
ACTrESS - Automatic Context Transformation in
Event-Based Software Systems

Tobias Freudenreich, Stefan Appel, Sebastian Frischbier, Alejandro P. Buchmann
Databases and Distributed Systems, TU Darmstadt

lastname@dvs.tu-darmstadt.de

ABSTRACT
Event-based systems (EBS) enable companies to respond to
changes in their environment in a timely manner. To in-
terpret event notifications, knowledge about their context is
essential. The matching mechanisms of publish/subscribe
systems depend on a common interpretation of event no-
tifications and subscriptions that may span organisational
boundaries. To mediate between such semantic contexts,
we developed ACTrESS, a distributed middleware addon
for automatic context transformation in event-based soft-
ware systems and message-oriented middleware (MOM) in
general. Transformations are substitutable at runtime and
transparent to the user. ACTrESS is built on top of a pro-
duction strength open source MOM extending the Java Mes-
sage Service API. In this paper we present the challenges
arising from differing contexts in event-based systems. We
introduce ACTrESS and evaluate our solution using work-
loads derived from findings from research projects dealing
with real-world applications of EBS.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distrib-
uted Systems; D.2.12 [Software Engineering]: Interoper-
ability—data mapping, distributed objects

General Terms
Management, Performance

Keywords
event-based systems, middleware, context mediation, event
semantics, contextualization, transformation

1. INTRODUCTION
Event-based systems (EBS) enable enterprises to react to

meaningful events in their environment in a timely manner.
They decouple participants and allow for handling software

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DEBS ’12, July 16–20, 2012, Berlin, Germany.
Copyright 2012 ACM 978-1-4503-1315-5 ...$15.00.

systems dynamically joining and leaving business relation-
ships over time [10, 23, 43]. Producers and consumers of
events are usually independently developed software com-
ponents. This is a key advantage of EBS, as components
are loosely coupled. In fact, producers and consumers are
decoupled in time, space and synchronization [15]. They
are connected by a notification infrastructure, often called a
message-oriented middleware (MOM) in which event notifi-
cations are passed from producers to consumers in the form
of messages.

In today’s economy, supply chains comprise of different
companies around the globe. They require many different
participants and their software systems to cooperate in dy-
namically changing relationships. In such a setting, a com-
pany has to continuously accumulate information from dif-
ferent participants to decide on stock-levels, lot-sizes and
opportunities in sales. This includes capturing and pro-
cessing information about meaningful events generated by
production processes and flows of goods.

Today’s supply chains lead to a heterogeneous software
landscape in which components are developed independently.
The problem of data and application integration has been
researched intensely for business applications [26] and even
commercial solutions like Informatica R© exist. EBS are typi-
cally heterogeneous systems, in which clients of different ven-
dors can be used for publishing and subscribing to events.
However, EBS have unique properties that require a new
approach to making applications understand each other’s
data: (1) communication partners are usually anonymous,
thus a consumer cannot identify the producer of an event no-
tification; (2) (newly developed) producers and consumers
join and leave the EBS during runtime and on the fly; (3)
communication happens quick and nearly in real-time, thus
high latencies must be avoided; and (4) often, there is no
governing instance, as communication happens between mu-
tual partners. Thus, agreeing on a globally accepted data
schema, structure and interpretation is not a feasible solu-
tion in real-world settings [25, 32, 3].

A component’s context, which is a set of external param-
eters (e.g., programming language or unit system in country
of use), defines how data is interpreted. Therefore, we ad-
vocate context-transformation in publish/subscribe MOM,
to avoid redundancies and unburden resource-constrained
producers and consumers (e.g., nodes in wireless sensor net-
works or mixed-mode systems). Our approach caters to the
specifics of EBS. We assume that a single producer or con-
sumer is a homogeneous component and thus allow each pro-

ducer and consumer to specify a data interpretation context.
Our contributions are:

• we identify challenges for context transformation mech-
anisms in general;

• we model data interpretation contexts as modular, re-
usable units tailored to the characteristics of EBS as
outlined above;

• we suggest a distributed architecture that allows for
modifications at runtime, supporting the dynamic na-
ture of EBS;

• we provide a prototypic implementation of our design
(ACTrESS), by modifying an existing JMS middle-
ware, showing that the principles proposed can be in-
tegrated into industrial-strength middleware; and

• we evaluate our prototype, showing that our solution
does not impose measurable overhead and is advan-
tageous to approaches employing techniques like self-
describing messages.

The remainder of this paper is structured as follows: Sec-
tion 2 gives some background information on event-based
systems and handling of contexts followed by a discussion
of related work on semantics and contexts. In Section 3
we present the design of our approach to describe and im-
plement distributed context transformation in detail. We
discuss our implementation in Section 4. The evaluation of
our approach is presented and discussed in Section 5. Sec-
tion 6 concludes this paper with a summary of our findings
and a brief outlook on future work.

2. BACKGROUND
In traditional, pull-based database systems, data is rather

static and conforms to known schemata. In contrast, event-
based systems have to deal with highly dynamic streams of
information. Data is not known a priori and neither are
communication partners. This creates new challenges when
dealing with differing contexts. We developed ACTrESS to
meet these challenges and enable automatic context trans-
formation in notification-based systems.

2.1 Running example
We will use a running example for illustration purposes:

today’s supply chains are complex and involve many com-
panies around the globe. The need for a continuous flow of
information between the participants has increased signifi-
cantly with the adoption of time-sensitive production strate-
gies like just-in-time production. Manufacturers need to
know the delivery status of components delivered by sub-
contractors (including geographical position and estimated
time of delivery) to adapt as early as possible to any dis-
turbances in stock supply. However, providers can use a
multitude of data formats to provide positioning informa-
tion. For example, latitude/longitude coordinates as found
in GPS tracking systems are as valid as addresses. Further-
more, almost every country has its own mail address format.

A seamless information flow is also needed for dynamic
price calculation. Logistics providers can make better offers
if they can achieve higher capacity utilization. To calcu-
late which container and vehicle to use, they need measure-
ment and weight information from their customers. The

customers in turn can use information about available space
to get information about transportation capacity, allowing
for dynamic planning. However, different software systems
are likely to use different units. In world-wide settings, this
can be caused by different unit systems (e.g., Metric vs. Im-
perial) and even within one unit system, there are different
choices (e.g., giving weight in grams or kilograms).

These scenarios are not a mind construct but grounded
on two ongoing research projects DynamoPLV1 and Emer-
gent2, dealing with the seamless integration of production,
logistics, traffic management and transportation. Software
systems communicate with one another in an n-to-m fashion,
often without directly knowing their communication part-
ners.

2.2 Context
The word context has different meanings, depending on

the discipline and application domain in which it is used.
For example, in ubiquitous computing, context often refers
to the user’s situation or the state of his/her environment [1].
On the other hand, natural language processing researchers
characterize context as the environment of a word in a sen-
tence or text [27]. For the purpose of this paper, we see
context as a set of external parameters that lead to a certain
interpretation of data. Since a single producer or consumer
can be assumed to be a homogeneous component, it makes
sense to assign a set of transformation rules to each of them.
This set of transformation functions makes up the external
parameters. More specifically, a context (i.e., the set of ex-
ternal parameters) is a set of data types and an assignment
of units (e.g., meters for distance) to each attribute of each
data type. A context may also contain mapping instruc-
tions. Thus, we treat transformation contexts as first-class
citizens in a message-oriented middleware. Our definition of
transformation contexts enables easy structuring, reuse and
extensibility.

We want to illustrate this with our running example: a
logistics provider informs its customers about spare space
available in a container, hoping to fill that spare space and
offering a special price as incentive. Even if spare space
events are just composed of three coordinates for the avail-
able space and an attribute for the available weight, individ-
ual software components may have different names for these
attributes (e.g., x/y/z/w or height/width/depth/weight).
Thus, each spare space event must be mapped to the cus-
tomer’s internal data type(s). Even if structure is the same,
meaning might still vary. For example, the measurements
of the available space are in centimeters for a Europe-based
logistics provider. In an American company however, mea-
surements might always be treated in inches and if data is
not transformed, miscalculations will occur. Thus, the value
itself needs to be converted, which is only possible if source
unit and target unit are known.

2.3 Context Transformation Challenges
Hinze et al. analyzed application domains and identified a

core set of features that are typical for event-based applica-
tions [23]. We analyzed those domains with regard to event
producers and consumers residing in different contexts. We
identified value semantics, event representation, as well as

1www.dynamo-plv.de
2www.software-cluster.com

extensibility and scalability as the three core challenges in
addition to the specifics of event-based systems.

2.3.1 Specifics of event-based systems
In event-based systems consumers do not know the iden-

tity of producers and vice versa. Thus, consumers are unable
to interpret data correctly unless event notifications always
follow a globally agreed schema, or consumers get some in-
formation about the data. A third option is to deliver the
data in a way that ensures the consumer receives it in the
way expected.

Matching event notifications to subscriptions also requires
context mediation, as subscriptions might be issued with
different data interpretation in mind (e.g., boundaries to an
attribute’s value). This is imperative as EBS are designed
for communications with rapidly changing partners.

2.3.2 Value Semantics
Values of events can have very different meanings. The

value itself often does not yield enough information that al-
lows correct interpretation in all contexts. Even within one
system, a simple number is often ambiguous. Correct in-
terpretation of the value, however, is crucial and automatic
inference of the unit is impossible due to similar magnitude
of some units, e.g. yards and meters. Currency compli-
cates the problem with different units, as exchange rates are
very dynamic. Thus, the conversion function must know
whether to use the time of event production, the current
time or some fixed point in time. There are numerous ways
to express time: 13h, 13:00, 13:00:00, 1 pm, 1:00 pm are
all valid notations for one hour after noon. In addition, the
specified time might refer to global time, or local time. Lo-
cal time can refer to the local time zone with or without
the hour for daylight saving time included. Alternatively, a
relative local time could indicate that the given time is the
time that passed since another event occurred. Many noti-
fications carry location information. This might be in the
form of an absolute location (e.g. GPS coordinates) or in
relation to another object. Furthermore, location can refer
to logical or physical coordinates.

2.3.3 Event Representation
Event-based systems have an internal event representa-

tion, called event model : There are several ways to repre-
sent the structure of an event notification [31]. Notifications
can be structurally typed or have no predefined structure.
To allow flexibility even in typed systems, Oki et al. sug-
gest self-describing notification objects [28]. They suggest to
employ adapters at the client-side to map between different
structures. However, when new producers join the system,
several consumers will have to be modified to understand the
new structural formats. Some EBS allow defining their event
notifications in a hierarchical way, similar to object-oriented
programming [16], while others have a flat, non-hierarchical
representation [9]. Notifications can be represented in the
Extensible Markup Language (XML), some binary format
or any other, suitable format. Each notification has a set
of attributes with corresponding values. However, the set
of attributes can differ between two applications, even for
the same application domain or two different versions of the
same application.

Usually, a label identifies notification attributes. However,
labels for a specific value can be ambiguous. For example,

the identification number for an event is usually labeled ’id’
but might as well carry the label ’identifier’.

2.3.4 Extensibility and Scalability
Extensibility has become a key requirement for nearly any

software. A context transformation middleware must be ex-
tensible so that the clients can at least add new transforma-
tion information.

Message-oriented middleware often provides a mechanism
to distribute the middleware across multiple servers. This
allows scaling with an increasing amount of clients. Support-
ing context transformation in the middleware must account
for that. Consequently, context handling should not hamper
scalability.

2.4 Related Work
In our analysis of related work, we identified two cate-

gories of existing approaches: context mediation in pub-
lish/subscribe systems to improve matching algorithms, and
integrating different data sources. The latter has been re-
searched intensively in the data integration community, but
we will give related work only on a few selected aspects,
as our focus is on context mediation in publish/subscribe
systems. Most related work exhibits one or more of the
following shortcomings: (i) solutions operate on databases
and use expensive computations, which are too complex for
event-based systems (ii) approaches require an immutable
definition of the common ground and (iii) they rely on a
global definition of it.

Researchers identified the need to consider semantics when
dealing with events [11, 34]. Cilia et al. suggest that the in-
tegration of new clients into an event-based system in pres-
ence of data heterogeneity requires mediators [11] and ”ex-
plicit information about the semantics of events” [12]. They
advocate enhancing the notification mechanism by allowing
producers to pass semantic information and consumers to
receive data in their semantic context. To exchange seman-
tic information, they use a self-describing model described in
[5]. While their ideas have influenced our work, our approach
stores context information inside the broker network for per-
formance reasons (see Section 5) while remaining modular
and flexible. Furthermore, we show that our approach can
be integrated into existing, standard software. Scherp et al.
introduce an event model which supports different event in-
terpretations. They approach semantics from another angle
and argue that the same event or set of events can have dif-
ferent interpretations and causality, depending on the con-
text of the observer. Their work is more conceptual and
focused on developing a sound event model. Thus, they do
not provide any mechanism how to transform between dif-
ferent interpretations.

Some related work addresses the field of matching meta-
data and subscriptions semantically. Ruotsalo and Eyvö-
nen argue that different metadata schemas hinder interop-
erability and promote the idea to transform the individual
schemas into a shared representation [32]. Their work fo-
cuses on the development of mapping rules. Skovronski and
Chiu describe a framework for a publish/subscribe system,
which uses semantic data to improve the expressiveness of
the subscription formulation language [36]. The focus of
their work lies on making subscriptions interoperable. The
Semantic Toronto Publish/Subscribe System (S-ToPSS) [29]

also aims at bringing semantics into publish/subscribe sys-
tems. S-ToPSS uses ontologies to match message data to
subscriptions, making use of synonyms, relationship knowl-
edge or direct mapping functions. The authors do not rely
a on single, global ontology, as they believe that there will
be multiple, domain-specific ontologies instead. Wang et al.
build on this idea and introduce a publish/subscribe system
where subscribers express their interest in events in the form
of graph patterns [42]. They use the Resource Description
Framework (RDF) to represent events, converting incom-
ing events into RDF automatically. However, they deliver
events to the subscribers always in RDF.

A lot of work has been done by Blair et al. in the context
of the European research project Connect [3, 21, 2] and
preceding work on reflective middleware [4] on the role of
ontologies in establishing interoperability in heterogeneous
and distributed software systems. Their goal is to provide
automatically generated software connectors to mediate be-
tween software systems that are heterogeneous in regard to
data (syntax and semantics) and application behavior. To
that end, participating systems (networked systems) seman-
tically enrich advertisements about the services they offer
and requests for the services they want to consume. This
information is provided by the use of different Discovery
Protocols. Discovery Enablers collect these requirements
and use machine learning algorithms encapsulated in Learn-
ing Enablers to find matchings between supply and demand
of those heterogeneous services. Based on the output and
the models stored in a Model Repository, Synthesis Enablers
generate software connectors to mediate between requested
and supplied services. Their work is complementary to ours
for three reasons: (1) scope: the focus of Connect is to
provide mediators at runtime so that systems with hetero-
geneous behavior and service descriptions can be hooked up;
ACTrESS in turn is designed to work in message-based sys-
tem federations that are already hooked up, focusing on het-
erogeneity of the data exchanged instead of heterogeneous
application behavior; (2) approach: Connect makes heavy
use of ontologies and machine learning to discover first and
foremost the functionality of systems; ACTrESS in turn uses
lightweight context descriptions which could be the result of
such learning techniques; (3) architecture: Connect’s Dis-
covery Enablers have to rely on hard-wired plug-ins for each
Discovery Protocol to interpret the data encapsulated in the
advertisements and service-requests correctly; ACTrESS in
turn aims exactly at transforming these different interpreta-
tions of advertisements and notifications.

Wache and Stuckenschmidt describe a model for context
transformation to achieve semantic interoperability between
different information sources [38, 41]. Their approach uses
description logic in first order logic to describe ontologies for
the specific application domain, which they call the shared
vocabulary. They establish the shared vocabulary for all in-
formation sources, before performing transformations. Fur-
thermore, they suggest two different kinds of context trans-
formation: rule-based functional transformation and classi-
ficationbased transformation and give a unifying model. Wa-
che and Stuckenschmidt focus on presenting a formal model
for context transformation, which they prove to be correct
and complete for their example domain. They integrated
their approach into a system, which operates on a database.
Guo and Sun suggest a concept-centric approach to exchange
product data between companies [22] with a focus on the do-

main of e-commerce data exchange. They suggest assigning
a context to each company, and transform from one context
to another when a company requests data. Their approach
encompasses assigning concepts to product data, which is
then transformed between contexts. Using contexts and
concepts, they suggest creating XML product maps, which
may then be queried by other companies. Similar to our
approach, they advocate a common concept in relation to
which other concepts are defined. However, they require all
participants to agree on a global concept. Obtaining infor-
mation from various heterogeneous databases is a similar
problem. Researchers argue that a mediator should rewrite
database queries and query results to abstract from differ-
ent representations and units [7]. Gannon et al. extended
this idea by developing a language that allows integrating
new information sources by specifying transformation rules
[20]. Both approaches cover only pull-based, static database
access, with a known recipient of the requested data.

Our approach focuses on the dynamic and fast nature that
is an inherent property of messaging systems. We built a
system that is tailored to event-based systems, operating
with low latencies and being modifiable at runtime, thus
we do not rely on a fixed set of data or rules. New pro-
ducers and consumers can easily be integrated, with little
to no adaptation needed, as data transformation functional-
ity is offloaded to the middleware. Furthermore, we do not
rely on a globally accepted common ground. In fact, produc-
ers and consumers can connect to different message-oriented
middleware systems (e.g., from different companies) at the
same time, using a different context for each.

3. ACTRESS DESIGN
We suggest the following abstract architecture for distrib-

uted message brokers like Siena [9], Padres [18], Hermes [30],
or peer-to-peer based approaches [39]: connections to pro-
ducers and consumers are handled by a Connection Han-
dler. Messages arriving at the broker must pass through the
Context Handler, before being sent to the Message Handler.
Likewise, outbound messages pass through the Context Han-
dler, before being passed to the Connection Handler to be
sent via the network (see Figure 1).

Upon receiving a message from a producer (P), the Con-
text Handler uses its Transformation Engine to transform
the message into the root context. The Transformation En-
gine looks up the respective client’s context in the Client-
Context-Mapping and queries the Context Repository for
the context. After the transformation, the message is passed
to the Message Handler and the middleware can then pro-
cess the message further, e.g., calculating routing informa-
tion or comparing it against existing subscriptions. Once
the message reaches the fringe of the broker network and
is about to be sent to the consumer (C), the Context Han-
dler of the node at the fringe transforms the message from
the root context into the consumer’s context. Likewise, sub-
scriptions from consumers are translated as well, so that
each consumer may issue subscriptions in their own context
(data flow of subscriptions is not shown in the figure).

Note that only the participants of the same broker net-
work need to establish a root context, there is no need for
a globally accepted agreement. Different root contexts can
be used in different broker networks (in an extreme case
the root context could even differ between individual bro-
kers). Messages can even be passed between these broker

networks by the same means as messages are exchanged be-
tween a broker network and its clients. Note that enforcing
a globally accepted root context would reduce complexity
even further, but does not reflect our typical event-based
applications in which there is no central controlling unit.

pub/sub broker

Connection

Handler

Message

Handler
Context

Handler

Context Handler

Context

Repository

Client-

Context-

Mapping

Transfor-

mation

Engine

pub/sub broker

pub/sub broker

pub/sub broker

pub/sub broker

pub/sub broker

P

C

Figure 1: Abstract architecture of our solution.
Each message and subscription passes through the
Context Handler. The producer (P) and consumer
(C) shown do not necessarily share the same con-
text.

3.1 Context Repository
The Context Repository stores context definitions. Con-

texts are identified by a unique identifier. Since each node
has its own Context Handler, context repositories may con-
tain differing content. This is useful, as only the necessary
contexts need to be stored. However, it might be desirable
for consistency reasons or dynamic load balancing to have a
shared repository across all nodes. Any suitable algorithm
for data exchange in distributed storage can be used for that
[35, 24]. As we have shown in previous work, we can inte-
grate the necessary maintenance messages into the regular
network traffic with little overhead [17].

If the middleware uses channel-based routing, transfor-
mations can be performed on any node along the routing
path, allowing for highly flexible load balancing. However,
nodes that want to transform the message must be able to
obtain knowledge about the producer’s or the consumer’s
context. If the Context Repository contains the required
context (for example because the repository is replicated
across all nodes), the node can simply query its own local
copy. Alternatively, nodes could be allowed to query the bro-
ker network for specific contexts. Both approaches require a
naming scheme, to identify contexts uniquely. We suggest a
hierarchical naming scheme, similar to class naming schemes
in modern object-oriented programming (OOP) languages.
The identifier could consist of the node’s unique identifier

concatenated with the context’s identifier within the node.
With content-based routing, transformations must occur at
the gateway nodes, because routing information is calculated
based on message content and consequently, the message
must be in the root context.

3.2 Context Specification
The middleware cannot know the context of a client with-

out any prior knowledge. Thus, producers and consumers
must specify which context they use when processing event
notifications. To keep definitions simple and usable, we ad-
vocate specifying a context in relation to another context.
Further, to greatly reduce n×m complexity, we propose to
have a root context, which acts as a reference point for other
context definitions, similar to [11]. Since we support a dif-
ferent root context on each broker node, complexity stays at
n ×m in theory. However, in practice the number of bro-
ker nodes is much less than the number of producers and
consumers and not all broker nodes are interconnected. Our
design does not require the root context to be defined before
operation starts. In fact, message types can be added to the
root context at runtime.

Producers and consumers either reuse an existing context,
referencing it by its identifier, or provide their own specifi-
cation. They can specify their context in relation to another
context. Note that this does not necessarily have to be the
root context. Thus, our design allows for context hierarchies
(see Figure 2), similar to type hierarchies in OOP languages,
keeping specification and maintenance efforts at a minimum.
By design, producers and consumers do not need any knowl-
edge about other participants’ contexts. They do not even
need to know which other clients are connected.

root

Europe

German

US

C2

C1

C4

C3

Figure 2: Context example. Client C1 has been de-
faulted to the root context. C2 has the US context,
while C3 and C4 both have the German context,
which inherits all definitions of the Europe context.

The root context consists of a set of event notification
types and common conversion functions (e.g. unit conver-
sions). Event notification types are a set of attributes, each
of which has its own data type, as it is common in most
programming languages. It is also important that the root
context defines the unit in which it expects values. This can
be achieved by additional information carried by the data
type (e.g. meters for the attribute “distance”) or implicitly
by the data type (e.g. UniversalAddress vs. USAddress).
Figure 3(a) shows an example for a root context. The Po-

sitionUpdate notification type has a set of attributes defin-
ing a position update of a delivery vehicle. Since the data

Types

PositionUpdate

coordinates:Position

x:float

y:float

distanceRemaining:float [meters]

destAddress:UniversalAddress

firstName:String

lastName:String

specifics:String

Transformation Rules Conversion Functions

meters-to-yards: value*1.09
meters-to-feet: value*3.28
meters-to-inch: value*39.37

..
.

(a) Example Root Context

Types

PositionUpdate

coordinates:Position

x:float

y:float

distanceRemaining:float [yards]

destAddress:USAddress

firstName:String

lastName:String

street:String

Transformation Rules Conversion Functions

toUSAddress = {

// conversion

}

zip:String

..
.

UniversalAddress toUSAddress

LogInfo.UniversalAddress identity

(b) US Context

Figure 3: Example context definition

type float does not implicitly define its unit, the unit for
the remaining distance is explicitly stated. Among the Po-

sitionUpdate notification type are other types (indicated
by the small, nested structures). The set of transformation
rules is empty and the conversion functions are a set of var-
ious unit conversions.

A context defines its own event notification types and ad-
ditionally, a set of rules how to transform from/to the root
context’s event notification types (note that a single con-
text can only define transformations either to or from the
root context). Since often only a few attributes have to be
converted, we allow for a very fine grained rule definition, de-
tails can be found in [14] including conflict resolution mecha-
nisms. Often, this is enough to transform event notifications
from or to the root context. However, some transformations
might require custom conversion functions. Thus, a context
may also provide conversion functions as part of its defini-
tion. These functions may overload existing functions from
higher up the hierarchy. New contexts only need to specify
the differences to their parent context. This allows clients
to reuse existing context definitions easily.

As an example, refer to Figure 3(b). It illustrates how a
US context can be defined. Note that PositionUpdate now
contains a USAddress attribute, rather than a UniversalAd-

dress attribute. This of course means that – at least from a
programming language perspective – the two types are not
compatible. However, since we aim at tailoring the notifica-
tions to the client’s needs, this is not a problem. As in the
root context, the unit for the remaining distance is explicitly
stated. In addition, the transformation rules define which
conversion function to use for transforming UniversalAd-

dress attributes. The first rule states that all attributes of
type UniversalAddress should be converted to US addresses
with the provided function. However, logging functional-
ity should not be affected and thus, the identity function

should be applied to UniversalAddress attributes appear-
ing in LogInfo types (representing an item to be logged).

Figure 4 shows an example event notification transfor-
mation when converting a PositionUpdate from the root
context to the USContext. For easier readability, we chose
XML as the data representation, but any other representa-
tion is possible as well. The remaining distance is converted
with the standard unit conversion functions, while the desti-
nation address is converted using the toUSAddress function
(as stated in the rules).

3.3 Extending the Root Context
In Section 2 we argue that the root context must be exten-

sible. Our design allows for easy and seamless extension of
the root context. New event notification types can be added
to the root context at runtime. Existing contexts will not be
affected, since their transformation rules do not refer to the
new types. New conversion functions can be added as well.
Even if the new function is named exactly like a function of
an extending context, this will not change how that extend-
ing context works, as the function is simply overloaded.

The need to extend the root contexts usually arises when
new producers or consumers join the broker network and
require new notification types. They have to agree on the
new part of the root context, which is then simply added.
Since transformations happen in the middleware, this ex-
tension happens transparently to all other producers and
consumers.

3.4 Updating Existing Contexts
Clients can update contexts stored in the broker’s context

repository by sending the new definition of a context to the
broker. However, a context can only be updated if it is not
used by another producer or consumer, because they depend
on the current definition. A producer uses a context c, if it

<Posit ionUpdate>
<coord inates>

<x>30.48303</x>
<y>20.30840</y>

</coord inates>
<distanceRemaining >3082</distanceRemaining>
<destAddress>

<f irstName>David</firstName>
<lastName>Mil l e r </lastName>
<s p e c i f i c s >s t r e e t=Main ; number=3791;

. . . ; z ip=30834</ s p e c i f i c s >
</destAddress>

</Posit ionUpdate>

<Posit ionUpdate>
<coord inates>

<x>30.48303</x>
<y>20.30840</y>

</coord inates>
<distanceRemaining >3359.38</distanceRemaining>
<destAddress>

<f irstName>David</firstName>
<lastName>Mil l e r </lastName>
<s t r e e t>Main</s t r e e t>
<number>3791</number>
. . .
<zip >30834</zip>

</destAddress>
</Posit ionUpdate>

Figure 4: An exemplary event notification transfor-
mation according to contexts defined in Figure 3.
The event notification is transformed from the root
context into the US context of a consumer.

advertises events in the context c. Likewise, a consumer uses
a context c, if it defined its subscription in the context c and
expects events in this context. Since we have a hierarchical
context model, a context c is also in use, if a context that
directly or indirectly extends c is in use. More formally, if
uses(c) denotes the set of producers and consumers that use
context c and extends(c) denotes the set of contexts that di-
rectly extend c, we define the transitive closure extends∗(c)
as

c′ ∈ extends∗(c)⇔(c′ ∈ extends(c))∨
(∃c1, . . . , cn : c1 ∈ extends(c)∧
c2 ∈ extends(c1) ∧ . . .∧
c′ ∈ extends(cn))

Then

depend(c) = uses(c) ∪ {uses(c′) : c′ ∈ extends∗(c)}

A context c can be updated if and only if

depend(c) = ∅

Please note that a context might also be in use, even if the
corresponding client is not connected to the broker network.

This poses the question of what should happen if depend(c)
is not empty. Obviously, c cannot be changed as that would
break operation of other participants, but a new context c′

can be created, extending c and overriding the elements that
were intended to be updated. The client who intended to do
the update needs to be informed about this step so it does
not use the wrong name in future.

The new context definition has to be synchronized across
all nodes. Furthermore, the broker network has to be queried
to determine if there are other clients using the context. This
causes a short synchronization overhead. However, the fre-
quency of context updates is several orders of magnitude
lower than compared to the frequency of normal event noti-
fications.

3.5 Transformation in the Middleware
We suggest doing the transformation in the middleware

rather than in the clients for several reasons:

• Manageability of context changes and supporting
new producers or consumers.

• Reusability of existing context definitions.

• Support for Resource-constrained clients that have
limited processing capabilities.

• Easy integration of our approach into existing soft-
ware infrastructures.

It is easier to update contexts if they are stored in the mid-
dleware, rather than each client storing its own transforma-
tion instructions. The context repository allows reusing con-
texts and easily defining new contexts, helping both reusabil-
ity and easy integration. Reusing a context in our case only
requires referencing it by an identifier. Defining a new con-
text is easy if it can be based on already existing contexts.
Easy integration is especially important when software from
different vendors is used. EBS are typically heterogeneous
systems, in which clients of different vendors can be used
for publishing and subscribing to events, e.g. by using the
advanced message queuing protocol (AMQP) [40]. Thus,
context transformation in clients requires adapting various
code bases rather than adapting a central code base of the
middleware. Furthermore, resource-constrained clients like
wireless sensor nodes do not have enough processing capa-
bilities to perform a transformation.

3.6 API Extension
To supply the server with the necessary information, we

suggest extending the API of the messaging system. Typi-
cally, message brokers provide interfaces for producers and
consumers (e.g., JMS provides the interfaces MessageCon-

sumer and MessageProducer). We suggest adding two meth-
ods to the interfaces for producers and consumers:

setContext(String identifier) sets the context identi-
fied by identifier for the producer or consumer. Clients
may call this method at any time, allowing them to
switch contexts, should they feel the need to do so.

defineContext(String identifier, String definition)

supplies a context definition to the middleware, iden-
tified by identifier and defined by definition. If
the context repository is shared, calling this method
might trigger a synchronization of the repository. We
expect that new definitions are issued rarely, so this
small overhead is acceptable.

4. ACTRESS IMPLEMENTATION
We implemented our approach for the Java programming

language on top of ActiveMQ [37]. ActiveMQ is an open-
source, fast and reliable JMS [13] broker developed by the

Apache Software Foundation. In ActiveMQ, event notifi-
cations are modeled as messages. The following sections
describe our implementation and illustrate it with our run-
ning example. This approach covers all the challenges we
outlined in Section 2.3.

ActiveMQ supports plugins which allow intercepting mes-
sages before and after processing. This enables us to read
and modify the payload of messages before they are pro-
cessed any further and before they are dispatched to their
respective consumers. We implemented such a plugin, rep-
resenting the Context Handler. Developing a plugin also
shows that our approach is easily adaptable to other systems
and programming languages, as we do not require in-depth
modifications to ActiveMQ.

4.1 Context Transformation
We assume that event notifications contain hierarchically

structured data types. Flat data types can easily be emu-
lated as they are simply hierarchical data types with only
one nesting level. We feel that it is important to support hi-
erarchical structures as XML is a popular choice to structure
event data [31].

As described in Section 3 extending another context only
requires specifying the differences to the parent context. The
question now is how to efficiently transform event notifi-
cations from and to the root context. To avoid repeated
searching for definitions, we generate and compile a sepa-
rate class for every defined context that has no dependen-
cies on other contexts, by analyzing the defined data types
and transformation rules. The generated classes contain the
necessary information to access the required attributes and
possibly needed conversion instructions. We also ensure that
the context for a message can be found in constant time.

We employ a greedy transformation approach: messages
are transformed by the first broker they reach. The message
is then routed through the broker network and only trans-
formed to the consumer’s context by the last broker in the
chain.

The transformation result is cached to avoid double work
in case of multiple consumers with the same context. Since
messages are usually rather small in size and the number
of contexts is relatively small, the cache can be kept purely
in memory and is large enough to store all transformation
results for each message currently processed by the middle-
ware. This avoids accidental latency increases due to disk
accesses. Since each broker knows the number of connected
consumers, it knows when a cached result is no longer needed
and can free resources, avoiding memory contention.

In the case of JMS durable messages – messages that will
be delivered to consumers, once they reconnect – this might
lead to clearing the cache too early. However, as the next
section will show, transformation impact is minimal. Since
durable messages have to be loaded from a persistent stor-
age, transformation overhead is governed by disk access.

Since the transformation happens in the middleware, our
approach is transparent for any producer or consumer. How-
ever, the bootstrapping (i.e. informing the middleware about
the context) is done at some point. We assume that this will
be done by the event-based administrator so that applica-
tion developers can write producers and consumers without
worrying about context.

4.2 Administrative messages

Since we implemented our approach on a distributed bro-
ker network, we require some mechanism to pass administra-
tive messages between the individual nodes (for example to
synchronize the context repository or to provide producers
and consumers with a facility to tell the middleware about
their context). For our prototype, we chose to use desig-
nated JMS topics through which producers and consumers
can inform the middleware about their contexts by send-
ing appropriate messages. This approach also prevents the
need for heavy modifications to ActiveMQ and the JaveEE
libraries.

Similarly, brokers need to exchange some administrative
messages. Again, we use JMS messages on a designated
topic to provide this facility. In ActiveMQ, neighboring bro-
kers in the broker network can be treated like consumers.
These special messages are intercepted by our plugin and
destroyed after processing, avoiding unnecessary processing
by the rest of ActiveMQ’s message handling stack.

5. EVALUATION
To show the capabilities of our implementation, we com-

pare it against a baseline of not doing any transformations
and an approach which uses Java reflection to identify the
attributes of incoming messages and transform them accord-
ingly. This is how a library implementation (or a manual im-
plementation without any additional contextual knowledge)
would work, as it has to process messages of unknown types.
Especially the extreme case of self-describing messages will
need to employ this or a similar mechanism of inspection.
On the upside, this allows new types to be straightforwardly
added at runtime. However, our experience shows that new
or changed message types are rare compared to the number
of messages sent.

We used our findings from our research projects (see Sec-
tion 2) to design a realistic workload in terms of event size
and composition as well as producer-to-consumer ratio. Fur-
thermore, we used our experience in benchmark design [33]
to ensure following sound benchmarking techniques.

5.1 Evaluation Setup
We ran our experiments in a distributed environment,

using servers with Intel Xeon Quad-Core processors with
2.33GHz and 16GB RAM. We distributed producers and
consumers across servers with Xeon Dual-Core processors
with 2.4GHz and 16GB RAM, allowing multiple clients on
the same machine. We ensured that driver machines (the
server running the producers and consumers) did not be-
come the limiting factor in any way. Since we are not inter-
ested in the performance of the broker network itself, but
rather in the added overhead we did measurements just on
one broker. This is still feasible, as message traffic can be
assumed to be uniform across all brokers.

In addition, we also ran a few experiments in a local set-
ting: producers, consumers and a broker instance ran on
the same machine. We use this setting to exclude network
contention and network latency and to gain a better under-
standing about limiting factors and influential sizes.

5.2 Scenarios
We compared four scenarios: base, none, actress and re-

flect. Scenarios base and none form the baseline and brokers
do not perform any transformation work. The difference be-
tween base and none is that in none we simulate content-
based publish/subscribe by accessing message content (re-
quiring unmarshalling of the message). Scenario actress uses
our approach to transform incoming event notifications to
the root context and further to the respective consumer’s
context. Producers and consumers define their contexts as
explained in Section 3. Scenario reflect uses –as outlined
above– reflection for transformation identification and ap-
plications. To obtain fair results, we applied the same op-
timizations (e.g., caching) to the reflection-based approach
as we used in our approach. Naturally, the transformations
themselves were the same.

The transformations comprised typical transformation op-
erations like replacing a type and converting between units
(see Section 3). Transformation design too was guided by
our experience from the research projects.

We did not evaluate scenarios in which one context ex-
tends another context, because extension happens on a purely
conceptual level and as explained, results in a compiled class.
Thus, it does not matter during runtime how deep in an
inheritance-chain a context was defined.

We evaluated each scenario with a producer-to-consumer
ratio of up to 1:10. We found that this is a realistic ra-
tio in large scale enterprise applications. However, we also
evaluated smaller ratios, as we were also interested in the
performance development from a 1:1 to a 1:10 ratio.

5.3 Results
We did not observe any measurable difference for maxi-

mum throughput between scenarios none and actress (base
achieved about 20% more throughput, which is not surpris-
ing given that it uses only channel-based routing). Any mea-
sured differences were within measurement precision. How-
ever, the maximum throughput for the reflect scenario was
about half as much across all configurations and test runs.
Due to the almost constant ratios of throughput perfor-
mance, we omit detailed figures for brevity and focus on
latency results.

Figure 5(a) shows the latencies between the different sce-
narios with varying numbers of consumers. As the figure
illustrates, we did not observe any difference between none
and actress. Compared to base the latency was 20% (one
consumer) up to 60% (ten consumers) higher. The reflection-
based approach however does not only add to latency, but
latency increases much more with a growing number of con-
sumers. Thus, our approach performs and scales better than
a reflection-based approach.

To better dissect the results, we ran the same experiment
in a local setting (see Figure 5(b)). Maximum throughput
is lower than in a distributed environment, because one ma-
chine has to do the whole work now. However, the relative
throughput performance between the scenarios is the same
as above. It becomes even more evident that the reflection-
based approach adds severely to latency (it is ≈10 times
slower), while Actress does not add any measurable over-
head. Differences to the base scenario were about the same
but are less visible due to the scale of the y-axis.

Besides illustrating that our approach is faster than a
reflection-based library implementation, this analysis also

shows that our approach is as effective as a tedious manual
coding of transformations, since we do not add any measur-
able overhead to the baseline performance with no transfor-
mations.

Since event notifications are usually of different complex-
ity, we evaluated the influence of the number of attributes in
an event notification. We added ten attributes to the com-
parably small number of five attributes which notifications
already contained. This results in a total of 15 attributes,
modeling very large event notifications. We added these at-
tributes both in a flat manner and by increasing nesting lev-
els. Figure 5(c) and 5(d) show the impact on latency under
the respective modifications (throughput is only marginally
affected again). Due to increased (de-)serialization effort,
more attributes generally result in higher latency. Gener-
ally, we observed that flat event notifications have less neg-
ative impact on performance than deep structures (please
note the different scale on the y-axis). Interestingly, sce-
narios none and actress perform better with flat structures
compared to deep ones, while reflect performs better with
a deep nesting level compared to flat structures (the steep
increase in the graph does not continue for higher consumer
counts). However, the difference for the first two scenarios
is very small, while the reflection-based approach is heavily
affected. In our experience, event notifications yield mostly
flat structures and thus the advantage of our approach is
even more apparent.

Since our approach allows for pushing transformations
into the middleware and thus closer to the producers, we
can avoid redundant transformations. To evaluate the ben-
efit of this, we evaluated the effect of transforming messages
close to the producer and the same transformation happen-
ing at each consumer. As the results show, being able to
push the transformation close to the producer leads to huge
performance gains, both in terms of maximum throughput
(Figure 5(e)) and latency (Figure 5(f)).

We conclude, that our approach is superior to reflection-
based approaches as used by self-describing models. It neg-
atively impacts pure channel-based performance, but does
not add any measurable overhead in comparison to content-
based mechanisms, as simulated by the none scenario. Thus,
we can relieve clients from doing transformation manually,
which is both tedious and can lead to negative impacts on
performance.

Because the added overhead is so little, we omit compar-
isons with other techniques like message filters using XSLT.
The clear advantage of our approach is that transformation
instructions are very light-weight and easily definable, while
the model underlying our approach is provably type safe.

5.4 Case Study: Implementation Effort
When dealing with different data schemas or different in-

terpretations, mediation has to happen at some point. We
show that our approach reduces the implementation effort
of the mediation part. We compare the necessary implemen-
tation effort and metadata necessary to describe the trans-
formation we used in the performance analysis. We analyze
our implementation and a reflection-based implementation,
which does the mediation in the consumer by analyzing in-
coming event notifications. We did not count so called boil-
erplate code (e.g., class headers, import statements, etc.)
which are usually automatically generated by an IDE.

Table 1 shows the results of our analysis. Using ACTrESS

●

●

●

●

1 2 3 4 5 6 7 8 9 10

85
0

20
00

28
50

Number of Consumers

La
te

nc
y

[µ
s]

● none
compile
reflect
base

(a) Distributed

● ●
● ●

1 2 3 4 5 6 7 8 9 10

20
0

10
00

0
20

00
0

Number of Consumers
La

te
nc

y
[µ

s]

● none
compile
reflect
base

(b) Local

● ● ●

●

1 2 3 4 5 6 7 8 9 10

90
0

50
00

0
80

00
0

Number of Consumers

La
te

nc
y

[µ
s]

● none
compile
reflect
base

(c) Deep structure

● ● ● ●

1 2 3 4 5 6 7 8 9 10

90
0

10
00

00
22

00
00

Number of Consumers

La
te

nc
y

[µ
s]

● none
compile
reflect
base

(d) Flat structure

●

●

●

●

1 2 3 4 5 6 7 8 9 10

13
00

40
00

71
00

Number of Consumers

Ev
en

ts
 p

er
 S

ec
on

d

● at Producer
Reflection

(e) Locality: throughput

● ● ● ●

1 2 3 4 5 6 7 8 9 10

35
0

10
00

0
20

00
0

Number of Consumers
La

te
nc

y
[µ

s]

● at Producer
Reflection

(f) Locality: latency

Figure 5: Performance results

to offload transformations to the middleware saves about
50% of necessary code compared to a manual approach.
Please note that the number of saved lines are not for the
whole system, but per component that participates in the
event-based system.

The advantage of our approach becomes even more ap-
parent if we consider what happens when a new producer
joins the system. If we use a manual approach in which
each consumer is responsible for the transformation, we have
to modify (and recompile) each consumer. This involves
searching for the right point to insert code, inserting the
new code and ensuring it is working correctly. One might
be able determine that only a certain subset will receive the
new producer’s publications and thus reduce the number of
components that have to be modified. However, this does
not follow the spirit of event-based systems as every pro-
ducer might start producing new data and the consumers
who were not modified before are now unable to understand
that producer’s event notifications. In addition, a manual
approach violates the independence of producers and con-
sumers by forcing a new producer to notify consumers to
change. With ACTrESS, the producer can seamlessly blend
into the new system without consumers ever noticing the
new participant (except for the published data), favoring
the wanted anonymity between components.

ACTrESS
Component Lines of Code

Context Rules 5 + 2 †
Conversion Functions 7
API Call 1

Total 15

† We have two contexts, one extending the other

Reflection
Component Lines of Code

Conversion Functions 7
Reflection Analysis 14
Bootstrapping 8

Total 29

Table 1: Implementation effort of our case study

6. CONCLUSION
Implementing large-scale event-based systems which con-

nect heterogeneous software components raises the challenge
of allowing components to understand each other’s data. A
prominent domain for large-scale event-based systems is pro-
duction and logistics [8]. We investigate this area in detail
in current research projects (see Section 2).

In the resulting heterogeneous software systems, many
event producers and consumers reside in different seman-
tic contexts. This makes a mutual understanding of each
other’s data semantics indispensable for seamless interac-
tions. Amongst others, event-driven enterprise software sys-
tems face these problems since today’s IT infrastructures
tend to incorporate multiple traditional systems and span
company borders [19].

To enable easy event-based integration and development
of systems with different semantics, we presented ACTrESS,
an automatic context transformation architecture for event-
based software systems, which can be added to any mes-
saging middleware. ACTrESS maintains a runtime modi-
fiable context repository and supports transparent context
transformations for event producers and consumers. Our
implementation is JMS-based with JMS being the de facto
industry standard for messaging and widely used in enter-
prise software systems.

Compared to other approaches, our design and implemen-
tation do not rely on a globally accepted base schema and
are extensible at runtime. We realized our implementation
on top of an existing publish/subscribe middleware, showing
that our design can be integrated into production-strength
systems. Our implementation allows for easy integration of
new event producers and consumers with their respective
contexts.

We evaluated our system using workload based on the
findings from our research projects and expertise in bench-
mark design. We showed that our approach does not add any
measurable overhead (neither to throughput nor latency)
to a content-based publish/subscribe system. Furthermore,
our approach performs better than more dynamic approaches
like self-describing models.

In furture work, we plan several extensions to ACTrESS.
The greedy transformation approach works best in most
cases, but we identified topologies, in which this might lead
to unnecessary work (e.g., a producer publishing an event
that two consumers will receive, one of which shares the
same context as the producer). We want to develop a strat-
egy of where to transform. Furthermore, we want to inves-
tigate if it is possible to generate context definitions auto-
matically from ontologies (e.g., described in OWL [6]). This
would help developers already familiar with OWL and al-
low for easy integration into other frameworks. Finally, we
aim at making the management of the context repository
more intuitive, e.g. by providing a graphical user interface
to specify context transformation definitions.

7. ACKNOWLEDGEMENTS
This work was performed within the LOEWE Priority

Program Dynamo PLV (http://www.dynamo-plv.de) sup-
ported by the LOEWE research initiative of the state of Hes-
se/Germany. Funding by German Federal Ministry of Edu-
cation and Research (BMBF) under research grants ADiWa
(01IA08006) and Software-Cluster project EMERGENT

(01IC10S01). The authors assume responsibility for the con-
tent.

We also thank Patrick Eugster for his valuable feedback.

8. REFERENCES
[1] G. D. Abowd, A. K. Dey, R. Orr, and J. Brotherton.

Context-awareness in wearable and ubiquitous
computing. Virtual Reality, 3:200–211, 1998.

[2] A. Bennaceur, G. Blair, F. Chauvel, H. Gang,
N. Georgantas, P. Grace, F. Howar, P. Inverardi,
V. Issarny, M. Paolucci, et al. Towards an architecture
for runtime interoperability. ISoLA’10, 2010.

[3] G. Blair, A. Bennaceur, N. Georgantas, P. Grace,
V. Issarny, V. Nundloll, M. Paolucci, et al. The role of
ontologies in emergent middleware: Supporting
interoperability in complex distributed systems.
Middleware’11, 2011.

[4] G. Blair, G. Coulson, and P. Grace. Research
directions in reflective middleware: the Lancaster
experience. In RM’04, 2004.

[5] C. Bornhövd. Semantic metadata for the integration
of web-based data for electronic commerce. In
WECWIS’99, 1999.

[6] K. Breitman, A. Filho, E. Haeusler, and A. von Staa.
Using ontologies to formalize services specifications in
multi-agent systems. In Formal Approaches to
Agent-Based Systems, volume 3228 of Lecture Notes in
Computer Science, pages 92–110. Springer Berlin /
Heidelberg, 2005.

[7] S. Bressan, C. H. Goh, K. Fynn, M. Jakobisiak,
K. Hussein, H. Kon, T. Lee, S. Madnick, T. Pena,
J. Qu, A. Shum, and M. Siegel. The context
interchange mediator prototype. In SIGMOD’97, 1997.

[8] A. Buchmann, H.-C. Pfohl, S. Appel, T. Freudenreich,
S. Frischbier, I. Petrov, and C. Zuber. Event-Driven
services: Integrating production, logistics and
transportation. In SOC-LOG’10, 2010.

[9] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf.
Design and evaluation of a wide-area event
notification service. ACM Journal Transactions on
Computer Systems (TOCS), 19:332–383, 2001.

[10] K. Chandy. Event-driven applications: Costs, benefits
and design approaches. In Gartner Application
Integration and Web Services Summit, San Diego,
USA, 2006.

[11] M. Cilia, M. Antollini, C. Bornhövd, and
A. Buchmann. Dealing with heterogeneous data in
pub/sub systems: The concept-based approach. In
DEBS’04, 2004.

[12] M. Cilia, C. Bornhövd, and A. Buchmann. Cream: An
infrastructure for distributed, heterogeneous
event-based applications. In R. Meersman, Z. Tari,
and D. Schmidt, editors, On The Move to Meaningful
Internet Systems 2003: CoopIS, DOA, and ODBASE,
volume 2888 of Lecture Notes in Computer Science,
pages 482–502. Springer Berlin / Heidelberg, 2003.

[13] N. Deakin. Java Message Service (JMS) API.
http://www.jcp.org/en/jsr/detail?id=914, 2002.

[14] P. Eugster, T. Freudenreich, S. Frischbier, S. Appel,
and A. Buchmann. Sound transformations for
federated objects. Technical report, TU Darmstadt,
2012.

[15] P. T. Eugster, P. A. Felber, R. Guerraoui, and A. M.
Kermarrec. The many faces of publish/subscribe.
ACM Computing Surveys (CSUR), 35(2):114–131,
2003.

[16] P. T. Eugster and R. Guerraoui. Content-based
publish/subscribe with structural reflection. In
COOTS’01, 2001.

[17] D. Eyers, T. Freudenreich, A. Margara, S. Frischbier,
P. Pietzuch, and P. Eugster. Living in the present:
on-the-fly information processing in scalable web
architectures. In Proceedings of the 2nd International
Workshop on Cloud Computing Platforms, page 6.
ACM, 2012.

[18] E. Fidler, H.-A. Jacobsen, G. Li, and S. Mankovski.
PADRES distributed publish/subscribe system. In
ICFI’05, 2005.

[19] S. Frischbier, M. Gesmann, D. Mayer, A. Roth, and
C. Webel. Emergence as competitive advantage -
engineering tomorrow’s enterprise software systems.
ICEIS 2012, 2012.

[20] T. Gannon, S. Madnick, A. Moulton, M. Siegel,
M. Sabbouh, and H. Zhu. Framework for the analysis
of the adaptability, extensibility, and scalability of
semantic information integration and the context
mediation approach. In HICSS’09, 2009.

[21] P. Grace, N. Georgantas, A. Bennaceur, G. Blair,
F. Chauvel, V. Issarny, M. Paolucci, R. Saadi,
B. Souville, and D. Sykes. The CONNECT
architecture. SFM 2011, 2011.

[22] J. Guo and C. Sun. Context representation,
transformation and comparison for ad hoc product
data exchange. In DocEng’03, 2003.

[23] A. Hinze, K. Sachs, and A. Buchmann. Event-based
applications and enabling technologies. In DEBS’09,
2009.

[24] A. Lakshman and P. Malik. Cassandra: a
decentralized structured storage system. Oper. Syst.
Rev., 44:35–40, April 2010.

[25] T. Landers and R. L. Rosenberg. Distributed systems,
vol. ii: distributed data base systems. chapter An
overview of MULTIBASE, pages 391–421. Artech
House, Inc., Norwood, MA, USA, 1986.

[26] D. S. Linthicum. Enterprise application integration.
Addison-Wesley Longman Ltd., Essex, UK, UK, 2000.

[27] C. D. Manning and H. Schütze. Foundations of
statistical natural language processing. MIT Press,
Cambridge, MA, USA, 1999.

[28] B. Oki, M. Pfluegl, A. Siegel, and D. Skeen. The
information bus: an architecture for extensible
distributed systems. In SOSP’93, 1993.

[29] M. Petrovic, I. Burcea, and H.-A. Jacobsen. S-ToPSS:
semantic toronto publish/subscribe system. In
VLDB’03, 2003.

[30] P. R. Pietzuch and J. M. Bacon. Hermes: A
distributed event-based middleware architecture. In
ICDCSW’02, 2002.

[31] S. Rozsnyai, J. Schiefer, and A. Schatten. Concepts
and models for typing events for event-based systems.
In DEBS’07, 2007.

[32] T. Ruotsalo and E. Hyvönen. An event-based
approach for semantic metadata interoperability. In

The Semantic Web, volume 4825 of Lecture Notes in
Computer Science, pages 409–422. Springer Berlin /
Heidelberg, 2007.

[33] K. Sachs, S. Appel, S. Kounev, and A. Buchmann.
Benchmarking publish/subscribe-based messaging
systems. In Database Systems for Advanced
Applications: International Workshops: BenchmarX
’10, LNCS. Springer-Verlag, 2010.

[34] A. Scherp, T. Franz, C. Saathoff, and S. Staab. F–a
model of events based on the foundational ontology
dolce+dns ultralight. In K-CAP’09, 2009.

[35] F. B. Schneider. Synchronization in distributed
programs. ACM Transactions on Programming
Languages and Systems, 4:125–148, April 1982.

[36] J. Skovronski and K. Chiu. Ontology based publish
subscribe framework. In iiWAS’06, 2006.

[37] B. Snyder, D. Bosanac, and R. Davies. ActiveMQ in
Action. Manning Publications Co., 2011.

[38] H. Stuckenschmidt and H. Wache. Context modeling
and transformation for semantic interoperability. In
KRDB’00, 2000.

[39] W. W. Terpstra, S. Behnel, L. Fiege, A. Zeidler, and
A. P. Buchmann. A peer-to-peer approach to
content-based publish/subscribe. In DEBS’03, 2003.

[40] S. Vinoski. Advanced message queuing protocol. IEEE
Journal Internet Computing, 10(6):87–89, 2006.

[41] H. Wache and H. Stuckenschmidt. Practical context
transformation for information system interoperability.
In CONTEXT’01, 2001.

[42] J. Wang, B. Jin, and J. Li. An ontology-based
publish/subscribe system. In Middleware’04. 2004.

[43] R. Welke, R. Hirschheim, and A. Schwarz. Service
oriented architecture maturity. IEEE Computer
Journal, 44:61–67, 2011.

