, of which 50%
leave at 28:00 minutes. The network is under constant churn
with Poisson arrival rate and exponential peer lifetimes.
Each peer gossips with its neighbours every 5 seconds, mea-
sured by its own clock, not synchronized with other peers.

Figure 1 plots the maximum and minimum network size
estimates of all peers in the system each second; notice that
the scale is logarithmic. The standard deviation drops very
quickly initially as the dominant fish spreads through-out
the network. Thereafter, it continues improving exponen-
tially as predicted (log 1

ε
rounds). After sufficient accuracy is

achieved, one or more peers finalize their estimate and start
a new measurement, resulting in the periodic behaviour.

5. RECOMMENDATIONS
We found that implementing Push-Sum poses no real dif-

ficulties, so let’s compare it to the more recent competition.
Figure 2 summarizes the asymptotic complexity of various
algorithms on expander graphs. The hidden constants are
small and roughly comparable. All algorithms have been
made parallel for fair comparison of message rounds. The
parameters are network size (n) and relative error (ε).
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Figure 1: Push-Sum convergence with 1M peers
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Figure 2: Asymptotic complexity of sum algorithms

For latency (rounds required), Push-Sum wins for all pa-
rameters. For total messages, Push-Sum performs the best
when high accuracy is required ( 1

ε
large). However, the ran-

dom walk approaches from [4] can finalize inaccurate mea-
surements with less messages. Practically speaking, it’s un-
clear how much of an advantage this is. Sample&Collide can
only measure n, not general sums, and for accuracy beyond
±
√

n, its message complexity is higher. Random Tour (on
realistic network sizes) is worse for accuracy beyond ±20%.

Whenever reasonable accuracy or low latency are required,
Push-Sum appears to be the appropriate choice. Given its
generality and the ease of implementation, current compet-
ing approaches seem seldom preferable. Therefore, research
into generalizing the Push-Sum algorithm and related theo-
rems for asynchronous environments would likely be fruitful.
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