
Extending Web Service Flow Models to Provide for
Adaptability

Dimka Karastoyanova, Alejandro Buchmann

Technical University Darmstadt
Computer Science Department

Hochschulstrasse 10
64289 Darmstadt, Germany

dimka@gkec.tu-darmstadt.de
buchmann@informatik.tu-darmstadt.de

Abstract. Web Service compositions combine characteristics of both the Web
service (WS) and workflow technologies. The workflow technology is good at
explicitly defining integration logic. Web services bring in standardized service
description and communication over the Web, and thus provide for seamless
integration across organizational boundaries. The two technologies mutually
amplify their benefits in this combination. Nevertheless, WS compositions
(WS-flows) inherit also some of the deficiencies both technologies exhibit.
Notably, traditional workflow technologies lack sufficient support for workflow
adaptability, which is a prerequisite for ensuring business processes flexibility.
In this paper we argue that any standardization activity in the field of WS-flows
must gravitate around a unified process meta-model. Additionally, adaptability
should be considered as an inseparable part of the WS-flow meta-model
constructs. We propose process meta-model extension constructs that
accommodate WS-flow adaptation in implementation independent manner. The
presented constructs allow for run time modifications of participating WS
instances and WS types, and changes in business logic.

1. Introduction

The focus of this paper is on Web service compositions. Composing Web services is
an approach relying on the advances in the development of workflow management
and the Web service (WS) technologies. We use the terms WS composition and WS-
flow (Web Service Flow) interchangeably, to denote composite WSs created using a
process-oriented approach, similar to the one used in traditional workflow. However,
due to the WS-specific features composing simple tasks into complex processes in a
WS environment is somewhat different from traditional workflow. Additionally, WS
composition specifications [12, 7] put their standardization focus on specifying
unambiguously a process model, rather than imposing restrictions on the
implementation of process execution environments.

One of our objectives here is to discuss the need for a unified WS-flow meta-model
for promoting standardization, portability of WS-flow schemata, implementation
independence and technology leverage. We are also convinced that adaptability

2 Dimka Karastoyanova, Alejandro Buchmann

support should also be presented as an inseparable part of process definitions. In the
same time, the standardization focus should be kept and implementation
independence maintained. We pursue support for adaptation of WS-flow behavior at
run time by proposing several meta-model extension constructs. These constructs can
accommodate multiple implementation approaches and give the users and developers
the freedom to explicitly direct the way in which a WS-flow has to react to changes in
environment factors.

The paper is organized as follows: In section 2 we emphasize the need for a unified
WS-flow meta-model and the benefits of having such a model. We argue that this
model should also provide constructs that incorporate adaptability in a standardized
way. We briefly discuss the way adaptability has been addressed in traditional
workflows in section 3. Section 4 dwells on the effect the WS-specific features have
on the techniques for addressing process adaptability. Based on the revised range of
factors influencing the normal execution of WS-flows we present a classification of
possible approaches to WS-flow adaptation in reaction to changed conditions (section
5). Our goal is to group adaptability approaches in a generic way independent of
implementation features. In section 6 we introduce the meta-model extension
constructs for adaptability. The constructs are meant to present, in implementation
independent fashion, run time changes in the WS-flow behavior such as: WS
instances swapping, changing service types performing on behalf of a process, and
modifications in process logic. The implications and advantages of these extension
constructs are briefly discussed. Summary and conclusions are presented in the
closing part.

2. On the need for a unified WS-flow meta-model with built-in
flexibility

The Workflow Management Coalition (WfMC) [33] standardizes the design of
workflow management systems (WfMSs) with the purpose to make them
interoperable. The WfMSs vendors created their own workflow models, the
corresponding languages and execution environments; usually they cannot
interoperate [2, 8].

Still, there are similarities in the languages used to describe workflows. Generally,
workflows are described in terms of several aspects or dimensions [22, 26, 8]
including tasks, control flow, data flow, participants (humans, resources, application
programs), organization hierarchy and others; but there is no consensus on how many
dimensions are necessary and sufficient to describe workflows. The existing WS
composition languages reuse the concepts of workflow and define XML elements for
different activities (tasks), control and data flow, and participants [7, 12]. The
advantages of WS technology have been utilized. The WS technology alleviates the
difficulties in creating processes because of its standardization focus (see section 4).
Therefore no participants other than WSs have to be accounted for in the WS-flow
definitions. Organization specific characteristics are also abstracted. Apart from
leveraging the standardization focus of WSs, WS-flows promote standardization
further. All standardization efforts target standardization for process interoperability

Extending Web Service Flow Models to Provide for Adaptability 3

as opposed to standardization for interoperability among WfMSs. Even though the
existing WS composition specifications define how WS-flow definitions have to be
created, in a manner independent of the execution engines, there is still room for
improvement. Currently, all specifications focus on the definition language specifics
only. We are convinced that all standardization activities related to WS-flows have to
gravitate around a unified, common process meta-model. This meta-model should
describe the structure of elements to be used to create a WS-flow and their
relationships.

Having a unified meta-model for WS compositions at hand could bring benefits for
several reasons, listed next:

− automation of WS-flow development – standardized model constructs can be
used by WS-flow development tools to generate process definitions.
Furthermore meta-model constructs can be combined into reusable units of code
and functionality – the so-called templates [25, 29]. Automating WS-flows
production could simplify and accelerate development; the main principle is
code and functionality reuse.

− portability of definitions is promoted by the unified way of describing WS-
flows. Having a single format for describing WS-flows allows different
execution environments to be used to carry out a WS-flow definition. For this,
however, all constructs have to be defined in an implementation independent
form in the process language meta-model.

− translation to existing languages – a common meta-model would allow for
translating the WS-flow definitions in existing workflow and WS-flow
languages based on model mappings; we believe this approach is much more
precise than using syntax mappings. Technology and workflow engines can thus
be reused.

− dynamic features of processes and adaptability can be incorporated directly into
the model using its constructs. All adaptation primitives of the engine and their
implementation specific features are kept transparent, i.e. hidden from process
developers and users.

− freedom to choose implementation paradigm and reuse legacy process execution
environments would be given to companies, provided all environments comply
with the meta-model – this is not possible in contemporary workflow and WS-
flow technologies [8, 2].

To make the community agree on a model would require not only providing a
unified way of describing WS-flows in terms of an agreed-upon number of
perspectives. To provide both the companies and their processes with flexibility
imposes the need for incorporating adaptability in the meta-model constructs. To put
it into perspective, the adaptability of traditional workflows has been enabled by
primitives implemented by the WfMSs – the adaptability has been ensured by vendor
specific implementations. There is no standard way to approach adaptability in
traditional workflow management; to the contrary, there is abundance of WfMSs and
multiple implementation approaches.

In this respect our main concern is extending the process model features with the
ability to flex in reaction to business and technical factors of the environment that
change in random fashion. The meta-model extension for adaptability should
comprise constructs capable of hiding implementation specifics while allowing for

4 Dimka Karastoyanova, Alejandro Buchmann

process definition modifications, instance level changes etc. (Table 1). This is quite in
sync with the strategy of the BPMI.org initiative [10] for creating extension layers to
BPEL.

The advantages of having model constructs for adaptability include:
− hiding the implementation specifics of execution environment primitives that do

the actual adaptations.
− standardized way of describing and directing how a process and/or its instances

have to change, including the ability to specify QoS criteria at run time. As a
result the process definitions remain portable, while being rendered adaptable.

− freedom to choose engine, and implementation paradigm is preserved. The
extension constructs are meant to accommodate multiple approaches to
adaptability, even those used in the field of traditional workflows.

− ability to accommodate the results of the progress in the following research
areas: semantic description of WSs, classification according the WS semantics,
description of policies for service selection, and quality of Web services models.

To the drawbacks counts the increased complexity of coding the processes. It is
due to the fact that developers have to code additional activities and moreover to
understand their purpose; however, this could be overcome by providing tools for
automated WS-flow production. The tools in turn depend on the meta-model.

3. Approaches to adaptability in traditional workflow technology

The workflow technology has evolved to a mature EAI technology in the last decade.
Most vendors realized the great benefits from using workflows, and therefore there
are a number of vendor-specific workflow models and products. The standardization
effort of the WfMC [33] did not have the desired success because of its objective to
standardize for interoperability among workflow management systems (WfMSs),
rather than to provide an unambiguous process model specification [6, 2]. As a result
there is no standard workflow model. The numerous vendor-specific products use
their own overlapping models and definition language.

Similarly, each product vendor addressed the need for adaptability and flexibility
of workflows in different ways. Variety is abundant with respect to products [11, 22,
27] and implementation approaches [16, 13, 11, 18] targeting development and
execution of flexible workflows. But the support for adaptability is still insufficient
and most importantly it is locked into vendor specific implementations.

Together with this there have been attempts to both classify the kinds of changes
that might occur in the environment and thus influence the workflows, and to produce
a list of corresponding approaches to adapting to those changes [17, 3, 18].

In [17] and [3] the authors classify the levels/perspectives of a workflow related to
change. [17] states that workflows have to be able to adapt to changes on several
levels: domain level (changes in business context), process level (process schema and
tasks changes), resource level (software, organization and data model changes) and
infrastructure level (software and hardware infrastructure). In [3] the authors provide
a similar classification except that there is an additional task perspective, which is a
part of the process level in [17]; and the domain level is not included.

Extending Web Service Flow Models to Provide for Adaptability 5

So far in those and similar classifications the fact that each process is created using
the constructs of a meta-model has not been considered. Domain-specific models
reside on the same level as the meta-models; they are actually to be understood as
domain-specific extensions of the meta-model.

The process perspective is the one that prescribes the schema of a workflow. Most
of the changes in the environment lead to changes in the schema of the processes (e.g.
tasks are added or deleted, control flow paths are added etc.). Dealing with process
schema adaptation has been paid the greatest attention so far. Generally, the types of
adaptations to be performed on the process level of a workflow in reaction to
environment change are grouped according to whether they are build-time or run-time
changes, process schema or process instance change, single instance change or
multiple instance changes; and combinations of these criteria [3, 17, 18].

4. Adaptability in WS-flows

This section provides a short overview of the basic WS characteristics and how they
affect the approaches to WS-flows adaptability. Based on this and on the discussion
from the previous section we identify the perspectives of a WS-flow definition
relevant to adaptation. Subsequently, we classify the approaches to WS-flows
adaptability (section 5).

4.1 Effect of the WS-specific characteristics on the approaches to WS-flows
adaptability

WS compositions inherit the intrinsic characteristics of WSs. WSs expose stable,
unified interfaces described in WSDL [32] (the de facto standard for WS description).
A WS interface describes the service functionality in terms of the messages it can
consume and produce, their parameters, and the types of the exchanged data; this is
because the WS paradigm assumes communication by means of messaging to ensure
loose-coupling among services. Thus the functionality of a WS is presented in a
platform- and language-independent manner. Hence the WS interface hides the
implementation specifics of the functionality it exposes.

In a WS-flow tasks are performed only by WSs. Since all WSs are described in a
unified manner, WS-flows do not distinguish explicitly between human participants,
resources or applications. Therefore changes in the types of participants and their
infrastructure can be ignored in the definitions of WS-flows. So changing the actual
resource or application behind a WS interface will not affect the WS-flow definition.
As long as a participant provides the functionality defined by the exposed WS
interface, the results of any reconfiguration of its infrastructure remains hidden for the
process, too. This means that any changes in the participants’ infrastructure and
application specifics will not affect the WS-flow schema and its instances.

In traditional workflows all participants are assigned a role related to an
organizational model. However, the organizational perspective in a WS-flow becomes
irrelevant. The participating WSs are not assigned a role with respect to any
organizational model, because WSs interfaces hide these specifics, too. Therefore

6 Dimka Karastoyanova, Alejandro Buchmann

WS-flows definitions do not account for any organizational model. And if the
definition ignores the organizational specifics then changes in the organizational
models can affect neither the WS-flow definition nor its instances.

In conclusion we state that due to the characteristics inherent to WSs WS-flows do
not have to be capable of adapting to changes in the types of the participants, their
role in an organization and the infrastructure.

4.2. WS-flows dimensions relevant to WS-flow adaptability

In the previous sub-section we claimed that we can ignore changes in the
infrastructure, software components, data and organizational models as possible
reasons for WS-flows adaptation. Based on this claim we restrict the number of
groups of changes, which a WS-flow must react to, to the ones shown in Figure 1.
This is an adapted version of the classification of workflow adaptation layers shown
in [17].

Figure 1. Layers of WS-flows adaptation.

We reduce the number of adaptability relevant perspectives to the process
perspective and meta-model perspective. We are convinced that a WS-flow must be
able to react to the need for changing its process definition (process layer). This
means that the WS-flow has to be able to modify the tasks it has to perform and their
execution order, and the types of the participating WSs. These changes are possible
on schema and instance level. Additionally, changing meta-models and their extended
domain-specific versions might also be required due to altered business and legal
requirements.

Further in this paper we shall focus on the process layer only.
In summary, the classification of workflow adaptation layers from [17] can be

simplified significantly in the context of WS-flows. In other words, WS-flows can
react to changes in the environment with the same degree of adaptability, while using
simpler approaches than the ones used in traditional workflows.

Meta-model

Process
− Schema
− Tasks

Domain Adaptation of WS-flows models to
a changing business context

− Model evolution
• WS-flow logic
• portTypes of participating WSs

− Changes to model instances
• WS-flow instance logic
• portTypes of participating WSs
• Swap WS instances

Extending Web Service Flow Models to Provide for Adaptability 7

5. Classification of approaches to WS-flows adaptability

In section 4 we concluded that WS-flow can be rendered equally adaptable to changes
in the environment even when less complicated techniques are applied. Next, we
elaborate on the approaches that are sufficient to render a WS-flow flexible in
reacting to modified conditions. We group these approaches as shown in Table 1. This
classification shows adaptation approaches that are to be used to modify WS
composition models and instances, i.e. the process layer (Figure 1).

A WS-flow can react (or foresee how to launch a reaction) to the factors presented
in Figure 1 either during the time it is being modeled and created – build time, or
during its execution – run time. In each group changes can be performed either on the
model or instance level. By changing a process definition at build time developers can
react to any kind of changes in the business environment. But the business
environment evolves constantly while most processes are being executed. A higher
degree of adaptability would be achieved if WS-flows could flex to changes
appropriately while being at their execution phase. The adaptations that must be
enabled at run time should avoid any termination of the process instances; terminating
processes might result in losing WS-flows history, sensitive data, time, and eventually
customers.

Table 1. Classification of approaches to WS-flows adaptability.

 Evolution level Approach
Model evolution Any kind of change possible Build time

Instance evolution Flexibility by selection [18]
Model (schema)
changes

Change in:
− portType
− control flow
− data flow

W
S-

flo
w

 li
fe

 c
yc

le
 p

ha
se

Run time

Instance changes Change in:
− WS instances
− Process logic:

• portType
• control flow
• data flow

On the schema level at run time changes can be enforced on the business logic of a

composition and on the types of WSs it invokes.
The instance changes at run time are the ones specifying how the execution flow of

one or more WS-flow instances has to be diverted. This may be done by altering the
instances of WS abstract descriptions performing on behalf of a process, or by
modifying the process logic – this includes changing portTypes, control flow and data
flow. Runtime changes are also associated with the term flexibility by adaptation [18].
In [18] the authors use the term to denote the approach of creating a process schema
version, which includes the desired changes.

The classification on Table 1 puts the framework for the discussion in the rest of
the paper. This classification is the basis for specifying generic meta-model constructs

8 Dimka Karastoyanova, Alejandro Buchmann

that would be used for creating WS-flows with built-in adaptability in a standardized
manner.

6. Model extensions for adaptability

The approaches we would like to enable with the meta-model constructs introduced in
this section are summarized in Table 1. Here we pay attention to the run time
adaptations of WS-flows, since they are the more challenging problem; run time
changes are not sufficiently addressed even in traditional workflows. We use code
listings in BPEL [12] to demonstrate the model constructs. One reason for using
BPEL syntax is that it is the specification that has gained considerable acceptance in
the WS community. Moreover, it is the only WS-based process definition language
for which execution environments already exist, either incorporated in workflow
management systems that additionally support other models and languages [20, 21],
or as stand-alone environments supporting exclusively BPEL [19, 28, 4, 31]. Besides,
in keeping with the principles of the WS paradigm we prefer to go for reusing and
extending existing meta-models and syntax (and thus leverage technology and
implementations), instead of creating new model and yet another language from
scratch.

6.1. Enabling WS instance swapping

To enable WS instances swapping we introduce the find_bind construct. This
construct has to be used to address WS-flows instance level modifications at run time
(Table 1). It is mapped to an activity of the same name in the process language
syntax; it can be easily appended to the extensible BPEL syntax. The <find_bind>
activity is meant to be executed before each WS invocation in a WS-flow; in BPEL
these are the activities <invoke>, <receive> and <reply>.

The “find and bind” mechanism involves [6, 23]:
− a look up of WSs instances complying with the portType specified in the

subsequent invocation activity,
− a selection of a single WS instance and
− binding to it.
The search for compliant WS instances is performed in a UDDI registry [9]. The

choice of a single WS instance must be directed by the users by means of criteria such
as service availability, price, and others related to the quality of the service (QoS).
This activity is meant to and is capable of accommodating selection according to
semantic description of the service [15], too. It is necessary to introduce such an
activity because currently the WS-flows definitions include references to specific WS
instances. Respectively, the existing execution environments (e.g. [4, 19]) require
references to specific WS instances during WS-flows deployment. We find this
approach inflexible; therefore, introducing a policy-based selection of and dynamic
binding to WS instances at run time has to overcome the problem of hard-coding

Extending Web Service Flow Models to Provide for Adaptability 9

service instances. An example of the <find_bind> activity is presented in the next
code listing.
<process name="ConvertCurrencyBP">
<!-- details -->
 <find_bind>
 <find_businessService()/>
 <get_bindingTemplate()/>
 <apply_policy()/>
 </find_bind>
 <invoke name="ConversionRequest"
 partnerLink="converter"
 portType="CurrencyConvService"
 operation="usd2eur"
 inputVariable="C_and_Rate"
 outputVariable="result"/>
<!-- details -->
</process>

Listing 1. Find and bind mechanism - representation in BPEL.

There are several implications of using this activity. A QoS model for WSs and a
corresponding notation for QoS classification are needed to support meaningful WS
instance selection. A means to describing choice policies, based on various criteria is
also a must. To date, these are unavailable. Currently, only simple policy-based
selection can be performed according to service availability, price, and service
location. Storing binding information for the selected WS instance is also an
important issue. The service instance URL can either be stored explicitly in a process
variable or taken care of transparently by the execution environment. To the flaws of
the “find and bind” approach counts the additional HTTP call to the UDDI registry
for each service invocation. In this respect optimization of the mechanism is
necessary to maintain performance; for instance, performing the finding of services
and binding to them whenever a criterion falls under a threshold value; optimization is
related to the implementation of the mechanism though. For more details on this
construct refer to [23, 29].

6.2. Enabling process schema changes at run time – <evaluate> activity

In Table 1 we introduced two types of possible changes in WS-flow schema:
portType changes and process logic modifications (control and data flow).

Changes in the process schema and port types may be performed for only some of
the instances of the WS-flow or for all of them. Therefore we believe that changes on
both model and instance levels can be made possible using one and the same model
construct. Therefore, in the remaining part of this section we introduce the
<evaluate> activity. Currently it has two different versions. Our future research
targets the specification of a single activity definition that would serve both types of
modifications.

10 Dimka Karastoyanova, Alejandro Buchmann

6.2.1. Changing service types at run time
Sometimes a change in the service type might be required for a WS-flow to be able to
reconfigure in reaction to changed conditions; therefore mere swapping of WS
instances complying with portTypes would not suffice. Here we introduce a meta-
model construct – the <evaluate> activity – that allows for changing the types of
services performing on behalf of a WS-flow. The activity encloses an invocation
activity. It can be appended to the BPEL syntax. Basically, this construct has to allow
the users to specify an alternative portType for the execution of a WS invocation
activity. The idea is similar to the one presented in [30] where the eval() function
is defined as a way to execute a function with new parameters values unknown prior
to run time. The example representation of the <evaluate> activity is given next;
irrelevant details are omitted.
<process name="ConvertCurrencyBP">
<!-- additional details -->
<!-- evaluate -->
 <evaluate
 name=”ConversionRequest”
 activated=”true”
 portType-new=”nsws2:ConvertCurrencyService”
 operation-new=”usd2eur”>
<!-- invoke Converter -->
 <invoke name="ConversionRequest"
 partnerLink ="converter"
 portType="nsws1:CurrencyService"
 operation="usd2DM"
 inputVariable="Currency_and_Rate"
 outputVariable="result"/>
 </evaluate>
<!-- additional details -->
</process>

Listing 2. Example of the <evaluate> activity in BPEL syntax.

In Listing 2 the <evaluate> activity encloses an <invoke> activity, which
performs an operation (usd2DM) on a WS described by a particular portType
(nsws1:CurrencyService). To be able to change the originally specified
portType attribute value in the <invoke> activity, the users have to use a tool that
allows access to the WS-flow instance under consideration. The tool has to allow the
users to specify new values for the portType and operation, which are then to be used
in the enclosed invocation activity’s execution. The user is given the opportunity to
change the type of service used by a process. In our example, the user could specify
new values for portType (nsws2:ConvertCurrencyService) and operation
(usd2eur) and thus change the example currency conversion service so that it
calculates conversion from US dollar to Euro, instead of US dollar to German mark
(operation="usd2DM"). Note that Listing 2 presents the new values of the
parameters provided by the user at run time. However, the attributes of the
<evaluate> activity should be initially populated by the developer with default
value for the alternative portType (i.e. at build time). The values of all attributes of
the <evaluate> activity substitute the values of attributes in the enclosed

Extending Web Service Flow Models to Provide for Adaptability 11

invocation activity; the attributes of the enclosed activity that do not have an
alternative value specified in the <evaluate> activity keep their original values.

There are several ways in which the change of portTypes (i.e. in the process
definition) can be implemented. Some existing approaches from the field of workflow
management use code generation for the new alternative and migration of (one or
more) process instances from the old definition to the newly generated one [11, 18]. A
procedure, similar to the one used in Active XML [5] can also be involved for
dynamic code generation. Reflection has been applied in workflow technologies for
the same purpose [16]; process tasks (activities) can be carried out with parameters
different from the originally specified. Aspect-oriented programming (AOP) is
another possibility [13]. Existing WS-flows execution environments can be extended
with aspects implementing the semantics of the <evaluate> activity. A simple
scenario in this respect would be to execute an aspect every time the schema
interpreter meets an activated <evaluate> activity and thus perform the changes in
process instances according to the parameters given by the user.

Changing a portType in a process definition requires also binding to WS instances
not known at build time. This leads to using the find and bind mechanism, expressed
by the <find_bind> activity.

We are aware that producing a WS-flow definition becomes a bit more complex
because the <evaluate> activity must be coded and moreover understood. But
coding can be automated; this is one of the goals of the ReFFlow project [29] in its
part related to automating WS-flows production. Besides, we are certain that to
include a single activity to the existing models that can accommodate different
implementation approaches to adaptation is a much more appropriate and feasible
solution than extending the existing models with multiple activities for every possible
implementation approach. For instance, special-purpose extension activities can be
defined to map the existing aspect-oriented programming features [13]; approaches
related to semantic description of WSs can also be represented as separate meta-
model constructs. We consider these and similar approaches related to the
implementation of the engine. Therefore execution engines that do not implement one
of these adaptability approaches would not be able to interpret such WS-flow
definitions; this in turn hampers technology reuse.

Even though some changes in the process definition can be performed using
existing traditional workflow approaches (i.e. no need to reinvent existing
implementation approaches), including the <evaluate> activity is both appropriate
and meaningful. We gain considerable flexibility by including such a construct into
the meta-model. It can accommodate the existing approaches to adaptability and hide
their complexity and implementation specifics from the WS-flow developers and
users. The basic idea here is to find the best possible way of representing portTypes
and process logic changes in a general way. Such a general representation can enable
the use of various implementation paradigms in different execution engines, and in
the same time keep the process descriptions standard/unified, and thus reusable and
portable on the different execution environments. Moreover, the user gains additional
freedom by being allowed to specify attribute values as needed or desired in a
standard way and all this at run time, regardless of the engine and the implementation
approach used.

12 Dimka Karastoyanova, Alejandro Buchmann

6.2.2. Changing process logic at run time
We plan to extend the <evaluate> activity with additional attributes in the near
future. Our intent is to provide for such changes in the definition of WS-flows that do
not affect portTypes and operations only (see section 6.2.1.), but also allows for
replacing a collection of activities with another one. When a portion of the process
definition is substituted with another one the process logic (both control and data
flow) inevitably changes. Doing so could provide an alternative path in the process
execution, which has not been foreseen and specified in the original process schema.
An example of a possible extension to the <evaluate> activity is shown next
(Listing 3).
<process name="ConvertCurrencyBP">
<!-- additional details -->
<!-- evaluate -->
 <evaluate name=”Conversion”
 activated=”true”
 substitute=”T1”>
 <!-- Conversion sequence -->
 <sequence name=”Conversion”>
 <invoke partnerLink="parter1"
 portType=" " … />
 <assign> <copy> …
 </copy></assign>
 <invoke partnerLink="parter2"
 portType=" " … />
 </sequence>
 </evaluate>
<!-- additional details -->
</process>

Listing 3. Substituting process logic.

The substitute attribute of <evaluate> activity takes as a value an
identifier of the new piece of logic. The example from above expresses the following
meaning: the set of activities enclosed in the <evaluate> activity has to be
substituted by the collection of activities with the identifier T1. This implies
generating a bigger piece of process code at run time. The users have to be able to
generate the missing piece of code (here T1) fast enough in order to avoid any delays
in the execution of the process instance. The substitute business logic could be stored
in an abstract form in a domain specific registry, e.g. as a template, and then used
whenever needed. Templates are reusable pieces of code and functionality [25], which
can implement design patterns [1], domain-specific collections of activities and others
in a generic way. The parameters of the templates have to be substituted at run time
by the users to get a concrete version of the substitute code.

Again, the implementation of the WS-flow engine has to take care about
generating code from a template. The engine implementation can be based on any
paradigm; it only needs to implement the meta-model. Additionally, the management
system must ensure that only legal substitution changes are enforced.

We still have not tackled the case in which changing a portType would result in
changing the process logic. Because of the fact that a portType can be used to identify

Extending Web Service Flow Models to Provide for Adaptability 13

a complex WS-flow the above two versions of the <evaluate> activity would
probably have to converge in a single version. This is a topic of major interest for our
research in the immediate future [29].

A very important issue here is to what extent these approaches can be enacted
without the necessity of user intervention. Automating the WS instance swapping and
portType changes at run time can be greatly facilitated by semantic description of
WSs [15]. This is a research area currently progressing at good pace. We are certain
that the results of the research in this area can be accommodated by the presented
meta-model constructs. In this relation, of great importance to the success of our work
would be the ability to classify reusable templates semantically. These and other
issues, as well as finalizing the implementation the supporting tools are in the focus of
our current and future work.

7. Conclusions

WS compositions are the natural consequence of the convergence of workflows and
WSs. The discussion in this paper is based on the fact that WS-flows combine
features from both workflow and WSs and their benefits mutually amplify. We
pointed out the fact that there is no standard way for modeling and describing
workflows, let alone for WS-flows. We are convinced that any standardization efforts
should gravitate around a WS-flow meta-model. Additionally, we argue that
execution environments compliance criteria should also be based on a unified WS
composition meta-model. We also presented the benefits of using such a model. One
of the advantages of a unified WS-flow meta-model is that it provides a common
framework for enabling features in a standardized way by means of standardized
meta-model extensions. To these features counts the WS-flow adaptability. In this
relation we provided a classification of possible changes in WS-flows definitions and
their instances in reaction to changes in the business rules, software infrastructure,
law and other factors of any business domain. We presented meta-model extension
constructs for built-in adaptability; in particular the <find_bind> construct
intended to enable dynamic swapping of WS instances, and the <evaluate>
construct – to be used to allow for run time changes in WS portTypes and in process
logic. We are certain that these constructs are a step towards fully adaptable WS-
flows without the need of human intervention to guide the adaptability. Therefore we
created the proposed meta-model constructs so that they are able to accommodate
advances of the semantic WSs area.

References

1. van der Aalst, W.M.P., Almering, V.: Workflow Patterns, available on the Internet. 2003.
http://tmitwww.tm.tue.nl/research/patterns/

2. van der Aalst, W.M.P.: Don’t Go with the flow: Web service composition standards
exposed. IEEE Intelligent Systems, “Trends and Controversies” Issue Jan/Feb 2003.

14 Dimka Karastoyanova, Alejandro Buchmann

3. van der Aalst, W.M.P., et al.: Adaptive workflow. On the interplay between flexibility and
support. In Proceedings of ICEIS 1999, 1999.

4. Active BPEL. August 2004. http://www.activebpel.org/
5. Active XML: http://www-rocq.inria.fr/gemo/Gemo/Projects/axml/
6. Alonso, G., Casati, F., Kuno, H., Machiraju, V.: Web Services. Concepts, Architectures and

Applications, Springer-Verlag. Berlin Heidelberg New York, 2003.
7. Arkin, A. et al.: Business Process Modeling Language. BPMI.org, 2002.
8. Baeyens, T.: The State of Workflow. TheServerSide.com, May 2004.

http://www.theserverside.com/articles/content/Workflow/article.html
9. Bellwood, T., Clément, L., Ehnebuske, D., Hately, A., Hondo, M., Husband, Y.L.,

Januszewski, K., Lee, S., McKee, B., Munter, J., von Riegen, C.: “UDDI Version 3.0”,
IBM, HP, Intel, Microsoft, Oracle, SAP. 2002. http://uddi.org/pubs/uddi_v3.htm

10. BPMI.org: BPMI.org Phase 2. Insight, Innovation, Interoperability. 2004
11. Casati, F., et al.: Adaptive and Dynamic Service Composition in eFlow. In Proceedings of

CAiSE 2000, LNCS 1789, Springer Verlag, 2000.
12. Curbera, F., Goland, Y., Klein, J., Leyman, F., Roller, D., Thatte, S., Weerawarana, S.:

Business Process Execution Language for Web Services (BPEL4WS) 1.1. May 2003.
http://www.ibm.com/developerworks/library/ws-bpel

13. Courbis, C., Finkelstein, A.: Towards an Aspect Weaving BPEL Engine. In Proceedings of
AOSD Workshop on Aspects, Components, and Patterns for Infrastructure Software
(ACP4IS), Lancaster, UK, March 2004.

14. Czarnecki, K., Eisenecker, U.: Generative Programming: methods, tools, and applications,
Addison-Wesley. 2nd edition, 2002.

15. DAML Services: available on the Internet: http://www.daml.org/services/owl-s/
16. Edmond, D., ter Hofstede, A. H. M.: Achieving Workflow Adaptability by Means of

Reflection. ACM SIGGROUP Bulletin, Volume 20, Issue 3, December 1999.
17. Han, Y., Sheth, A., Bussler, Chr.: A Taxonomy of Adaptive Workflow Management. In

Proceedings of the “Towards Adaptive Workflow Systems” Workshop at the 1998 ACM
Conference on Computer-Supported Cooperative Work (CSCW98), Seattle, 1998.

18. Heinl, P., Horn, S., Jablonski, S., Neeb, J., Stein, K., Teschke, M.: A Comprehensive
Approach to Flexibility in Workflow Management Systems. In Proceedings of WACC’99,
1999.

19. IBM AlphaWorks, “IBM Business Process Execution Language for Web Services JavaTM
Run Time (BPWS4j)”, IBM, 2002, http://www.alphaworks.ibm.com/tech/bpws4j

20. IBM developerWorks: WebSphere Business Integration Server Foundation Process
Choreographer. http://www-106.ibm.com/developerworks/websphere/zones/was/wpc.html

21. Intalio, Inc.: Intaglio|n3 BPMS, 2004. http://www.intalio.com/products/index.xpg
22. Jablonski, S., Bussler, C.: Workflow Management. Modelling Concepts, Architecture and

Implementation. International Thomson Computer Press, London, 1996.
23. Karastoyanova, D., Buchmann, A.: Development Life Cycle of Web Service-based

Business Processes. Enabling dynamic invocation of Web services at run time. In
Proceedings of The 2nd International Workshop on Web Services: Modeling, Architecture
and Infrastructure 2004 (WSMAI-2004), April 2004.

24. Karastoyanova, D.: A Methodology for Development of Web Service-based Business
Processes. In Proceedings of AWESOS 2004, Monash University 2004.

25. Karastoyanova, D., Buchmann, A.: Automating the development of Web Service
compositions using templates, to appear In Proceedings of Geschäftsprozessorientierte
Architekturen Workshop, at Informatik2004, Ulm 2004.

26. Leymann, F., Roller, D.: Production Workflow. Concepts and Techniques. Prentice Hall
Inc., 2000.

Extending Web Service Flow Models to Provide for Adaptability 15

27. zur Muehlen, M.: Process Management Standards Overview. Stevens Institute of
technology, Hoboken, NJ, 2003. available on the Internet:
http://www.wfmc.org/standards/docs/Process_Management_Standards_files/frame.htm

28. Oracle Corporation: Oracle BPEL Process Manager 2.0. 2004.
http://www.oracle.com/technology/products/ias/bpel/index.html

29. ReFFlow Project. http://www.dvs1.informatik.tu-darmstadt.de/research/refflow/index.html
30. Templ, J., "Metaprogramming in Oberon" PhD Dissertation. ETH Zürich, 1995.

http://citeseer.ist.psu.edu/templ94metaprogramming.html
31. Twister, 2004. http://www.smartcomps.org/twister/
32. W3C: Web Services Description Language (WSDL) Version 2.0 Part 1: Core Language,

W3C Working Draft, 2003. http://www.w3.org/TR/wsdl20
33. Workflow Management Coalition: http://www.wfmc.org

