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Abstract.   Snapshot Isolation is an established concurrency control 
algorithm, where each transaction executes against its own 
version/snapshot of the database. Version management may produce 
unnecessary random writes. Compared to magnetic disks Flash 
storage offers fundamentally different IO characteristics, e.g. excellent 
random read, low random write performance and strong read/write 
asymmetry. Therefore the performance of snapshot isolation can be 
improved by minimizing the random writes. We propose a variant of 
snapshot isolation (called SI-CV) that collocates tuple versions created 
by a transaction in adjacent blocks and therefore minimizes random 
writes at the cost of random reads. Its performance, relative to the 
original algorithm, in overloaded systems under heavy transactional 
loads in TPC-C scenarios on Flash SSD storage increases 
significantly. At high loads that bring the original system into 
overload, the transactional throughput of SI-CV increases further, 
while maintaining response times that are multiple factors lower. 

 

1 Introduction 

Database systems, their architecture and algorithms are built around the IO 
properties of the storage. In contrast to Hard Disk Drives (HDD), Flash Solid State 
Disks (SSD) exhibit fundamentally different characteristics: high random and 
sequential throughput, low latency and power consumption [4]. SSD throughput is 
asymmetric in contrast to magnetic storage, i.e. reads are significantly faster than 
writes. Random writes exhibit low performance, which also degrades over time. 
Therefore, to achieve balanced performance, random writes should be avoided at 
the cost of random reads.  
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Snapshot Isolation (SI) is a Multi-Version Concurrency Control (MVCC) 
algorithm, in which every transaction operates against its own workspace/snapshot 
of the database. Under SI read operations do not block writes and vice versa, 
which is a good match for the Flash SSD properties. SI provides significant 
performance improvements compared to two-phase locking schedulers. Whenever 
a transaction modifies a tuple in its workspace a new version of that tuple is 
created and linked to the chain of older versions. Such operations result in 
undesired random writes. On algorithmic level no provisioning is made for this 
case. On system level SI relies solely on the buffer manager to intercept random 
writes. 

We extended the classical SI algorithm to collocate/group tuple versions 
created by a transaction in the same or in adjacent database pages, employing a 
mechanism of page pre-allocation. We call the algorithm Snapshot Isolation with 
Co-located Versions (SI-CV).  

The contributions of the paper are: (i) we implemented SI-CV in PostgreSQL 
(ii) SI-CV was tested in an OLTP environment with DBT2[6] (an open source 
version of TPC-C [8]) (iii) SI-CV performs up to 30% better than the original 
algorithm on flash SSDs and equally good on HDD; (iv) SI-CV performance is 
better under heavy loads; (v) SI-CV is space efficient, regardless of its pre-
allocation mechanism. 

The rest of the paper is organized as follows: in the following section we 
briefly review the related work; the properties of Flash SSDs are discussed in 
Section 3; then we introduce the original SI algorithm and SI-CV. Finally, section 
6 describes the experimental results and analyses. 

2 Related Work 

The general SI-algorithm is introduced and discussed in [1]. The specifics of 
the PostgreSQL SI implementation are described in detail in [2,3]. As reported in 
[1] SI fails to enforce serializability. Recently a serializable version of SI was 
proposed [7] that is based on read/write dependency testing in serialization graphs. 
Serializable SI assumes that the storage provides enough random read throughput 
needed to determine the visible version of a tuple valid for a timestamp, making it 
ideal for Flash storage. [9] recently made an alternative proposal for SI 
serializability. In addition serializable SI has been implemented in the new (but 
still unstable) version of PostgreSQL and will appear as a standard feature in the 
upcoming release.  

SI-CV presents a way to specially collocate data (versions) for each transaction 
leveraging the properties of the SSDs. There are several proposed approaches for 
flash storage managers, the majority of which explore the idea of append based 
storage [12] for SSDs [11, 10]. SI-CV differs in that it collocates per transaction 
but does not eliminate the concept of write in-place by converting all writes into 
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appends. Although it is our long term goal to integrate log-based storage 
mechanisms this is not part of this work. 

In addition, there exist several proposals for page layouts [13] such as PAX 
[14] that aim at sorting row data in a column-based order with page sub-structures. 
Such approaches are developed within the context of Data Warehousing and show 
superior performance for read-mostly data. [15] explores how query processing 
algorithms and data structures such as FlashJoin [15] or FlashScan can benefit 
from such page organizations and the characteristics of Flash SSDs.  

Furthermore, there have been numerous proposals of improving the logging 
and recovery mechanisms with respect to new types of memories (Flash SSDs, 
NVMemories). In-Page Logging [16] (IPL) is one such mechanism, that allows 
significant performance improvements by write reduction as well as page and log 
record collocation.  

We expect that techniques such as Group Commit have a profound effect on 
version collocation approaches in MVCC environments. We have not explored 
those due to their effect on database crash recovery; however it is part of our 
future work. In [17] we explore the influence of database page size on the 
database performance on Flash storage. 

In a series of papers, e.g. [2] Kemme et al. investigate database replication 
approaches coupled to SI. SI has been implemented in Oracle, PostgreSQL, 
Microsoft SQL Server 2005. In some systems as a separate isolation level, in 
others to handle serializable isolation. 

To the best of our knowledge no version handling approaches for SI exist. This 
aspect has been left out of consideration by the most algorithms as well. 

3 ENTERPRISE FLASH SSDS 

The performance exhibited by Flash SSDs is significantly better than that of 
HDDs. Flash SSDs, are not merely a faster alternative to HDDs; just replacing 
them does not yield optimal performance. Below we discuss their characteristics.  

(a) asymmetric read/write performance – the read performance is significantly 
better than the write performance – up to an order of magnitude (Fig.  1, Fig.  2). 
This is a result of the internal organization of the NAND memory, which 
comprises two types of structures: pages and blocks. A page (typically 4 KB) is a 
read and write unit. Pages are grouped into blocks of 32/128 pages (128/512KB). 
NAND memories support three operations: read, write, erase. Reads and writes are 
performed on a page-level, while erases are performed on a block level. Before 
performing a write, the whole block containing the page must be erased, which is 
a time-consuming operation. The respective raw latencies are: read-55μs; write 
500μs; erase 900μs. In addition, writes should be evenly spread across the whole 
volume. Hence no write in-place as on HDDs, instead copy-and-write. 

(b) excellent random read throughput (IOPS) – especially for small block sizes. 
Small random reads are up to hundred times faster than on an HDD (Fig.  1). The 
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good small block performance (4KB, 8KB) affects the present assumptions of 
generally larger database page sizes. 

  

 
Figure 1. Random throughput (IOPS) of a X25-E SSD vs. HDD 7200 RPM 

 

 
Figure 2. Sequential throughput (MB/s) of an X25-E SSD vs. HDD 7200 RPM 

 
Write Cache (WC)-ON Write Cache-OFF 

SSD HDD SSD 
 
 

Blocksize 4 KB Avg[µs] Max[ms] Avg[ms] Max[ms] Avg[µs] Max[ms] 
Sequential Read 53 12.3 0.133 109.2 – 12.3 
Sequential Write 59 94.8 0.168 36.9 455 100.3 

Random Read 167 12.4 10.8 121 – 12.4 
Random Write 113 100.7 5.6 127.5 435 100.7 

Table 1. AVG/MAX latency of an X25-E SSD and 7200 RPM HDD 
 
(c) low random write throughput – small random writes are five to ten times 

slower than reads (Fig.  1). Nonetheless, the random write throughput is an order 
of magnitude better than that of an HDD. Random writes are an issue not only in 
terms of performance but also yield long-term performance degradation due to 
Flash-internal fragmentation effects.  
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(d) good sequential read/write transfer (Fig.  2). Sequential operations are also 
asymmetric. However, due to read ahead, write back and good caching the 
asymmetry is below 25%. 

4 SNAPSHOT ISOLATION 

In SI [1] each transaction operates against its own version (snapshot) of the 
committed state of the database. If a transaction Ti reads a data item X, the read 
operation is performed from Ti’s snapshot, which is unaffected by updates from 
concurrent transactions. Therefore, reads never block writes (and vice versa) and 
there is no need for read-locks. Modifications (inserts, updates, deletes - Ti’s write 
set) are also performed on Ti’s snapshot and upon successful commit become 
visible to appropriate transactions. During commit the transaction manager checks 
whether Ti’s modifications overlap with the modifications of concurrent 
transactions. If write sets do not overlap Ti commits, otherwise it aborts. These 
commit-time checks are represented by two alternative rules: first-committer-
wins[1] or first-updater-wins[1,3]. While the former is enforced in deferred 
manner at commit time, the latter results in immediate checks before each write. 
The first-updater-wins relies on write locks (see also Listing 1) and is 
implemented in PostgreSQL. 

Apart from the general SI algorithm we also summarize its PostgreSQL 
implementation [1,2,3] (Listing 1). On begin of every new transaction it is 
assigned a unique transaction ID (TID) equivalent to a timestamp. Tuples in 
PostgreSQL are the unit of versioning. Every version Vi of a tuple X is annotated 
with two TIDs: t_xmin and t_xmax. t_xmin is TID of the transaction that created 
Vi. t_xmax is the TID of the transaction that created a new version Vj of X, a 
successor of Vi. In principle Vj invalidates Vi. If t_xmax is NULL,Vi is the most 
recent version. All versions are organised as a linked list in memory. 
Complementary to the tuple versions PostgreSQL maintains a SnapshotData 
structure for every running transaction Ti. Among other fields it contains: (i) xmax 
- the TID of the next transaction (T(i+1) at time Ti started) and serves as a visibility 
threshold for transactions whose changes are not visible to Ti; (ii) xmin – 
determines transactions whose updates are visible to Ti; (iii) xip – holds a TID list 
of all transactions concurrent to Ti. Finally PostgreSQL uses a main memory 
structure called PG_CLOG (previously pg_log), based on the database log, which 
allows for fast transaction status checks (aborted, committed, in progress).  

Consider Listing1: whenever transaction Ti reads a tuple X (line 2), SI first 
checks if X is in the writeset of Ti to determine whether it has to read its own or 
the last stable version of X (line 2-4). Its own version can be read directly, because 
it cannot be modified by another transaction. Otherwise SI has to determine the 
version of X visible to Ti. Tuple visibility can be expressed with two conditions 
(line 19 and 20). The first one requires the X to be created by a transaction that 
successfully committed before Ti started. The second one (line 20) forbids X to be 
modified (and committed) by a concurrent transaction Tj.  
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Listing 1: Snapshot Isolation 
1.  Start Transaction Ti  tsi = timestamp( Ti ); 
2.  ON Ti.read( X ):  // Transaction Ti reads tuple X   
3.    IF( X IN { writeSet(Ti) } ) X.Vi = readOwnVersion( X,Ti ) 
4.    ELSE X.Vi  = readStableVersion( X, Ti ) 
5.  ON Ti.write( X ):  // Transaction Ti modifies tuple X 
6.   IF( VersionCheck( X ) = FAILED)  Ti.rollback() 
7.   Ti.lockX = requestXlock( X ) 
8.   IF( Ti.lockX == GRANTED ){  //PerformUpdate  InstallUpdate 
9.   X.Vs = readStableVersion( X, Ti ); X.Vi =new Version(X); 
10.   X.Vs.t_xmax = tsi;  X.Vi.t_min = tsi; X.Vi.t_max = NULL; 
11.   } ELSE  //another transaction has already acquired the lock on X  
12.    ENQUEUE( Ti.lockX )  … wait_for_lock … ON lock granted 
13.    GOTO line 6;//restart the write validation. avoid concurrent changes 
14.  ON Ti.commit() or Ti.rollback()  
15.   Release All acquired locks,Wake Up Waiting Transactions,Update Log 
16.  End Transaction Ti; 

  
17.  readStableVersion(Tuple X,Transaction Ti){ 
18.   Find X.Va, created by transaction Tj such that:    
19.   // Find X.Va created by the latest Tj that committed before Ti started: 

 X.Va.t_xmin |  X.Va.t_xmin < Ti.SnapshotData.xmax AND  
        PG_CLOG( X.Va.t_xmin ) == committed 

20.   //Find X.Va that is untouched or was updated by Tj that either aborted    
 // or was in progress when Ti attempted to write:  
 X.Va.t_xmax |  X.Va.t_xmax==NULL OR  
      PG_CLOG( X.Va.t_xmax ) == aborted OR   
      X.Va.t_xmax IN {Ti.SnapshotData.xip}  

21.    IF Checks FAIL return NULL ELSE return X.Va  
22.  } 
23.  VersionCheck( Tuple X ) { 
24.   X.Vi = readStableVersion( X ) 
25.   IF( X.Vi == NULL) return FAILED // X was updated by concurrent Tj 
26.  } 

 
Before Ti writes X, SI first performs a version check to determine if the version 

was updated by a concurrent transaction. On a negative check Ti has to abort (line 
6). On a positive check it requests a write-lock on X. If X is locked by a 
concurrent transaction Tk, Ti waits until the lock is granted. Otherwise, it acquires 
a write lock on X, the stable version X.Vs is read and a new version X.Vi is created. 
Ti sets the creation timestamp X.Vi.t_xmin and the invalidation timestamp 
X.Vs.t_xmax to its own timestamp tsi (lines 9,10). On a commit or abort all 
acquired locks are released, waiting transactions are woken up and PG_CLOG is 
updated.  

Snapshot Isolation never deletes an old version, however a tuple version may 
still become effectively invisible to any running transaction, because of the rules 
in line 19 and 20. Such obsolete versions consume precious space and can be 
safely removed. PostgreSQL runs a Vacuum process, which removes obsolete 
versions and coalesces free space. A simple version of Vacuum marks obsolete 
versions as deleted thus freeing space, while the exhaustive Vacuum version 
removes such versions and coalesces the freed space. Unfortunately, it requires an 
exclusive table lock and generates heavy I/O.  
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5 SNAPSHOT ISOLATION WITH CO-LOCATED VERSIONS 

As Listing1 (lines 9,10) clearly shows, the present algorithm does not group the 
tuple versions created by transactions. It results into multiple updates (t_xmax of 
the old version and the newly created versions), which may lead to random writes. 
Our idea is to collocate all versions created by one transaction and group them into 
adjacent blocks. This not only minimizes the random writes, possibly converting 
them into sequential writes, but also uses potentially more random reads. 
Therefore SI-CV is a good match for SSD properties. 

SI-CV (Fig.  1) introduces a new structure Barray in the database(shared) buffer 
of PostgreSQL. The Barray maps a transaction to a block-number. In SI-CV each 
transaction receives a pre-allocated block for inserts/updates of tuple versions, 
which is determined on the first write request. Read only or bulk-insert 
transactions have no entries in the Barray. With bulk inserts the storage manager 
writes sequentially, making it unnecessary to provision for that case. Upon the 
creation of the first new version of a tuple X by a transaction Ti an entry in Barray 
is created with an artificial block number. To determine a physical block SI-CV 
has to decide whether to use the free space map (FSM) or not. The FSM is a buffer 
manager structure that keeps track of block numbers that still have space left. If 
the FSM is used, an existing block with sufficient space for the new version is 
selected, which currently must not be in Barray. This is how we forbid multiple 
transactions to be mapped on the same block. However, one transaction may 
reserve multiple blocks in Barray. In absence of free space the FSM is not used, 
the relation is extended with a new block, which forms a new entry in the Barray 
structure together with the transaction ID. Upon transaction termination the entry 
in the Barray is deleted and made visible to the FSM. After the commit of a 
transaction, the buffer only contains committed data (versions). 

 

 
Fig.  1. SI-CV block diagram 

We illustrate how SI-CV works based on a simple example (Fig.  2). Two 
transactions Ti and Tj modify the tuples K, R, X and Y in the relation Rel, in the 
following way: Start(Ti), Start(Tj), Wi[X], Wj[K], Wj[R], Wi[Y], Commit(Ti), 
Wj[K], Wj[R], Commit(Tj). According to SI-CV the Barray buffer manager 
structure will assign blocks uniquely to each transaction. These blocks will contain 
all versions created by the respective transaction (Fig.  2): transaction Ti with 
TID123 is mapped to Block1, while transaction Tj with TID124 is mapped to 
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Block2. Upon Ti’s commit Block1 is written, upon Tj’s commit Block2 is written. 
However, if Tj aborts Block2 is not written.  

 

 
Fig.  2. SI-CV example 

The original SI will pick any block with enough free space to host the new 
version, regardless of whether it hosts versions of other transactions. This 
undoubtedly yields random writes. In Fig.  2 block O1 and O2 contain versions 
from both transactions, which predisposes them to be written multiple times. Upon 
Ti’s commit both blocks are written. Upon Tj’s commit both blocks are re-written, 
because Tj overwrote the values of its own tuples K and R. However, if Tj aborts 
both blocks have to be re-written nonetheless.  

Based on this example SI-CV not only minimizes on random writes and has 
better abort behavior, but should also perform better with higher number of 
transactions. We investigate this claim in the following section.   

6 Evaluation  

We implemented SI-CV using the PostgreSQL 8.4.2 codebase. The 
implementation spans several sub-modules of the storage manager, in particular 
the buffer and page mangers. 

We tested SI-CV against the original SI algorithm on a machine with Intel Core 
2 Duo 3GHz CPU and 512 MB RAM, running a 64-bit Ubuntu Server. In 
addition, we used an Intel X25-E/64GB enterprise SSD and a 7200RPM SATA2 
HDD. The properties of both drives are described in Section 3. PostgreSQL is 
configured with a 24 MB shared buffer and activated simple vacuums (Section 4). 
The nominal DB size is 31GB. As benchmark we used DBT2[6], which is 
instrumented with 20 database connections and 20 terminals per warehouse. Every 
test run has a two hour duration, excluding the additional ramp-up time (which is 
proportional to the number of warehouses used).  
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Original SI [NoTPM] SI-CV [NoTPM] 

SSD (270 Wh.) HDD (80 Wh.) SSD (270 Wh.) HDD (80 Wh.) 
2500 210 3588 +30.3% 219 +3.8% 

Table 2. Maximum DBT2 Transaction Throughput [NoTPM] with the respective number of 
warehouses  

 
The DBT2 test results showing the maximum transaction throughput for SSDs 

and HDDs are displayed in Table 2. These show a performance increase of 30% 
with SI-CV on SSDs. SI-CV on HDDs performs slightly better with an 
improvement of 3.8%. The clear performance advantage of SI-CV on SSDs 
physically results from the reduction of random writes, at the cost of more random 
reads. As discussed in Section 3, both random operations have the same cost on a 
HDD, whereas random reads are much cheaper than random writes on a SSD. 
Hence the different rate of improvement (Table 2). In addition, a growing number 
of concurrent transactions, offers more room for version collocation, which 
magnifies the above effect.  

 

 
Figure 3. Transaction Throughput (New Order Transactions per Minute) SI-CV vs. SI 

The performance effects of version collocation will increase with higher 
transactional loads. The reason for this is that more transactions create more 
versions of tuple data, which if collocated will save more random write operations.  
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Figure 4. Avg. Resp. Time [s] of SI-CV and SI on SSD (lower is better) 

 
To verify this claim we performed a series of experiments, where the number of 

warehouses increases continuously thus producing higher transactional loads. (In 
TPC-C the number of transactions per warehouse is approximately constant – 
Section 5.2.3 from the TPC-C Specification [8] – hence increasing the number of 
warehouses increases the number of transactions).  

The results in Figure 3 clearly show that SI-CV exhibits better performance 
under higher loads. On an under-committed system with enough free resources 
(Figure 3, Warehouses ≤ 180) SI and SI-CV perform equally well in PostgreSQL. 
A further increase of the load (Figure 3, Warehouses ≥ 230) brings SI into 
thrashing; the system is overloaded the transactional throughput does not increase 
further and begins to deteriorate, while the response times (Figure 4) increase 
exponentially. The throughput of SI-CV grows steadily for the same range of 
loads. SI-CV achieves up to 30% higher transactional throughput, before going 
into thrashing. Such performance behavior is especially favorable to whenever 
peak loads need to be processed or load spikes occur in real systems. 

Another interesting characteristic of SI-CV are the low response times. As 
Figure 4 shows, on an under-committed system both SI and SI-CV have similar 
response times. SI-CV, however, can support higher transactional loads at 
significantly lower response times. For peak loads (in the present testbed; 
Warehouses ≥ 230), SI-CV provides up to 30% higher transactional throughput at 
sub-second response times (Figure 3 and Figure 4). 

 Furthermore, SI-CV offers similar or better read performance than the original 
SI. To verify this statement we report the ORDER_STATUS transaction 
performance, which is a read-only transaction. Figure 5 shows the total number of 
executed ORDER_STATUS transactions with SI and SI-CV for each two hour 
test run with different number of warehouses. In this experiment all other TPC-C 
transactions (read-write) execute concurrently. The goal is to obtain a realistic 
mixture of reads and writes that according to the canonical SI do not affect each 
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other. The numbers in Figure 5 show that read performance of SI-CV remains 
unaffected by the version collocation changes. 

 

 
Figure 5. Total number of Order Status Transactions 

Last but not least, we report the disk space consumption of SI-CV, for the 
following reason. The price per GB of disk space on an enterprise 15K RPM HDD 
is ~7x lower than on an enterprise SSD. Due to the block pre-allocation per new 
transaction these blocks may not be filled optimally: each SI-CV block may 
contain more unused space than an SI block. After a two hour TPC-C test the 
space consumed by SI-CV increased by less than 0.0001% per Warehouse 
compared to the original SI. Hence, SI-CV is almost as space efficient as the SI. 

Conclusions 

We developed an extension of Snapshot Isolation (SI), called Snapshot 
Isolation with Co-located Versions (SI-CV). It places versions of tuples created or 
modified by a transaction in pre-allocated blocks. Thus it reduces the amount of 
random writes, which leverages better the properties of Flash SSDs. SI-CV is 
implemented in PostgreSQL.  

TPC-C tests show that:  
(a) SI-CV performs better especially under heavy load conditions where the 

system is very I/O-bound. Under such conditions we achieved up to 30% better 
performance with SI-CV.  

(b) The relative performance of SI-CV (to SI) increases with higher number of 
transactions.  

(c) The transaction response time with SI-CV on an over-committed system 
remains significantly lower than that of SI. Under heavy load conditions SI-CV 
operates with sub-second response times. 
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 (d) SI-CV utilizes a block pre-allocation strategy per transaction. We prove 
experimentally that it is almost as space efficient as SI. The space consumption 
difference is marginal and justifies the performance advantages of SI-CV. 

(e) Finally, the read performance of SI-CV in comparison to SI is equally good 
or better. 
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