
The Convergence of AOP and Active Databases:
Towards Reactive Middleware

Mariano Cilia, Michael Haupt, Mira Mezini, and Alejandro Buchmann

Department of Computer Science
Darmstadt University of Technology - Darmstadt, Germany

{cilia,haupt,mezini,buchmann}@informatik.tu-darmstadt.de

Abstract. Reactive behavior is rapidly becoming a key feature of mod-
ern software systems in such diverse areas as ubiquitous computing, auto-
nomic systems, and event-based supply chain management. In this paper
we analyze the convergence of techniques from aspect oriented program-
ming, active databases and asynchronous notification systems to form
reactive middleware. We identify the common core of abstractions and
explain both commonalities and differences to start a dialogue across
community boundaries. We present existing options for implementation
of reactive software and analyze their run-time semantics. We do not
advocate a particular approach but concentrate on identifying how the
various disciplines can benefit from each other. We believe that AOP
can solve the impedance mismatch found in reactive systems that are
implemented through inherently static languages, while AOP can ben-
efit from the active database community’s experience with event detec-
tion/composition and fault tolerance in large scale systems. The result
could be a solid foundation for the realization of reactive middleware
services.

1 Introduction

Software development in the past decade has exhibited several trends:

– monolithic ad-hoc software development is being replaced by service-based
architectures relying on customizable generic services;

– crosscutting concerns must be modularized and are often added after a sys-
tem has been designed;

– the need for asynchronous interactions has been recognized, particularly in
the face of mobility and the resulting instability of communications;

– the need for reactive behavior and the ability to handle exceptions are es-
sential for very diverse applications ranging from ubiquitous computing to
event-based supply chain management.

Solutions to cope with (some of) these trends have emerged in different
communities: the database community has developed active databases, the pro-
gramming languages community has developed aspect oriented programming,

F. Pfenning and Y. Smaragdakis (Eds.): GPCE 2003, LNCS 2830, pp. 169–188, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

170 Mariano Cilia et al.

and the middleware community has developed asynchronous notification mecha-
nisms and service-based architectures. Each approach reflects the idiosyncracies
of the corresponding community, but they all share a core of common abstrac-
tions extended by issues that are important in a given community as shown in
Fig. 1.

Fig. 1. Technologies in context

It is the goal of this paper to identify the common abstractions, understand
both similarities and differences, and start a dialogue across community bound-
aries. Towards this goal, the first contribution of this paper is to introduce the
terminology, to identify the commonalities of the various approaches to reactive
software, present experiences and discuss the difficulties. We exploit the fact that
each of the authors is thoroughly familiar with at least two of the three areas
and has good working knowledge of the third.

The second goal of this paper is to present existing options for implementa-
tion of reactive software and to analyze their run-time semantics. The flexibility
of reactive systems is determined by the time at which reactive functionality
can be added to existing code, how the reactive capability can be activated or
deactivated, and how an event, i. e., the occurrence of a happening of interest,
is signalled. To this end we introduce a spectrum ranging from compile-time to
run-time binding on one dimension, and from non-invasive to invasive situation
detection mechanisms. Invasive detection mechanisms require the modification
of the underlying code, while non-invasive mechanisms do not.

In this paper we do not push any particular approach but concentrate on
identifying how the various disciplines can benefit from each other. We believe
that aspect oriented programming can solve the impedance mismatch found
in active databases and service based middleware when dynamic capabilities are
implemented through inherently static languages. On the other hand, aspect ori-
ented programming can benefit from the experience gained in the active database
area with event detection/composition and fault tolerance in large-scale systems.

The Convergence of AOP and Active Databases 171

The result could be a solid foundation for the realization of reactive middleware
services and eventually a platform for reactive software.

The remainder of this paper presents in Section 2.1 the underlying tech-
nologies and introduces the terminology. Section 2.2 deals with the definition of
reactions. Section 2.3 deals with the execution of reactions, i. e., the run-time
semantics. Section 2.4 discusses the options afforded by the various run-time
environments. Section 3 shows how the technologies converge towards reactive
middleware. Finally, Section 4 presents conclusions and a brief summary of our
ongoing work.

2 Active Databases and AOP Side-by-Side

2.1 Origins and Basic Concepts

The basic problem that motivated the work in active databases and AOP is mod-
ularization of crosscutting concerns and the need to detect relevant situations
and react to them efficiently. In the case of monitoring applications that track
changes to the underlying (passive) database the problem lies in the need to poll
periodically the state of the database to detect changes. This is highly ineffi-
cient, not only because many unnecessary queries are executed but also because
queries are issued in user space, the queries in their execution traverse several
layers of the database management system (DBMS) and monitoring functions
(conditions) may be replicated across applications. Active databases solved this
problem by defining Event-Condition-Action (ECA) rules that are defined in
the schema and executed in the DBMS kernel. Whenever an event is detected
and a guarding condition is true, the corresponding action is executed. Aspect
Oriented Programming (AOP) has been motivated by the need to modularize
crosscutting behavior, such that new crosscutting behavior can be added in a lo-
calized manner and without changing existing code. AOP introduced join points
and point cuts to signal situations of interest and advice to react to them. In
the remainder of this section we summarize the notions of Active Databases and
Aspect Oriented Programming, and introduce the terminology used throughout
this paper.

Active Databases: In conventional (passive) database management systems
data is created, modified, deleted and retrieved in response to requests issued by
users or applications. In the mid-80s database technology was confronted with
monitoring applications that required the reaction to changes in the database.
To avoid wasteful polling, passive database functionality was extended with ECA
rules to allow the database system itself to perform certain operations automati-
cally in response to the occurrence of predefined events. Those systems are known
as active DBMSs [1, 63, 53]. They are significantly more powerful than passive
DBMSs since they can (efficiently) perform functions that in passive database
systems must be encoded in applications. The same mechanism can also be used
to perform tasks that require special-purpose subsystems in passive databases

172 Mariano Cilia et al.

(e. g., integrity constraint enforcement, access control, view management, and
statistics gathering).

Historically, production rules were the first mechanism used to provide auto-
matic reaction functionality. Production rules are Condition-Action rules that do
not break out the triggering event explicitly. Instead, they implement a polling-
style evaluation of all rule conditions. In contrast, ECA rules explicitly define
triggering events, e. g., the fact that an update or an insert occurred, and con-
ditions on the content of the database are only evaluated if the triggering event
is signaled.

ECA rules consist of three parts: a lightweight Event causes the rule to be
fired; an (optional) Condition is checked when the rule is fired; and an Action
is executed when the rule is fired and its guarding condition evaluates to true.

In active relational databases, events were modelled as changes of state of the
database, i. e., insert, delete and update operations that could trigger a reaction
[31, 59]. This basic functionality is common fare in today’s commercial DBMSs
in the form of triggers. In object-oriented systems, ECA rules are considered as
first-class objects [17]. This treatment of ECA rules as first-class entities enables
them to be handled homogeneously like any other object. In these systems more
general events were defined: temporal, method invocation (with before and after
modifiers), and user-defined events [17, 3, 28, 11, 66].

In addition to these events, more complex situations that correlate, aggregate
or combine events can be defined. This is done by using an event algebra [28,
67] that allows the definition of composite or complex events.

Active database functionality developed for a particular DBMS became part
of a large monolithic piece of software (the DBMS). As it is well known, mono-
lithic software is difficult to extend and adapt. Moreover, tightly coupling the
active functionality to a concrete database system precludes its adaptation to
today’s Internet applications, where heterogeneity and distribution play a sig-
nificant role but are not directly supported by (active) database systems.

Aspect Oriented Programming: The goal of aspect-oriented programming is
to facilitate the separation and modularization of concerns whose natural struc-
tures are crosscutting [46, 47]. Crosscutting concerns imply different decompo-
sitions of the system into modules. The different decompositions yield different
models, i. e., sets of interrelated modules. Given two crosscutting models M1 and
M2, if we adopt one of them, say M1, as our basic decomposition of the system,
then definitions that are modularly captured in M2 will be spread around several
modules in M1, causing code scattering and tangling, negatively affecting the
extensibility and maintainability of the software. For a technical and an intu-
itive definition of the term “crosscutting models”, the reader is referred to [46],
respectively [47].

To avoid such scattering and tangling, with AOP the question is not which
criteria to choose for decomposing the system, but how to support the decompo-
sition according to several independent criteria simultaneously. Aspect-oriented
languages modularize a system’s various crosscutting models into independent

The Convergence of AOP and Active Databases 173

aspect modules and provide appropriate means for specifying when and how
they should join the overall definition of the system. By modularizing cross-
cutting concerns into aspects, behavior that conventional programming would
distribute throughout the code congeals into a single textual structure, making
both aspect code and the target easier to understand [26]. This promises simpler
system evolution, more comprehensible systems, adaptability, customizability,
and easier reuse.

The design space of aspect-oriented languages is determined by several fac-
tors. First, AO languages may vary in how they represent the modules they sup-
port for specifying individual crosscutting models. Second, different approaches
can be taken for the specification of when crosscutting models join. This spec-
ification is expressed using join points that can be placed in the source code
of different aspects, or they can be points in the object call graph of the run-
ning system, yielding the distinction between AO languages with a static versus
dynamic join point model. Furthermore, one might distinguish between coarse-
grained join points such as method signatures, and fine-grained join points like
the access of a variable within the execution of a control flow. Finally, AO lan-
guages may also vary in the specification of how aspects come together at join
points.

Implementation approaches for AO languages can be classified based on two
criteria. First, systems may use different ways for detecting/signaling join points.
The second criterion regards how actual implementations perform the dispatch
to advice code at join points once they are detected.

In the course of this paper, we will refer to the AspectJ system [41, 5] because
it offers a rather well-defined terminology for the most important parts of aspect
orientation and is the most prominent AO language today.

2.2 Definition of Situations and Reactions

Both AOP and active databases provide mechanisms for describing situations
under which specific reactions should be invoked. Although the concepts and
mechanisms are surprisingly similar, the two communities use different termi-
nology. In this section we describe the basic detection and reaction primitives
from the point of view of their specification and show the convergence of both
technologies.

Defining ECA Rules: Primitive or composite events are associated with ECA
rules in order to describe the situation that must be detected for the action to
be executed. The subsystems of an active database - query processor, transac-
tion and recovery managers, etc. – can signal the occurrence of primitive events
[9]. These can be data manipulation operations, timer events or explicit events
signaled from outside the database, e. g., from the operating system.

The use of method invocation events in the definition of ECA rules can
include before, after, and instead modifiers. These are used to explicitly
define whether the rule should be executed before or after a method execution
or alternatively to the original code.

174 Mariano Cilia et al.

An event is characterized by having a type and a set of parameters. Param-
eters are associated to event occurrences with the purpose of describing infor-
mation about the context where the event was signaled. These parameters are
specific to the event type. For instance, an occurrence of a database event of type
insert carries the following parameters: name of table in question, the involved
fields and their corresponding values, transaction identification, timestamp, etc.
Both a rule’s condition and its action have access to the associated parameter
information of an event occurrence.

As mentioned before, events may be composed to form more complex events
by using an event algebra. Once a pattern of events being signaled matches an
event expression, the associated rule is fired. A variety of event algebras has been
defined [17, 30, 28, 13, 67]. Examples of possible event expressions are:

– Sequence: The two events must occur in the given order for the expression
to match.

– Alternative: One of the two events must occur for the expression to match.
– Closure: The event may occur multiple times during a transaction, but it

is not effectively signaled until the transaction ends or until it has occurred
a certain number of times. The event’s context information is accumulated.

An important issue must be considered when composing events, specifically
when more than one event occurrence is to be consumed in the composition of
a complex event. The specification of a consumption mode [13] associated to the
event part of the rule specification allows the rule processing engine to precisely
determine which event occurrences must be considered for consumption. Differ-
ent consumption modes may be required by different application domains. The
two most common modes are recent and chronicle. In the former, common
in sensor-driven applications, the most recent event occurrences of the specified
type are used, while in the latter, common in workflow applications, the oldest
event occurrences of the specified type are consumed.

Conditions are optional and allow the expression of additional constraints
that must be met for the action to execute. If they are missing we speak about
Event-Action (EA) rules. Conditions can be expressed as Boolean predicates or
query language expressions. Also external method invocations can be used. The
specification of conditions can involve variables that will be bound at run-time
with the content of triggering events.

The action part of an ECA rule may be a sequence of operations related
to the database, transaction commands, operations related to the rule manage-
ment (e. g., activate, deactivate), or the invocation of (external) methods. It is
performed only if the condition holds.

For some applications it is useful to delay the evaluation of a triggered rule’s
condition or the execution of its action until the end of the transaction, for ex-
ample, when evaluating a consistency constraint that involves several updates.
In other cases it may be useful to evaluate a triggered rule’s condition or execute
its action in a separate transaction. These possibilities resulted in the notion of
coupling modes[18]. Coupling modes can specify the transactional relationship

The Convergence of AOP and Active Databases 175

between a rule’s triggering event, the evaluation of its condition and the execu-
tion of its action. Coupling modes can be defined when specifying ECA rules.
The originally proposed coupling modes include:

– Immediate: The condition (or action) is evaluated instantly (synchronous-
ly) suspending the execution of the current transaction.

– Deferred: Condition evaluation (or action execution) takes place just before
the transaction commits or rolls back.

– Detached: There are two possible ways to evaluate a condition/action in
detached mode. Evaluating it causally independent means that the condi-
tion/action is evaluated completely asynchronously: a separate transaction
is started. Causally dependent evaluation also starts a separate transaction,
but not before the original transaction has committed or rolled back.

Most active database projects defined their own rule specification language
but they share most of the features presented above. A small subset has become
part of the SQL standard and is available in commercial DBMSs.

A difficulty in using ECA rules is to predict how the defined rules will behave
in all possible scenarios. For some active database rule languages it is possible
to perform automatic static analysis on sets of rules to predict certain aspects
of rule behavior (i. e., conflicts, termination, or confluence) [65, 2, 40, 7]. Rule
analysis techniques are dependent on the semantics of rule execution which are
addressed in Section 2.3.

Defining Aspects: The AspectJ system we refer to [41, 5] is an extension to
the Java programming language, therefore both base applications and aspectual
behavior used to extend them are implemented in Java. Aspectual behavior is
applied using information from the weaving description, a precise quantification
of when and how aspectual behavior has to be interwoven with the application.
AspectJ follows a compiler-based approach, interweaving aspect code with the
base application at compile-time.

In AspectJ, aspectual behavior and weaving descriptions are usually ex-
pressed side by side in syntactical constructs called aspects. An aspect looks
much like an ordinary class in that it may define methods and attributes, inherit
from other aspects (including abstract ones) or classes and implement interfaces.
Apart from that, aspects may contain pointcuts and advice to define crosscut-
ting behavior, of which AspectJ supports two kinds. Static crosscutting means
adding functionality to existing classes, while dynamic crosscutting allows for
executing additional functionality at join points.

In terms of Sec. 2.1, AspectJ’s join point model is dynamic, join points being
nodes in the run-time object call graph. Both coarse- and fine-grained join points
are supported, e. g., calls to methods, read or write accesses to objects’ attributes
or exception handler executions.

AspectJ uses pointcuts to quantify aspect applications. Pointcuts are com-
posed of several join points and, optionally, values from the context of these join
points that are of interest to aspectual behavior. Due to the dynamic nature of

176 Mariano Cilia et al.

join points, it is possible to take whole partitions of the object call graph into
account for quantification of pointcuts. AspectJ’s cflow (control flow) pointcuts,
parameterized with another pointcut, match whenever join points in the control
flow of that parameter are met.

Aspectual behavior is defined in units of Java code called advice. Advice can
be applied before, after, or around pointcuts, the former two plainly meaning
that the advice code is executed before or after the code corresponding to a
matched pointcut. Around advice are a more powerful instrument, allowing for
modifications of the intended original control flow in that they completely wrap
the code associated with the pointcut. A special statement, proceed(), can be
used to invoke the original functionality at any point in the advice code.

2.3 Run-Time Semantics

Active Databases: Rule execution semantics prescribe how an active system
behaves once a set of rules has been defined. Rule execution behavior can be
quite complex, but we restrict ourselves to describing only essential issues here.
For a more detailed description see [63, 1].

All begins with event occurrences signaled by event sources that feed the
complex event detector that selects and consumes these events according to the
specification of consumption modes. In the case of rules that do not involve a
complex event, this step is omitted and event occurrences directly trigger the
corresponding rules.

Usually there are specific points in time at which rules may be processed
during the execution of an active system. The rule processing granularity speci-
fies how often these points occur. For example, the finest granularity is “always”
which means that rules are processed as soon as any rule’s triggering event
occurs. If we consider the database context, rules may be processed after the
occurrence of database operations (small-granularity), data manipulation state-
ments (medium-granularity), or transactions (coarse-granularity).

At granularity cycles and only if rules were triggered, the rule processing
algorithm is invoked. If more than one rule was triggered, it may be necessary to
select one after the other from this set. This process of rule selection is known as
conflict resolution, where basically three strategies can be applied: (a) one rule
is selected from the fireable pool, after rule execution the set of fireable rules
is determined again, (b) sequential execution of all rules in an evaluation cycle,
and (c) parallel execution of all rules in an evaluation cycle.

After rules are selected, their corresponding conditions are evaluated. The
evaluation of the condition is performed according to the specification of trans-
action dependencies (coupling modes). If a condition evaluates to true, then the
action associated with this rule must be performed. Actions can be any sequence
of operations on or outside of a database. These operations can refer to attributes
of the triggering event. Transaction dependencies are considered here too. This
ends with a single execution of the rule processing algorithm. Additionally, rules
can be activated and deactivated at run-time.

The Convergence of AOP and Active Databases 177

Aspect-Oriented Programming: Basically, all existing AOP systems with
static weaving follow the same approach, as outlined in Sec. 2.1. Code for in-
voking aspectual behavior is interwoven with the base application’s code. Thus,
what happens at run-time in an application decorated with statically interwo-
ven aspects is not greatly different from what happens in an application where
the aspectual behavior is “hard-wired” into the code—in the end, all behavior
that was cleanly modularized in aspects is again tangled with and scattered
throughout the application code.

Whenever execution reaches a point where aspectual behavior was inserted
by the aspect weaver, that functionality is invoked. The special case of more
than one aspect applying to a single location in the code is handled as follows.
Around advice are always executed first, followed by before advice, the actual
base behavior, after advice and, finally, those parts of around advice that come
after an eventual proceed() statement. If more than one advice of a kind are
present, aspect domination and inheritance relationships are used to determine
an order in which the advice have to be applied. This order is well-defined [41].

2.4 Run-Time Environments

According to the specification of ECA rules and aspects there is the need to
signal that an application must produce a primitive event, respectively that a
program has reached a join point or that a pointcut matches. The techniques
used for this purpose can be characterized as invasive or non-invasive.

!"#$%!#& "'"(!"#$%!#&

')!*!"$+,-)'*)$./$-- %!01$0!'",%!*"$+!"*,2'3&

)&$20!'",2'3&%!01$0!'",'4,!"0&)&%0

5&*&"36

-$)0,'4,07&,)1"(0!.&,&"#!)'".&"0

8$9 8:9 829

Fig. 2. Spectrum of code modification

In an invasive approach, at least the event signaling logic is mixed with the
base application logic. In addition, reaction logic may also get mixed with base
application logic. This mixed logic can take the form of instrumented source,

178 Mariano Cilia et al.

byte, or native code, depending on whether the mixer is a pre-processor, a com-
piler, a byte-code toolkit, or even a just-in-time compiler. In Fig. 2a and b,
invasive signaling is depicted by star-shaped wrappers. In Fig. 2a, in addition to
the signaling code, the rest of the code that is necessary to execute the reactions
is also included in the program. In Fig. 2b, signaling is also invasive but reaction
code is separated from the signaling program and administered by a separate
entity (which we call “reaction manager” to be domain-neutral).

Non-invasive techniques do not add any logic whatsoever to the base program.
Rather the occurrences of situations of interest, e. g., certain operations in active
DBMSs or join point execution in AOP systems, are somehow intercepted and,
as a consequence, this situation is signaled. There are at least two approaches for
doing this. If it is assumed that the application is developed with an interpreted
programming language, then the language interpreter must be modified to signal
situations of interest [20, 55]. A second possibility of non-invasive event detection
is channel snooping [43]. In this approach the communication between client and
server is intercepted and interpreted. This is useful when dealing with legacy
systems that may not be modified.

Another approach in the implementation spectrum, which is not represented
in the figure is one in which applications are programmed from the very beginning
to generate events at interesting points. That is, developers are in charge of
encoding the signaling of the happenings of interest.

We will now outline various implementation approaches to event detection,
signaling and reaction execution in active databases and aspect-oriented pro-
gramming. Please note that we do not claim either list of systems to be complete.

Active Databases

Invasive Approaches: Most active database systems use variants of the invasive
approach. A fundamental difference is whether method wrapping is done manu-
ally or by the rule processor, and whether all methods are wrapped or only those
methods for which rules are known to exist.

If selective wrapping is done, only those methods are decorated with the sig-
naling code for which it is known that the event is required [28, 21]. This has
performance advantages since no events are produced unless they are consumed
and the application code is not bloated with unnecessary decorations. The dis-
advantage of this approach, however, is its inflexibility since new rules requiring
new events that are not already produced cannot be added without modifying
the application and recompiling it.

The alternative is to wrap automatically every method with a before and an
after modifier [8, 66]. The method invocation events are always signaled locally.
A fast table lookup is performed and if a subscription to that event exists, it
is forwarded, otherwise it is discarded. The benefit is flexibility, since new rules
can be added without modifying and recompiling the application code. The cost
of this flexibility is acceptable in a database environment where data accesses
involve entries in a lock table and accesses to external storage.

The Convergence of AOP and Active Databases 179

A compromise solution was adopted in [12, 10]. It consists in distinguishing
between passive objects, reactive objects, and notifiable objects. The interface for
reactive objects is modified and only methods in reactive objects are wrapped.

Non-invasive Approaches: Non-invasive approaches are convenient whenever the
signaling application is non-cooperative or may not be modified, for example, in
the case of legacy systems.

Channel snooping was used in [43]. In this approach a listener is implemented
that taps into the communication channel between the client and the server.
Since every relevant database operation is transmitted to the server, it can be
intercepted, parsed and interpreted. The listener can then signal the occurrence
of an event. There are obvious limitations to this approach. For example, events
can only be interpreted at the query language statement level, i. e., at medium
granularity according to our previous classification. Of course, they may be in-
tegrated to the coarser transaction level.

Modification of the interpreter is a powerful non-invasive technique. It was
used in [20]. The benefit is flexibility to add new rules. The price is the difficulty
of modifying the interpreter (if this is at all possible) and the inherent inefficiency
of interpreted languages.

Aspect-Oriented Programming

Invasive Approaches: In terms of Fig. 2, within this category, we distinguish ap-
proaches that statically weave reaction code to the points of interest (at the level
of source, byte, or native code), and those that only weave signaling code, leaving
the reaction to be dispatched at run-time. This corresponds to the distinction
between Figures 2a and 2b. AOP approaches corresponding to Fig. 2a directly
mix reaction code into the application code before run-time. Hence, there is ac-
tually no such thing as situation signaling code. Both Hyper/J [35] and AspectJ
[5] fall in this category.

Another class of AOP implementations for Java like EAOP [24, 23, 25], JAC
[54, 37] and the second generation of PROSE [56, 57] all follow basically the
implementation approach that corresponds to Fig. 2b. All three examples modify
application classes by inserting hooks and/or wrappers at join points, thereby
making the AOP infrastructure environment aware of them.

In more detail, EAOP uses a preprocessor to modify the application’s classes
before compilation, adding hooks in all places that may be a join point. JAC
modifies classes’ bytecodes as they are loaded into the virtual machine, inserting
hooks in a specified set of places. PROSE 2 uses a modified just-in-time compiler
to insert code that checks for the presence of advice at every possible join point
in a group of classes that is specified at startup time of the AOP engine. All
three approaches do not allow for altering the set of join points that are taken
into account at run-time; they either activate all possible join points or only
some in a given set of classes. Both approaches are unsatisfying: unnecessarily
activated join points lead to – possibly expensive – checking operations, while
an unalterable set of activated join points reduces flexibility.

180 Mariano Cilia et al.

So, on the one hand, the first category of invasive approaches statically binds
reaction and disallows for dynamically dispatching of advice. On the other hand,
the second category facilitates dynamic reaction dispatch but statically binds the
set of join points.

Non-invasive Approaches: Another class of dynamic AOP systems is represented
by the first generation of PROSE [55]. PROSE 1 does not instrument any code;
instead the VM intercepts the execution of join points and dispatches to advice
code whenever a join point is encountered that is matched by a pointcut. PROSE
1 makes use of the Java VM’s debugging facilities [39, 45] to generate events at
join points during application execution and intercept execution there. Hence, it
belongs to the category of systems represented by Fig. 2c. This implementation
– and probably any other implementation treating events as first-class entities of
the run-time environment – suffers from performance overheads introduced by
event generation and processing logic. The running application has to be perma-
nently monitored by the run-time environment. However, using infrastructures
like JPDA [39] allows for dealing with join points in a very flexible way: they
can be arbitrarily activated and deactivated.

Aspect-Aware Runtime Environments: Another category of systems promises to
avoid the performance overhead problem of systems like PROSE 1 while pre-
serving its flexibility with respect to extending and reducing the set of activated
join points. In this category, we classify approaches that are based on aspect-
aware run-time environments. All approaches mentioned so far are characterized
by an impedance mismatch between their aspect-oriented programming model
and their execution model, which is basically that of object-orientation. Truly
AOP-supportive approaches have to address this impedance mismatch by being
based on an execution model explicitly designed to support the requirements of
aspect-oriented programming.

To be aspect-aware, an execution environment must have two prominent
features. First, both join points and advice code have to be dynamically bound.
In that respect, an aspect-aware execution environment combines the advantages
of the two categories of invasive systems mentioned above. A consequence from
this requirement is that such an environment allows for weaving and unweaving
aspect implementations at run-time. To preserve type safety, this leads to the
second consequence that an aspect-aware extension of the type system would be
required. The second important feature of aspect-aware execution environments
is that the environment must itself inherently support weaving.

AspectS [34, 6] and Steamloom [33] are first developments in this category.
AspectS is an extension to the Squeak Smalltalk implementation [36, 58], and
Steamloom is a Java VM extension based on IBM’s Jikes Research Virtual Ma-
chine [38]. Both systems fall into the category represented by Fig. 2a, with the
important feature that all instrumentation of application code is performed at
run-time.

In AspectS, aspects are deployed and undeployed dynamically by sending
appropriate messages to instances of aspect classes. For achieving this, AspectS

The Convergence of AOP and Active Databases 181

makes use of the powerful meta-level of Smalltalk that provides access to con-
structs of the run-time system, such as classes’ method tables, which are available
as normal Smalltalk objects. As such they can be changed on the fly, for example
by (un)deployment methods of aspect objects. In terms of our discussion, As-
pectS only simulates an aspect-aware execution model at the application level:
the actual execution model is that of the underlying Smalltalk implementation,
which is not inherently aspect-aware.

We believe that, by being a new programming paradigm, AOP should be
supported directly by the execution model. This is the motivation for our ongo-
ing work on run-time environments, a first outcome of which is the Steamloom
VM extension [33]. Steamloom allows for (un)weaving aspects at run-time by
recompiling instrumented byte-code fragments that contain calls to advice code
at join points.

3 Towards a Reactive Functionality Service

3.1 On the Convergence of Active Databases and AOP

Both aspects and ECA rules improve the separation of concerns and allow the
implementation of crosscutting concerns. The discussion so far, has shown that
Aspect Oriented Programming and Active Database Functionality present strik-
ing similarities, not only in the basic paradigm of reacting to defined situations
through the execution of code, but also in the invocation mechanisms and primi-
tives used. In this section, we will summarize these commonalities and will briefly
discuss, how we envisage them to converge to what we call reactive functionality.
Table 1 summarizes and compares the features and corresponding terms.

Table 1. Terminology in context

AOP Active Databases
simple situation join points primitive events

complex situation pointcuts composite events
[precise] situation if [AspectJ] condition

reaction advice action
execution immediate coupling modes

As described in Sec. 2.2, we have shown that there exist direct correspon-
dences between join points and primitive events, pointcuts and composite events,
conditionals in AspectJ and conditions in ECA rules, and advice and actions.
An event in an active system denotes the occurrence of a situation that may
lead to the execution of an ECA rule’s action. In turn, the occurrence of a join
point denotes that program execution has reached some specified point at which
the invocation of some additional functionality, the associated advice, becomes
possible.

182 Mariano Cilia et al.

Similar to event occurrences, pointcuts carry also additional information such
as type and additional information (parameters or context). For instance, point-
cuts can be signaled whenever a method m() of a class C is entered or a member
x of an instance of T is accessed. Under these circumstances, the type for these
join points can be METHOD CALL or MEMBER ACCESS respectively. Additionally, the
name of the method or variable in question, the execution stack, etc. can be seen
as contextual information.

Complex pointcuts in AspectJ are composed of primitive pointcut designa-
tors that are combined with logic operators such as && or ||. The only parallel
between this kind of composition and that of composite events (as mentioned
in Section 2.2) is the alternative operator. Sequences and closures of point-
cuts/events are not taken into account, so AspectJ and other existing AOP
approaches do not facilitate the composition of pointcuts to form what can be
called a sequential pointcut.

A sequential pointcut, built using the event sequence operator, is comple-
mentary to the AspectJ cflow pointcut designator [41] that is able to match
pointcuts occurring in the control flow (call tree) of a method. A sequential
pointcut can match pointcuts by taking into account the event history of an
application execution [61]. Such sequential pointcuts have the advantage of en-
abling an aspect to react to far more complex situations.

The task of a condition is to check for circumstances that go beyond the
reach of the event—imagine an aspect or a rule that is to become active on the
first day of the month only. The AspectJ if() pointcut designator [5] represents
an effort to enrich pointcuts by a conditional part. However, the if() condition
may only embrace variables that are bound in the pointcut.

As far as execution modes, AOP so far has been concentrating on syn-
chronous execution of aspects, which corresponds to immediate coupling in active
databases. We have shown that asynchronous execution of aspects may be a use-
ful execution mode and we postulate that it will be necessary as we move toward
a reactive middleware infrastructure. Another point to be taken into account is
the concept of coupling modes. The question to be asked here is if aspect func-
tionality really has to be executed synchronously. The common logging aspect
usually consists of a call to some code that outputs information to a stream. If
this happens synchronously, as with existing AOP implementations, the appli-
cation decorated with the logging aspect pauses for the amount of time needed
for logging. Considering that the output arguments are passed by value, it is
possible to actually process the output in a separate thread and asynchronously
invoke some entry point to that thread, allowing the actual application to pro-
ceed meanwhile.

From the discussion in Sec. 2.3, it becomes clear that the run-time seman-
tics of active databases are richer than the run-time semantics of current AOP
approaches, more specifically AspectJ. There are no correspondences to con-
cepts such as processing granularity and processing algorithm in AOP languages.
While these concepts as they are found in active databases might be “domain-

The Convergence of AOP and Active Databases 183

specific” for the area of databases, it is worthwhile to consider integrating similar
concepts in the design space of AOP languages and systems as well.

In Sec. 2.4, we have shown how different run-time environments require a
more or less invasive decoration of the code to allow for the introduction of
aspects or ECA rules, respectively. We also showed how the different run-time
environments support the binding of rules or aspects at different points in time,
ranging from compile-time to run-time. It is interesting to observe that the
various implementations of today’s AOP run-time environments have their cor-
respondence among the implementations of active database systems.

It is part of our ongoing research to determine to what extent the rich se-
mantics of event algebras, event consumption modes, and coupling modes are
needed in the AOP context. We believe that some form of algebra for the spec-
ification of complex situations will be useful in the AOP context. We further
believe that AOP can benefit from previous experience with event consumption
and asynchronous execution of reactions. On the other hand we are encouraged
by the possibilities that AOP and truly dynamic languages afford us to avoid the
impedance mismatch that results when implementing reactive middleware func-
tionality with static programming languages. However, in order for this to come
true, AOP language technology should evolve from mainly code transformation
techniques toward true run-time support for aspects.

From the predictability point of view and as a consequence of extracting
crosscutting concerns conflicts among them may occur. The AOP community
has paid little attention to this topic that needs further research.

3.2 Toward a Marriage of Distributed Services and Aspects

The last decade in the development of many areas of computer science, including
database technology, middleware, and programming languages, is characterized
by moving from monolithic software systems toward systems that are dynami-
cally composed of autonomous, loosely-coupled components or services, as a way
to react to changes in the environment.

A cornerstone in this development are asynchronous communication mecha-
nisms. In recent years, academia and industry have concentrated on such mecha-
nisms because they support the interaction among loosely-coupled components.
Loosely-coupled interactions promote easy integration of autonomous, heteroge-
neous components into complex applications enhancing application adaptability
and scalability.

For instance, in CORBA event [51] and notification [52] services were intro-
duced to provide a mechanism for asynchronous interaction between CORBA
objects. In the Java platform the Java Message Service (JMS) [32] provides the
ability to process asynchronous messages. JMS has been part of Java Enterprise
Edition (J2EE) [60] since its origin but was incorporated as an integral part of
the Enterprise Java Beans (EJB) component model only in the EJB 2.0 specifi-
cation [19]. It includes a new bean type, known as message-driven bean (MDB),
which acts as a message consumer providing asynchrony to EJB-based applica-

184 Mariano Cilia et al.

tions. This formally introduces the possibility to write pieces of software (beans)
that react to the arrival of messages.

In the late-90s the active database community has moved toward a service-
oriented approach with the purpose to fulfill the requirements of new applica-
tions. In particular, the unbundling approach [29] consists in decoupling the
active part from DBMSs. Various projects like C2offein [42], FRAMBOISE [27],
and NODS [16] have followed this approach. However, they did not address ad-
equately the characteristics of distributed systems, for example, the lack of a
central clock and the impossibility to establish a total order of events [44]. This
has an enormous impact on the composite event detector and also on the under-
lying event algebra. A service-oriented approach that supports distribution and
heterogeneity has been proposed in [15].

In the aspect-oriented software development research several efforts are being
made in developing techniques that postpone aspect weaving ever later in the life
cycle of an application [55, 57, 54, 37, 48]. These approaches are valuable exper-
iments to demonstrate the usefulness of late aspect weaving (be that load-time
or run-time). However, they all build on top of existing object-oriented lan-
guage implementation technology, hence, suffer from impedance mismatch. For
instance, the work on JAC [54, 37] is based on framework, MOP, and byte-code
modification [14] technology, while PROSE 1 [55, 57] builds on the Java Platform
Debugger Architecture [39]. The work on Caesar [49] focuses on language design
rather than language implementation.

First steps toward solving the impedance mismatch of AO systems are being
made [33]. This encourages us to see a new kind of distributed service-oriented
systems emerge. They will be the result of marrying aspect-aware run-time en-
vironments that support an AO model, as the one we envisaged to be the con-
vergence of AOP and active database systems and which also properly supports
distribution and heterogeneity as in [15].

The AOP and the active database approaches need to detect the situation
of interest (e. g., the invocation of a method call and the signal of an event
respectively). In middleware platforms, like CORBA, .NET and J2EE, service
requests and method invocations can be intercepted allowing the possibility of
detecting transparently these situations. Interceptors have the ability to enhance
an existing framework and the support applications transparently [50, 62]. The
container model approach [60, 22] handles this issue by generating code based
on configuration files. In this way the application or component can add selected
services to its functionality by specifying properties in a configuration file. DADO
[64] proposes the use of adaptlets at points where the application interacts with
the middleware supporting in this way programming crosscutting concerns in
distributed and heterogeneous environments.

4 Summary and Ongoing Work

Aspect Oriented Programming and Active Database Functionality present strik-
ing similarities. As far as execution modes, AOP so far has been concentrating

The Convergence of AOP and Active Databases 185

on synchronous execution of aspects, which corresponds to immediate coupling
in active databases. We have shown that asynchronous execution of aspects may
be a useful execution mode and we postulate that it will be necessary as we
move toward a reactive middleware infrastructure.

As it was mentioned before, both aspects and ECA rules improve the sepa-
ration of concerns and allow the implementation of crosscutting concerns. There
are different alternatives to allow the introduction of aspects and ECA rules
into a run-time environment depending on more or less invasive decoration of
the code. It was also shown how the different run-time environments support
the binding of rules or aspects at different points in time, varying from compile-
time to run-time. It must be noticed that there is an impressive correspondence
between the implementation of numerous active database systems and today’s
AOP run-time environments.

As part of our ongoing work we are developing AORTA (Aspect-Oriented
Run-Time Architecture [4]), and a distributed active functionality service [15].
The proof of our hypothesis will come as we implement the distributed active
functionality service on an aspect oriented platform.

Acknowledgments

The authors thank the anonymous reviewers for their helpful comments and
suggestions.

References

1. ACT-NET Consortium. The Active Database Management System Manifesto: A
Rulebase of ADBMS Features. ACM SIGMOD Record, 25(3):40–49, 1996.

2. A. Aiken, J. Widom, and J. M. Hellerstein. Behavior of database production rules:
termination, confluence, and observable determinism. In Proc. of ACM SIGMOD,
pages 59–68, San Diego, California, June 1992.

3. E. Anwar, L. Maugis, and S. Chakravarthy. A new perspective on rule support for
object-oriented databases. In Proc. of ACM SIGMOD, pages 99–108, Washington,
D.C., May 1993. ACM Press.

4. AORTA Home Page. http://www.st.informatik.tu-darmstadt.de/static/
pages/projects/AORTA/AORTA.jsp.

5. AspectJ Home Page. http://aspectj.org/.
6. AspectS Home Page.

http://www-ia.tu-ilmenau.de/˜hirsch/Projects/Squeak/AspectS/.
7. Elena Baralis and Jennifer Widom. An Algebraic Approach to Static Analysis of

Active Database Rules. ACM Transactions on Database Systems, 25(3):269–332,
2000.

8. H. Branding, A. P. Buchmann, T. Kudrass, and J. Zimmermann. Rules in an Open
System: The REACH Rule System. In Proc. of RIDS, pages 111–126. Springer,
1993.

9. A. Buchmann. Architecture of Active Database Systems, chapter 2, pages 29–48.
In Paton [53], 1999. In Paton, N. 1999.

186 Mariano Cilia et al.

10. S. Chakravarthy. SENTINEL: An Object-Oriented DBMS With Event-Based
Rules. In Proc. of ACM SIGMOD, pages 572–575, Tucson, Arizona, USA, May
1997.

11. S. Chakravarthy, V. Krishnaprasad, Z. Tamizuddin, and R. H. Badani. ECA Rule
Integration into an OODBMS: Architecture and Implementation. In Philip S. Yu
and Arbee L. P. Chen, editors, Proc. of ICDE, pages 341–348, Taipei, Taiwan,
March 1995. IEEE Computer Society.

12. Sharma Chakravarthy, V. Krishnaprasad, Eman Anwar, and S.-K. Kim. Composite
events for active databases: Semantics, contexts and detection. In Proc. of VLDB,
pages 606–617, Santiago de Chile, Chile, September 1994. Morgan Kaufmann.

13. S. Charkravarthy, V. Krishnaprasad, E. Anwar, and S. Kim. Composite Events for
Active Databases: Semantics, Contexts and Detection. In Proc. of VLDB, pages
606–617, September 1994.

14. S. Chiba. Load-Time Structural Reflection in Java. In Elisa Bertino, editor, Proc.
of ECOOP, volume 1850 of LNCS, pages 313–336. Springer, 2000.

15. M. Cilia. An Active Functionality Service for Open Distributed Heterogeneous En-
vironments. Ph.D. Thesis, Department of Computer Science, Darmstadt University
of Technology, Darmstadt, Germany, August 2002.

16. C. Collet. The NODS Project: Networked Open Database Services. In K. Dittrich
et.al., editor, Object and Databases 2000, number 1944 in LNCS, pages 153–169.
Springer, 2000.

17. U. Dayal, A. Buchmann, and D. McCarthy. Rules are Objects Too. In Proc. of
Intl. Workshop on Object-Oriented Database Systems, volume 334 of LNCS, pages
129–143, Bad Muenster am Stein, Germany, September 1988. Springer-Verlag.

18. U. Dayal and et al. The HiPAC Project: Combining Active Databases and Timing
Constraints. ACM SIGMOD Record, 17(1), March 1988.

19. L. DeMichiel, L.U. Yalcinalp, and S. Krishnan. Enterprise JavaBeans. Technical
Report Version 2.0, Sun Microsystems, JavaSoftware, August 2001.

20. O. Dı́az, N. W. Paton, and P. Gray. Rule management in object oriented databases:
A uniform approach. In Proc. of VLDB, pages 317–326, Barcelona, Catalonia,
Spain, September 1991. Morgan Kaufmann.

21. K. Dittrich, H. Fritschi, S. Gatziu, A. Geppert, and A. Vaduva. SAMOS in Hind-
sight: Experiences in Building an Active Object-Oriented DBMS. Technical Report
2000.05, Institut fuer Informatik, University of Zurich, 2000.

22. Microsoft .NET Home Page. http://www.microsoft.com/net/.
23. R. Douence, O. Motelet, and M. Südholt. A Formal Definition of Crosscuts. Tech-

nical Report 01/3/INFO, École des Mines de Nantes, 4 rue Alfred Kastler, 44307
Nantes cedex 3, France, 2001.

24. R. Douence and Mario Südholt. A Model and a Tool for Event-Based Aspect-
Oriented Programming (EAOP). Technical Report 02/11/INFO, Ecole des Mines
de Nantes, 2002.

25. EAOP Home Page. http://www.emn.fr/x-info/eaop/.
26. T. Elrad, R. Filman, and A. Bader. Aspect-oriented programming. CACM,

44(10):29–32, October 2001.
27. H. Fritschi, S. Gatziu, and K. Dittrich. FRAMBOISE - an Approach to Framework-

based Active Data Management System Construction. In Proceedings of CIKM’98,
pages 364–370, Maryland, November 1998.

28. S. Gatziu and K. R. Dittrich. Events in an Active Object-Oriented Database
System. In Proc. of RIDS, Workshops in Computing, pages 23–29. Springer, 1993.

29. S. Gatziu, A. Koschel, G. v. Buetzingsloewen, and H. Fritschi. Unbundling Active
Functionality. ACM SIGMOD Record, 27(1):35–40, March 1998.

The Convergence of AOP and Active Databases 187

30. N. Gehani, H. Jagadish, and O. Shmueli. Composite Event Specification in Active
Databases: Model & Implementation. In Proc. of VLDB, pages 327–338, August
1992.

31. E. N. Hanson. An Initial Report on The Design of Ariel: A DBMS With an
Integrated Production Rule System. SIGMOD Record, 18(3):12–19, 1989.

32. M. Hapner, R. Burridge, and R. Sharma. Java Message Service. Specification
Version 1.0.2, Sun Microsystems, JavaSoftware, November 1999.

33. M. Haupt, C. Bockisch, M. Mezini, and K. Ostermann. Towards Aspect-Aware
Execution Models. http://www.st.informatik.tu-darmstadt.de/database/
publications/data/ObjectModelDraft.pdf?id=75. Submitted for review.

34. R. Hirschfeld. Aspect-Oriented Programming with AspectS.
http://www-ia.tu-ilmenau.de/˜hirsch/Projects/Squeak/AspectS/Docs/
AspectS_NODe02_Erfurt2_rev.pdf.

35. HyperJ Home Page.
http://www.research.ibm.com/hyperspace/HyperJ/HyperJ.htm.

36. D. Ingalls, T. Kaehler, J. Maloney, S. Wallace, and A. Kay. Back to the Future:
the Story of Squeak, a Practical Smalltalk Written in Itself. In Proc. of OOPSLA,
pages 318–326. ACM Press, 1997.

37. JAC Home Page. http://jac.aopsys.com/.
38. The Jikes Research Virtual Machine. http://www-124.ibm.com/developerworks/

oss/jikesrvm/.
39. Java Platform Debugger Architecture Home Page. http://java.sun.com/j2se/

1.4.1/docs/guide/jpda/index.html.
40. A. P. Karadimce and S. D. Urban. Conditional Term Rewriting as a Formal Basis

for Active Database Rules. In Proc. of RIDE’94, pages 156–162, February 1994.
41. G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Griswold. An

Overview of AspectJ. In J. Lindskov Knudsen, editor, Proc. of ECOOP, volume
2072 of LNCS, pages 327–353. Springer, 2001.

42. A. Koschel and P. Lockemann. Distributed Events in Active Database Systems -
Letting the Genie out of the Bottle. Data & Knowledge Engineering, 25(1-2):29–53,
March 1998.

43. T. Kudrass, A. Loew, and A. Buchmann. Active Object-Relational Mediators. In
Proc. of CoopIS, pages 228–239, Brussels, Belgium, September 1996.

44. C. Liebig, M. Cilia, and A. Buchmann. Event Composition in Time-dependent
Distributed Systems. In Proc. of CoopIS, pages 70–78, September 1999.

45. T. Lindholm and F. Yellin. The Java Virtual Machine Specification. Addison-
Wesley, 2nd edition, 1999.

46. H. Masuhara and G. Kiczales. A Modeling Framework for Aspect-Oriented Mech-
anisms. In L. Cardelli, editor, Proc. of ECOOP. Springer, 2003.

47. M. Mezini and K. Ostermann. Modules for Crosscutting Models. In Proceedings of
the 8th International Conference on Reliable Software Technologies (Ada-Europe
2003), 2003.

48. M. Mezini and K. Ostermann. Object Creation Aspects with Flexible Aspect
Deployment.
http://www.st.informatik.tu-darmstadt.de/staff/Ostermann/aosd02.pdf.

49. M. Mezini and K. Ostermann. Conquering Aspects with Caesar. In Proc. of AOSD.
ACM Press, 2003.

50. P. Narasimhan, L. Moser, and P. Melliar-Smith. Using Interceptors to Enhance
CORBA. IEEE Computer), 32(7):62–68, July 1999.

51. Object Management Group. Event Service Specification. Technical Report
formal/97-12-11, Object Management Group (OMG), May 1997.

188 Mariano Cilia et al.

52. Object Management Group. CORBA Notification Service Specification. Technical
Report telecom/98-06-15, Object Management Group (OMG), May 1998.

53. N. Paton, editor. Active Rules in Database Systems. Springer, 1999.
54. R. Pawlak, L. Seinturier, L. Duchien, and G. Florin. JAC: A Flexible Solution

for Aspect-Oriented Programming in Java. In Proc. of Metalevel Architectures
and Separation of Crosscutting Concerns (REFLECTION 2001), volume 2192 of
LNCS, pages 1–24, Kyoto, Japan, September 2001. Springer.

55. A. Popovici, T. Gross, and G. Alonso. Dynamic Weaving for Aspect-Oriented
Programming. In G. Kiczales, editor, Proc. of AOSD. ACM Press, 2002.

56. A. Popovici, T. Gross, and G. Alonso. Just-in-Time Aspects. In Proc. of AOSD.
ACM Press, 2003.

57. PROSE Home Page. http://prose.ethz.ch/.
58. Squeak Home Page. http://www.squeak.org/.
59. M. Stonebraker, A. Jhingran, J. Goh, and S. Potamianos. On Rules, Procedures,

Caching and Views in Data Base Systems. In H. Garcia-Molina and H. V. Jagadish,
editors, Proc. of ACM SIGMOD, pages 281–290, Atlantic City, NJ, May 1990.

60. Sun Microsystems. Java 2 Enterprise Edition Platform Specification. Technical
Report Version 1.3, Sun Microsystems, JavaSoftware, August 2001.

61. R. J. Walker and G. C. Murphy. Joinpoints as Ordered Events: Towards Applying
Implicit Context to Aspect-Orientation. In Proceedings for Advanced Separation
of Concerns Workshop, 2001.

62. N. Wang, K. Parameswaran, and D. Schmidt. The design and performance of
metaprogramming mechanism for object request broker middleware. In Proc. of
COOTS’01, January 2001.

63. J. Widom and S. Ceri, editors. Active Database Systems: Triggers and Rules for
Advanced Database Processing. Morgan Kaufmann, 1996.

64. E. Wohlstadter, S. Jackson, and P. Devanbu. DADO: Enhancing middleware to
support cross-cutting features in distributed, heterogeneous systems. Technical
report, Computer Science Dept., University of California at Davis, June 2003.
http://macbeth.cs.ucdavis.edu/dado.pdf.

65. Y. Zhou and M. Hsu. A theory for rule triggering systems. In Proc. of EDBT,
volume 416 of LNCS, pages 407–421, Venice, Italy, March 1990. Springer.

66. J. Zimmermann and A. Buchmann. REACH, chapter 14, pages 263–277. In Paton
[53], 1999. In Paton, N. 1999.

67. D. Zimmer and R. Unland. On the Semantics of Complex Events in Active
Database Management Systems. In Proc. of ICDE, pages 392–399, Sydney, Aus-
tralia, March 1999. IEEE Computer Society Press.

	1 Introduction
	2 Active Databases and AOP Side-by-Side
	2.1 Origins and Basic Concepts
	2.2 De.nition of Situations and Reactions
	2.3 Run-Time Semantics
	2.4 Run-Time Environments

	3 Towards a Reactive Functionality Service
	3.1 On the Convergence of Active Databases and AOP
	3.2 Toward a Marriage of Distributed Services and Aspects

	4 Summary and Ongoing Work
	References

