
SI-CV: Snapshot Isolation With Co-Located
Versions

Robert Gottstein, Ilia Petrov, Alejandro Buchmann

Databases and Distributed Systems Group, TU-Darmstadt, Germany

{gottstein | petrov | buchman}@dvs.tu-darmstadt.de

Abstract. Snapshot Isolation is an established concurrency control
algorithm, where each transaction executes against its own
version/snapshot of the database. Version management may produce
unnecessary random writes. Compared to magnetic disks Flash
storage offers fundamentally different IO characteristics, e.g. excellent
random read, low random write performance and strong read/write
asymmetry. Therefore the performance of snapshot isolation can be
improved by minimizing the random writes. We propose a variant of
snapshot isolation (called SI-CV) that collocates tuple versions created
by a transaction in adjacent blocks and therefore minimizes random
writes at the cost of random reads. Its performance, relative to the
original algorithm, in overloaded systems under heavy transactional
loads in TPC-C scenarios on Flash SSD storage increases
significantly. At high loads that bring the original system into
overload, the transactional throughput of SI-CV increases further,
while maintaining response times that are multiple factors lower.

1 Introduction

Database systems, their architecture and algorithms are built around the IO
properties of the storage. In contrast to Hard Disk Drives (HDD), Flash Solid State
Disks (SSD) exhibit fundamentally different characteristics: high random and
sequential throughput, low latency and power consumption [4]. SSD throughput is
asymmetric in contrast to magnetic storage, i.e. reads are significantly faster than
writes. Random writes exhibit low performance, which also degrades over time.
Therefore, to achieve balanced performance, random writes should be avoided at
the cost of random reads.

2

Snapshot Isolation (SI) is a Multi-Version Concurrency Control (MVCC)
algorithm, in which every transaction operates against its own workspace/snapshot
of the database. Under SI read operations do not block writes and vice versa,
which is a good match for the Flash SSD properties. SI provides significant
performance improvements compared to two-phase locking schedulers. Whenever
a transaction modifies a tuple in its workspace a new version of that tuple is
created and linked to the chain of older versions. Such operations result in
undesired random writes. On algorithmic level no provisioning is made for this
case. On system level SI relies solely on the buffer manager to intercept random
writes.

We extended the classical SI algorithm to collocate/group tuple versions
created by a transaction in the same or in adjacent database pages, employing a
mechanism of page pre-allocation. We call the algorithm Snapshot Isolation with
Co-located Versions (SI-CV).

The contributions of the paper are: (i) we implemented SI-CV in PostgreSQL
(ii) SI-CV was tested in an OLTP environment with DBT2[6] (an open source
version of TPC-C [8]) (iii) SI-CV performs up to 30% better than the original
algorithm on flash SSDs and equally good on HDD; (iv) SI-CV performance is
better under heavy loads; (v) SI-CV is space efficient, regardless of its pre-
allocation mechanism.

The rest of the paper is organized as follows: in the following section we
briefly review the related work; the properties of Flash SSDs are discussed in
Section 3; then we introduce the original SI algorithm and SI-CV. Finally, section
6 describes the experimental results and analyses.

2 Related Work

The general SI-algorithm is introduced and discussed in [1]. The specifics of
the PostgreSQL SI implementation are described in detail in [2,3]. As reported in
[1] SI fails to enforce serializability. Recently a serializable version of SI was
proposed [7] that is based on read/write dependency testing in serialization graphs.
Serializable SI assumes that the storage provides enough random read throughput
needed to determine the visible version of a tuple valid for a timestamp, making it
ideal for Flash storage. [9] recently made an alternative proposal for SI
serializability. In addition serializable SI has been implemented in the new (but
still unstable) version of PostgreSQL and will appear as a standard feature in the
upcoming release.

SI-CV presents a way to specially collocate data (versions) for each transaction
leveraging the properties of the SSDs. There are several proposed approaches for
flash storage managers, the majority of which explore the idea of append based
storage [12] for SSDs [11, 10]. SI-CV differs in that it collocates per transaction
but does not eliminate the concept of write in-place by converting all writes into

3

appends. Although it is our long term goal to integrate log-based storage
mechanisms this is not part of this work.

In addition, there exist several proposals for page layouts [13] such as PAX
[14] that aim at sorting row data in a column-based order with page sub-structures.
Such approaches are developed within the context of Data Warehousing and show
superior performance for read-mostly data. [15] explores how query processing
algorithms and data structures such as FlashJoin [15] or FlashScan can benefit
from such page organizations and the characteristics of Flash SSDs.

Furthermore, there have been numerous proposals of improving the logging
and recovery mechanisms with respect to new types of memories (Flash SSDs,
NVMemories). In-Page Logging [16] (IPL) is one such mechanism, that allows
significant performance improvements by write reduction as well as page and log
record collocation.

We expect that techniques such as Group Commit have a profound effect on
version collocation approaches in MVCC environments. We have not explored
those due to their effect on database crash recovery; however it is part of our
future work. In [17] we explore the influence of database page size on the
database performance on Flash storage.

In a series of papers, e.g. [2] Kemme et al. investigate database replication
approaches coupled to SI. SI has been implemented in Oracle, PostgreSQL,
Microsoft SQL Server 2005. In some systems as a separate isolation level, in
others to handle serializable isolation.

To the best of our knowledge no version handling approaches for SI exist. This
aspect has been left out of consideration by the most algorithms as well.

3 ENTERPRISE FLASH SSDS

The performance exhibited by Flash SSDs is significantly better than that of
HDDs. Flash SSDs, are not merely a faster alternative to HDDs; just replacing
them does not yield optimal performance. Below we discuss their characteristics.

(a) asymmetric read/write performance – the read performance is significantly
better than the write performance – up to an order of magnitude (Fig. 1, Fig. 2).
This is a result of the internal organization of the NAND memory, which
comprises two types of structures: pages and blocks. A page (typically 4 KB) is a
read and write unit. Pages are grouped into blocks of 32/128 pages (128/512KB).
NAND memories support three operations: read, write, erase. Reads and writes are
performed on a page-level, while erases are performed on a block level. Before
performing a write, the whole block containing the page must be erased, which is
a time-consuming operation. The respective raw latencies are: read-55μs; write
500μs; erase 900μs. In addition, writes should be evenly spread across the whole
volume. Hence no write in-place as on HDDs, instead copy-and-write.

(b) excellent random read throughput (IOPS) – especially for small block sizes.
Small random reads are up to hundred times faster than on an HDD (Fig. 1). The

4

good small block performance (4KB, 8KB) affects the present assumptions of
generally larger database page sizes.

Figure 1. Random throughput (IOPS) of a X25-E SSD vs. HDD 7200 RPM

Figure 2. Sequential throughput (MB/s) of an X25-E SSD vs. HDD 7200 RPM

Write Cache (WC)-ON Write Cache-OFF

SSD HDD SSD

Blocksize 4 KB Avg[µs] Max[ms] Avg[ms] Max[ms] Avg[µs] Max[ms]
Sequential Read 53 12.3 0.133 109.2 – 12.3
Sequential Write 59 94.8 0.168 36.9 455 100.3

Random Read 167 12.4 10.8 121 – 12.4
Random Write 113 100.7 5.6 127.5 435 100.7

Table 1. AVG/MAX latency of an X25-E SSD and 7200 RPM HDD

(c) low random write throughput – small random writes are five to ten times

slower than reads (Fig. 1). Nonetheless, the random write throughput is an order
of magnitude better than that of an HDD. Random writes are an issue not only in
terms of performance but also yield long-term performance degradation due to
Flash-internal fragmentation effects.

5

(d) good sequential read/write transfer (Fig. 2). Sequential operations are also
asymmetric. However, due to read ahead, write back and good caching the
asymmetry is below 25%.

4 SNAPSHOT ISOLATION

In SI [1] each transaction operates against its own version (snapshot) of the
committed state of the database. If a transaction Ti reads a data item X, the read
operation is performed from Ti’s snapshot, which is unaffected by updates from
concurrent transactions. Therefore, reads never block writes (and vice versa) and
there is no need for read-locks. Modifications (inserts, updates, deletes - Ti’s write
set) are also performed on Ti’s snapshot and upon successful commit become
visible to appropriate transactions. During commit the transaction manager checks
whether Ti’s modifications overlap with the modifications of concurrent
transactions. If write sets do not overlap Ti commits, otherwise it aborts. These
commit-time checks are represented by two alternative rules: first-committer-
wins[1] or first-updater-wins[1,3]. While the former is enforced in deferred
manner at commit time, the latter results in immediate checks before each write.
The first-updater-wins relies on write locks (see also Listing 1) and is
implemented in PostgreSQL.

Apart from the general SI algorithm we also summarize its PostgreSQL
implementation [1,2,3] (Listing 1). On begin of every new transaction it is
assigned a unique transaction ID (TID) equivalent to a timestamp. Tuples in
PostgreSQL are the unit of versioning. Every version Vi of a tuple X is annotated
with two TIDs: t_xmin and t_xmax. t_xmin is TID of the transaction that created
Vi. t_xmax is the TID of the transaction that created a new version Vj of X, a
successor of Vi. In principle Vj invalidates Vi. If t_xmax is NULL,Vi is the most
recent version. All versions are organised as a linked list in memory.
Complementary to the tuple versions PostgreSQL maintains a SnapshotData
structure for every running transaction Ti. Among other fields it contains: (i) xmax
- the TID of the next transaction (T(i+1) at time Ti started) and serves as a visibility
threshold for transactions whose changes are not visible to Ti; (ii) xmin –
determines transactions whose updates are visible to Ti; (iii) xip – holds a TID list
of all transactions concurrent to Ti. Finally PostgreSQL uses a main memory
structure called PG_CLOG (previously pg_log), based on the database log, which
allows for fast transaction status checks (aborted, committed, in progress).

Consider Listing1: whenever transaction Ti reads a tuple X (line 2), SI first
checks if X is in the writeset of Ti to determine whether it has to read its own or
the last stable version of X (line 2-4). Its own version can be read directly, because
it cannot be modified by another transaction. Otherwise SI has to determine the
version of X visible to Ti. Tuple visibility can be expressed with two conditions
(line 19 and 20). The first one requires the X to be created by a transaction that
successfully committed before Ti started. The second one (line 20) forbids X to be
modified (and committed) by a concurrent transaction Tj.

6

Listing 1: Snapshot Isolation
1. Start Transaction Ti tsi = timestamp(Ti);
2. ON Ti.read(X): // Transaction Ti reads tuple X
3. IF(X IN { writeSet(Ti) }) X.Vi = readOwnVersion(X,Ti)
4. ELSE X.Vi = readStableVersion(X, Ti)
5. ON Ti.write(X): // Transaction Ti modifies tuple X
6. IF(VersionCheck(X) = FAILED) Ti.rollback()
7. Ti.lockX = requestXlock(X)
8. IF(Ti.lockX == GRANTED){ //PerformUpdate InstallUpdate
9. X.Vs = readStableVersion(X, Ti); X.Vi =new Version(X);
10. X.Vs.t_xmax = tsi; X.Vi.t_min = tsi; X.Vi.t_max = NULL;
11. } ELSE //another transaction has already acquired the lock on X
12. ENQUEUE(Ti.lockX) … wait_for_lock … ON lock granted
13. GOTO line 6;//restart the write validation. avoid concurrent changes
14. ON Ti.commit() or Ti.rollback()
15. Release All acquired locks,Wake Up Waiting Transactions,Update Log
16. End Transaction Ti;

17. readStableVersion(Tuple X,Transaction Ti){
18. Find X.Va, created by transaction Tj such that:
19. // Find X.Va created by the latest Tj that committed before Ti started:

 X.Va.t_xmin | X.Va.t_xmin < Ti.SnapshotData.xmax AND
 PG_CLOG(X.Va.t_xmin) == committed

20. //Find X.Va that is untouched or was updated by Tj that either aborted
 // or was in progress when Ti attempted to write:
 X.Va.t_xmax | X.Va.t_xmax==NULL OR
 PG_CLOG(X.Va.t_xmax) == aborted OR
 X.Va.t_xmax IN {Ti.SnapshotData.xip}

21. IF Checks FAIL return NULL ELSE return X.Va
22. }
23. VersionCheck(Tuple X) {
24. X.Vi = readStableVersion(X)
25. IF(X.Vi == NULL) return FAILED // X was updated by concurrent Tj
26. }

Before Ti writes X, SI first performs a version check to determine if the version

was updated by a concurrent transaction. On a negative check Ti has to abort (line
6). On a positive check it requests a write-lock on X. If X is locked by a
concurrent transaction Tk, Ti waits until the lock is granted. Otherwise, it acquires
a write lock on X, the stable version X.Vs is read and a new version X.Vi is created.
Ti sets the creation timestamp X.Vi.t_xmin and the invalidation timestamp
X.Vs.t_xmax to its own timestamp tsi (lines 9,10). On a commit or abort all
acquired locks are released, waiting transactions are woken up and PG_CLOG is
updated.

Snapshot Isolation never deletes an old version, however a tuple version may
still become effectively invisible to any running transaction, because of the rules
in line 19 and 20. Such obsolete versions consume precious space and can be
safely removed. PostgreSQL runs a Vacuum process, which removes obsolete
versions and coalesces free space. A simple version of Vacuum marks obsolete
versions as deleted thus freeing space, while the exhaustive Vacuum version
removes such versions and coalesces the freed space. Unfortunately, it requires an
exclusive table lock and generates heavy I/O.

7

5 SNAPSHOT ISOLATION WITH CO-LOCATED VERSIONS

As Listing1 (lines 9,10) clearly shows, the present algorithm does not group the
tuple versions created by transactions. It results into multiple updates (t_xmax of
the old version and the newly created versions), which may lead to random writes.
Our idea is to collocate all versions created by one transaction and group them into
adjacent blocks. This not only minimizes the random writes, possibly converting
them into sequential writes, but also uses potentially more random reads.
Therefore SI-CV is a good match for SSD properties.

SI-CV (Fig. 1) introduces a new structure Barray in the database(shared) buffer
of PostgreSQL. The Barray maps a transaction to a block-number. In SI-CV each
transaction receives a pre-allocated block for inserts/updates of tuple versions,
which is determined on the first write request. Read only or bulk-insert
transactions have no entries in the Barray. With bulk inserts the storage manager
writes sequentially, making it unnecessary to provision for that case. Upon the
creation of the first new version of a tuple X by a transaction Ti an entry in Barray
is created with an artificial block number. To determine a physical block SI-CV
has to decide whether to use the free space map (FSM) or not. The FSM is a buffer
manager structure that keeps track of block numbers that still have space left. If
the FSM is used, an existing block with sufficient space for the new version is
selected, which currently must not be in Barray. This is how we forbid multiple
transactions to be mapped on the same block. However, one transaction may
reserve multiple blocks in Barray. In absence of free space the FSM is not used,
the relation is extended with a new block, which forms a new entry in the Barray
structure together with the transaction ID. Upon transaction termination the entry
in the Barray is deleted and made visible to the FSM. After the commit of a
transaction, the buffer only contains committed data (versions).

Fig. 1. SI-CV block diagram

We illustrate how SI-CV works based on a simple example (Fig. 2). Two
transactions Ti and Tj modify the tuples K, R, X and Y in the relation Rel, in the
following way: Start(Ti), Start(Tj), Wi[X], Wj[K], Wj[R], Wi[Y], Commit(Ti),
Wj[K], Wj[R], Commit(Tj). According to SI-CV the Barray buffer manager
structure will assign blocks uniquely to each transaction. These blocks will contain
all versions created by the respective transaction (Fig. 2): transaction Ti with
TID123 is mapped to Block1, while transaction Tj with TID124 is mapped to

8

Block2. Upon Ti’s commit Block1 is written, upon Tj’s commit Block2 is written.
However, if Tj aborts Block2 is not written.

Fig. 2. SI-CV example

The original SI will pick any block with enough free space to host the new
version, regardless of whether it hosts versions of other transactions. This
undoubtedly yields random writes. In Fig. 2 block O1 and O2 contain versions
from both transactions, which predisposes them to be written multiple times. Upon
Ti’s commit both blocks are written. Upon Tj’s commit both blocks are re-written,
because Tj overwrote the values of its own tuples K and R. However, if Tj aborts
both blocks have to be re-written nonetheless.

Based on this example SI-CV not only minimizes on random writes and has
better abort behavior, but should also perform better with higher number of
transactions. We investigate this claim in the following section.

6 Evaluation

We implemented SI-CV using the PostgreSQL 8.4.2 codebase. The
implementation spans several sub-modules of the storage manager, in particular
the buffer and page mangers.

We tested SI-CV against the original SI algorithm on a machine with Intel Core
2 Duo 3GHz CPU and 512 MB RAM, running a 64-bit Ubuntu Server. In
addition, we used an Intel X25-E/64GB enterprise SSD and a 7200RPM SATA2
HDD. The properties of both drives are described in Section 3. PostgreSQL is
configured with a 24 MB shared buffer and activated simple vacuums (Section 4).
The nominal DB size is 31GB. As benchmark we used DBT2[6], which is
instrumented with 20 database connections and 20 terminals per warehouse. Every
test run has a two hour duration, excluding the additional ramp-up time (which is
proportional to the number of warehouses used).

9

Original SI [NoTPM] SI-CV [NoTPM]

SSD (270 Wh.) HDD (80 Wh.) SSD (270 Wh.) HDD (80 Wh.)
2500 210 3588 +30.3% 219 +3.8%

Table 2. Maximum DBT2 Transaction Throughput [NoTPM] with the respective number of
warehouses

The DBT2 test results showing the maximum transaction throughput for SSDs

and HDDs are displayed in Table 2. These show a performance increase of 30%
with SI-CV on SSDs. SI-CV on HDDs performs slightly better with an
improvement of 3.8%. The clear performance advantage of SI-CV on SSDs
physically results from the reduction of random writes, at the cost of more random
reads. As discussed in Section 3, both random operations have the same cost on a
HDD, whereas random reads are much cheaper than random writes on a SSD.
Hence the different rate of improvement (Table 2). In addition, a growing number
of concurrent transactions, offers more room for version collocation, which
magnifies the above effect.

Figure 3. Transaction Throughput (New Order Transactions per Minute) SI-CV vs. SI

The performance effects of version collocation will increase with higher
transactional loads. The reason for this is that more transactions create more
versions of tuple data, which if collocated will save more random write operations.

10

Figure 4. Avg. Resp. Time [s] of SI-CV and SI on SSD (lower is better)

To verify this claim we performed a series of experiments, where the number of

warehouses increases continuously thus producing higher transactional loads. (In
TPC-C the number of transactions per warehouse is approximately constant –
Section 5.2.3 from the TPC-C Specification [8] – hence increasing the number of
warehouses increases the number of transactions).

The results in Figure 3 clearly show that SI-CV exhibits better performance
under higher loads. On an under-committed system with enough free resources
(Figure 3, Warehouses ≤ 180) SI and SI-CV perform equally well in PostgreSQL.
A further increase of the load (Figure 3, Warehouses ≥ 230) brings SI into
thrashing; the system is overloaded the transactional throughput does not increase
further and begins to deteriorate, while the response times (Figure 4) increase
exponentially. The throughput of SI-CV grows steadily for the same range of
loads. SI-CV achieves up to 30% higher transactional throughput, before going
into thrashing. Such performance behavior is especially favorable to whenever
peak loads need to be processed or load spikes occur in real systems.

Another interesting characteristic of SI-CV are the low response times. As
Figure 4 shows, on an under-committed system both SI and SI-CV have similar
response times. SI-CV, however, can support higher transactional loads at
significantly lower response times. For peak loads (in the present testbed;
Warehouses ≥ 230), SI-CV provides up to 30% higher transactional throughput at
sub-second response times (Figure 3 and Figure 4).

 Furthermore, SI-CV offers similar or better read performance than the original
SI. To verify this statement we report the ORDER_STATUS transaction
performance, which is a read-only transaction. Figure 5 shows the total number of
executed ORDER_STATUS transactions with SI and SI-CV for each two hour
test run with different number of warehouses. In this experiment all other TPC-C
transactions (read-write) execute concurrently. The goal is to obtain a realistic
mixture of reads and writes that according to the canonical SI do not affect each

11

other. The numbers in Figure 5 show that read performance of SI-CV remains
unaffected by the version collocation changes.

Figure 5. Total number of Order Status Transactions

Last but not least, we report the disk space consumption of SI-CV, for the
following reason. The price per GB of disk space on an enterprise 15K RPM HDD
is ~7x lower than on an enterprise SSD. Due to the block pre-allocation per new
transaction these blocks may not be filled optimally: each SI-CV block may
contain more unused space than an SI block. After a two hour TPC-C test the
space consumed by SI-CV increased by less than 0.0001% per Warehouse
compared to the original SI. Hence, SI-CV is almost as space efficient as the SI.

Conclusions

We developed an extension of Snapshot Isolation (SI), called Snapshot
Isolation with Co-located Versions (SI-CV). It places versions of tuples created or
modified by a transaction in pre-allocated blocks. Thus it reduces the amount of
random writes, which leverages better the properties of Flash SSDs. SI-CV is
implemented in PostgreSQL.

TPC-C tests show that:
(a) SI-CV performs better especially under heavy load conditions where the

system is very I/O-bound. Under such conditions we achieved up to 30% better
performance with SI-CV.

(b) The relative performance of SI-CV (to SI) increases with higher number of
transactions.

(c) The transaction response time with SI-CV on an over-committed system
remains significantly lower than that of SI. Under heavy load conditions SI-CV
operates with sub-second response times.

12

 (d) SI-CV utilizes a block pre-allocation strategy per transaction. We prove
experimentally that it is almost as space efficient as SI. The space consumption
difference is marginal and justifies the performance advantages of SI-CV.

(e) Finally, the read performance of SI-CV in comparison to SI is equally good
or better.

Acknowledgments

The authors wish to thank Todor Ivanov for his kind assistance with setting up the experimental
environment. This work was supported by the DFG project “Flashy-DB”.

References

[1] [1] Berenson, H., Bernstein, P., Gray, J., Melton, J., O'Neil, E., O'Neil, P. 1995. A critique of
ANSI SQL isolation levels. In Proc. The ACM SIGMOD‘95 (San Jose, California, United States,
May 22 - 25, 1995).

[2] Wu, S., B. Kemme. Postgres-R(SI): Combining Replica Control with Concurrency Control based
on Snapshot Isolation. Proc. of the IEEE ICDE, Tokyo, Japan, 2005.

[3] Korth, H., A. Silberschatz. Database System Concepts. McGraw-Hill Publishing Company, 2001.
[4] Chen, F., Koufaty, D. A., Zhang, X. Understanding intrinsic characteristics and system

implications of flash memory based solid state drives. In Proc. of SIGMETRICS '09 (Seattle,
WA, USA), 2009

[5] Agrawal, N., Prabhakaran, V., Wobber, T., Davis, J. D., Manasse, M., Panigrahy, R. Design
tradeoffs for SSD performance. In USENIX08 Boston, Massachusetts, June 2008.

[6] Database Test Suite. DBT2. http://osdldbt.sourceforge.net/
[7] Cahill, M. J., Röhm, U., Fekete, A. D. 2008. Serializable isolation for snapshot databases. In

Proc. SIGMOD 2008 (Vancouver, CA, 2008)
[8] TPC Benchmark C. Standard Specification. Revision 5.11. Feb. 2010

http://www.tpc.org/tpcc/spec/tpcc_current.pdf
[9] Revilak, S. ; O'Neil, P. ; O'Neil, E.. Precisely Serializable Snapshot Isolation (PSSI). Data

Engineering (ICDE), 2011 IEEE 27th International Conference on. 11-16 April 2011
[10] P. Bernstein, C. Rein, and S. Das. Hyder -- A Transactional Record Manager for Shared Flash. In

CIDR, 2011.
[11] Stoica, R., M. Athanassoulis, R. Johnson, and A. Ailamaki. Evaluating and repairing write

performance on flash devices. In Proceedings of the Fifth International Workshop on Data
Management on New Hardware (DaMoN '09) . 2009

[12] M. Rosenblum, J. Ousterhout. The design and implementation of a log-structured file system.
ACM Trans. Comput. Syst. 10, 1 (February 1992), 26-52.

[13] A. Ailamaki, D. DeWitt, M. Hill. Data page layouts for relational databases on deep memory
hierarchies. The VLDB Journal 11, 3 (November 2002), 198-21. 2002

[14] A. Ailamaki, D. J. DeWitt, M. D. Hill, and M. Skounakis. Weaving relations for cache
performance. VLDB, pages 169–180, 2001.

[15] D. Tsirogiannis, S. Harizopoulos, M. Shah, J. Wiener, G. Graefe. Query processing techniques
for solid state drives. In Proceedings of the 35th SIGMOD international conference on
Management of data (SIGMOD '09) 2009

[16] S.-W. Lee, B. Moon. Design of flash-based DBMS: an in-page logging approach. In Proceedings
of the 2007 ACM International conference on Management of data (SIGMOD '07) . 2007

[17] I. Petrov, R. Gottstein, T. Ivanov, D. Bausch, A. Buchmann. Page Size Selection for OLTP
Databases on SSD RAID Storage. In Journal of Information and Data Management,Vol.2,No 1
2011

