Addressing Cheating in Distributed MMOGs

Patric Kabus Wesley W. Terpstra '

Mariano Cilia

Alejandro P. Buchmann

{pkabus,terpstra,cilia,puchmanny@dvs1l.informatik.tu-darmstadt.de
Databases and Distributed Systems Group
Darmstadt University of Technology, Germany

ABSTRACT

Massively Multiplayer Online Games (MMOGS) are a risky
business: while they offer potential profits beyond those of
conventional computer games, they also require costly in-
vestment in the necessary hardware infrastructure. In nearly
every MMOG today, these costs come from the use of a
Client/Server architecture where the load of possibly hun-
dred thousands of players must be handled at the provider’s
backend. By using distributed Peer-to-Peer techniques, the
load could be shifted completely or partially to the play-
ers’ machines. But with the load, the control over the game
may also fall into the hands of clients. While using a P2P ar-
chitecture, this paper presents a spectrum of options which
reduce running costs and simultaneously attempt to retain
the provider’s control over the game, in particular to control
cheating.

Categories and Subject Descriptors

C.2.1 [Computer-Communication Networks]: Net-
work Architecture and Design; C.2.4 [Computer-
Communication Networks]: Distributed Systems

General Terms
Design, Security

Keywords

Distributed Systems, Massively Multiplayer Online Gaming,
Cheating

1. INTRODUCTION

With the success of the Internet, online games are be-
coming more and more popular. According to [14], almost
five million players in the US are playing PC-based games
like Quake or Counter Strike over the Internet. One of the

*GK Enabling Technologies for Electronic Commerce

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

NetGames 05, October 10-11, 2005, Hawthorne, New York, USA.
Copyright 2005 ACM 1-59593-157-0/05/0010 ...$5.00.

most promising segments of the online games market is that
of the Massively Multiplayer Online Games (MMOGs). 1t
has grown by the factor 8 during the last five years, having
currently more than four million subscribers in the U.S. and
Europe, and roughly the same number of players in Asia [21].

Traditionally, MMOGs are built relying on Client/Server
architectures. From an abstract point of view, the client
on the player’s side acts as simple front-end which accepts
the player’s input and forwards it to the server. Process-
ing the game state is completely done on the server-side and
changes are sent back to clients, which show a graphical rep-
resentation of the game world. Unlike traditional computer
games, in MMOGs the development of the game is only the
prelude to the real work: launching and running the game
service at the backend. To be able to handle thousands of
players simultaneously, large amounts of computing power
and network bandwith are required on the server-side. The
costs for supplying servers and connectivity can easily reach
hundreds of thousands of dollars per month.

Another factor is that players are much more likely owners
of powerful machines than the average computer user. Based
on this fact, and considering that the amount of resources
required in a MMOG is nearly proportional to the number
of simultaneous players, the Peer-to-Peer architecture seems
to be more appropiate than the traditional Client/Server
aproach. Peer-to-Peer (P2P) architectures save costs due to
utilization of resources on the client-side. This paper shows
ways of applying P2P techniques to reduce costs, while at
the same time maintaining the subscription-based business
model and providing protection against cheating.

2. MOTIVATION

It is not simply by chance that almost every MMOG is
based on a Client/Server (C/S) architecture: C/S has the
striking advantage of giving game providers full control over
their games. Since the business model of MMOGs is based
on subscriptions, the provider wants to decide which play-
ers may join the game, namely those who are actually pay-
ing their fees. While subscriptions provide recurring profits,
they also serve as an effective solution against piracy. C/S
also is an important aid in cheat prevention: The server has
the sole authority over the game’s global state and validates
every action request sent by clients before carrying them
out. Finally, a C/S architecture is—at least compared to a
P2P system—rather straightforward to implement.

On the downside of C/S systems are cost and scalability.
For instance, the cost of acquiring servers for 30,000 simul-
taneous players are about US$ 800,000, the bandwidth costs

for the same number of players a hundred thousand dollars
a month [19]. Considering block-busters like World of War-
craft (WoW) which sold hundreds of thousands of copies on
their first days, one can imagine that the actual costs are a
multiple of those mentioned above. For this reason, correctly
pre-estimating the number of simultanous players becomes
crucial. Underestimating will result in major customer dis-
satisfaction due to poor availability and/or performance of
the game servers, while overestimating means wasted money
due to idle resources. For successful titles like WoW, backed
up by well-funded publishers, profits are high enough that
lowering the costs may not be a primary issue. But success
is barely predictable, and for less popular titles costs may
endanger the feasibility of the whole project. Furthermore,
lower upfront costs may remove entry barriers for less well-
funded game publishers, allowing them to enter the market
at all.

Scalability becomes especially an issue if monolitihic
server architectures are used; their possibilities to grow with
the customer base are severely limited. Distributed architec-
tures on the server-side like grids or object request brokers
may be a solution to the scalability problem. There exist
several commercial middleware solutions for MMOGs, like
the Internet Communications Engine (ICE) [10] or Butter-
fly.net [11, 12], but todays MMOG developers seem to be
reluctant in applying external solutions and rather rely on
building their own [13].

Even with distributed server architectures, the provider
still has to pay for all the bandwidth and CPU cycles. The
only way of significantly reducing the costs is to shift at
least part of the CPU and network load to the client, as
it is done in P2P systems. This could also be a solution
for the problem of predicting the amount of players, since
every additional player that joins the game brings in addi-
tional resources into the system. Of course there are many
other challenges that come along with P2P architectures:
loss of authority over the game state, system consistency
and availability, persistent data storage, and higher overall
complexity, to name only the few most important. The pri-
mary focus of this paper is on the problems related to loss of
authority, though consistency issues will be touched upon.

3. CHEATERSAND GRIEFERS

Before delving into the different approaches, this gives a
short introduction into the issue of cheating. In a LAN-
based multiplayer game (where players are in proximity and
may know each other), cheating may be handled by the
players themselves, but in the anonymity of the Internet
it becomes a serious threat to the game provider’s business.
Cheaters try to gain unfair advantage over other players,
for example by duplicating game items (“item dupe” cheat)
or more generally short-cutting achievements which would
take enormous time and/or effort for honest players. This
can totally destroy the in-game economics of an online game:
formerly valuable and rare items become widely available,
powerful high-level characters which are usually a rare oc-
currence may now be seen everywhere. Honest players will
soon notice that they cannot keep up with cheaters and ei-
ther use cheats themselves (and thus accelerate the collapse
of the economic system) or stop playing the game.

As already mentioned, in a C/S system, the server has
the sole authority over the global game state. In theory,
this makes it impossible for players to gain advantage by

performing malicious alterations of the state. In practice,
design flaws and implementation bugs may still allow suc-
cessful cheating, but this is out of the scope of this paper.
In a P2P environment, there is no such single authority, the
global game state is distributed among the peer nodes. Con-
sequently, each node is able to alter its local state arbitrarily.

Another kind of cheating is of interest in this context:
players that acquire information that is not intended for
them. A player that knows the position of an enemy that
is hiding behind a wall is an example for this. Because he
cannot see the enemy, he shouldn’t know about his position.
In a C/S system, the server can easily restrict the flow of
information to the client. If a player can neither hear, see
or otherwise notice an enemy he does not receive any infor-
mation about his position. In a P2P system, where such in-
formation is distributed among peer nodes, it becomes very
difficult to prevent leakage of this information. Every client
that posseses this information is able to disclose it, wether
this is against the rules or not.

Maybe even worse than cheaters are the so called
“griefers”. As the name implies, the sole intention of these
people is to hurt other players’ experience as much as pos-
sible. While griefing may actually be performed with-
out breaking any game rules (e.g. insulting other players
through the player chat), griefers may also exploit possi-
ble cheats to hurt other players, e.g. killing their avatars
or stealing their items. Because of griefers, worst-case sce-
narios may become much more relevant than usual: While
a worst-case usually may be a rare occurrence, griefers ac-
tively try to make it happen, thus raising the chance. “The
rule of grief is: if it can be done, it will be done” [13].

The above points out that protection against cheaters and
griefers is a mission-critical task. That is why special atten-
tion is turned on this issue in this paper.

4. RELATED WORK

Baughman et. al. [1] propose a scheme that uses a per-
frame lock-stepped commitment protocol on secret informa-
tion to prevent look-ahead and suppress-correct cheats. Sub-
sequently, they present an optimized version of their proto-
col, which requires synchronous lock-stepping only when two
players come within range of interaction. The authors ar-
gue that “anything outside of a player’s sphere of interest is
immaterial to the player’s upcoming decisions”. However,
this is not true for all multiplayer games. In common Mas-
sively Multiplayer Online Role-Playing Games (MMORPG),
a player could fight against computer-controlled monsters
while other players are not around. He could falsely claim
that he killed lots of them, acquiring experience points and
wealth. Furthermore, two players within interaction range
could collaborate in cheating while other players are not
within range. Falling back on a game-wide lock-step is in-
feasible in the context of thousands of players, as is typical
in MMOGs. A simple logging scheme is also mentioned to
detect forgery of hidden items. This has some similarities
to the logging scheme we present in section 5.3, but does
not encompass the entire game state. Their approach also
focuses on verification rather than auditing via replay of
the log history. The NEO protocol [7] was developed as
an improvement to the one presented above. It addresses a
broader range of cheats while at the same time reduces la-
tency. However, to achieve good responsiveness, it prevents
players with very slow connections to enter game areas where

players with fast conections are located. Like the protocol
described in [1], NEO does not solve the problem of players
interacting with the environment while other players are not
within range. This problem is mentioned, but its solution is
deferred to the implementation of a special computational
component which is left for future work.

Buro [3] presents a server-based architecture which ad-
dresses the maphack cheat popular in Real-Time Strategy
Games (RTS). Chambers et al. [6] show that this kind of
attack can also be addressed in a Peer-to-Peer architecture.
While the maphack cheat is of the utmost significance to
RTS games, it is far less relevant in MMORPGs. Besides
that, the architecture presented in [6] relies on a distributed
simulation where every player’s client computes the com-
plete game state individually. This is infeasible in a Mas-
sively Multiplayer context.

FreeMMG [5, 4] is a hybrid between Peer-to-Peer and
Client/Server architecture. While a server part is respon-
sible for managing subscriptions, authentication and storing
backups of the virtual world, the game itself is running in a
distributed fashion on the clients. The game world is split
up into segments and every player is located in one of these
segments. It is similar to the Region Controller approach
presented in section 5.2, but it uses the Replicated Simula-
tion architecture instead, where the whole state of a segment
is replicated on the clients of the players within that region.
Players tend to crowd in special locations like cities, trading
points, and spawning areas. We expect that there will be
too many players in these regions for the Replicated Simu-
lation approach to scale, so long as the regions are static.
This problem is compounded by the inability of players to
interact between regions, encouraging clustering.

There exist more proposals for distributed gaming archi-
tectures like Mercury [2], SimMud[15] and MiMaze [17, 8,
9]. However, they do not explicitly address the problems
originating from cheating.

5. APPROACHES

This section presents alternatives to the traditional C/S
approach that rely on a P2P archicture which offers cost
savings and better scalability, while at the same time re-
taining the business model and resistance against cheating.
They should not be thought of as complete solutions but
serve to identify a spectrum of possible directions for future
research.

The first approach, Distributed State Dissemination, han-
dles the processing of action requests like traditional C/S
systems do, but relies for the disseminaton of state updates
to the clients on a P2P delivery system in order to save on
bandwidth. The computation of the global game state is
still performed on the server-side, which is also responsible
for cheat prevention. In the Mutual Checking scheme, the
global game state is maintained in a distributed fashion on
the clients. The global state is replicated on multiple clients
which try to detect cheaters by comparing their local ver-
sions regularily. Few servers are still needed for managing
the assignment of state to clients, subscription management
and storing persistent data. The Log Auditing approach
also distributes the global game state computation among
the clients. But it does not try to prevent cheating by val-
idating state updates before applying them. It rather tries
to detect cheating later by analyzing signed log files of the
state transitions caused by updates. The log auditing can be

done during periods of low activity; this relieves load during
peak times and synchronization costs. The last approach,
Trusted Computing, acts on the assumption that players are
not able to manipulate their client software in any way. This
would make both prevention and detection of cheats caused
by hacked clients unnecessary, providing the ideal environ-
ment for distributed online games.

5.1 Distributed State Dissemination

If the primary cost in running a game is the bandwidth,
one approach is to push this cost towards the clients. If sev-
eral clients are in the same area and must be informed about
the same events, these messages can be sent to one client
who then forwards the event notification onwards. This may
impact latency for some clients.

While simple, this approach saves bandwidth where there
are many players clustered in the same area. Since the more
players in an area, the more notifications each receives, this
approach has the benefit of saving server bandwidth in those
situations where it is generally scarcer. Furthermore, since
the server still maintains the global state, the clients have
no possibility to incorrectly alter the game state.

Unfortunately, this approach introduces a number of com-
plications. The first problem is that griefers could cause ma-
jor disruption in the game’s quality of service by dropping
or delaying notifications. Even worse, unless the server signs
messages, griefers could confuse target clients, making them
display incorrect information to their players. In a competi-
tive PvP setting where players fight one another, this would
be especially damaging.

Although signed messages could prevent forged packets
in principle, in practice this scheme is not tenable. On a
modern server, the cost of creating a 1024-bit RSA signature
is certainly less than 0.005s. However, even if bettered by
an order of magnitude or more, this is still too slow if that
server must send out notifications for thousands of nodes.

5.2 Mutual Checking

The basic idea behind this approach is “you may not trust
a single client, but you trust the consensus of multiple unaf-
filiated clients”. The reason why a client should not partic-
ipate in computing the global game state is that the client
runs on the player’s computer and might be tampered with.
Reverse-engineering a client may be hard, but there is no
way to completely prevent this. But one could exploit the
fact that most of the players are honest and would report a
cheater if they notice one, since he is disrupting their game
experience. The more players that agree on the state of the
game world, the less likely it is that anyone of them has
cheated.

In this approach, every game client acts also as a server for
a certain region of the game world, as a Region Controller
(RC). The game world is partitioned into different regions
and every region is controlled by multiple controllers. As-
signing RCs to regions is a task that is best performed on a
server offered by the game provider. When a player logs into
the system his client is assigned to a group of RCs which are
currently responsible for the avatar’s region. Furthermore,
the server assigns a region where the player’s computer will
act as an RC. The login server also provides means to pre-
vent non-subcribers from joining the game, thus enforcing
the subscription business model.

Since players tend to gather in certain regions, the dis-

tribution of avatars over the game world may be uneven.
This could mean that certain regions are overcrowded while
others are rather empty. To prevent RCs from being over-
loaded by large numbers of players, the region size has to
be dynamic. The server that keeps track of the regions tries
to keep the number of players and the number of RCs per
region within certain intervals by splitting and merging re-
gions according to their size. After rearranging the regions
it has to reassign RCs for the newly created regions.

The client of a player, whose avatar is located in a certain
region, sends action requests issued by this player to all RCs
which are responsible for that region. Every RC validates
these requests and—if a request was legal-—computes the
next state of the region. Afterwards the RCs have to check
wether they have arrived at the same state, e.g. by sending
a hash of the current state to each other and finally send-
ing necessary state updates back to the client. The client
compares those answers received by the different RCs and
updates its state accordingly.

This scheme addresses different kinds of threats. First
of all, illegal action requests issued by a client are easily
detected at the RCs. But even if a client colludes with one
or more RCs, so that they will accept his requests, the other
RCs will still detect a deviation of the game state when
comparing it. Finally, colluding RCs that try to maliciously
penalize a client will be detected, since the client will receive
different updates from the malicious and the benign servers.
Of course, malicious clients or RCs could hide their deviation
from the correct game state for a certain amount of time by
sending appropiate forged messages. However, at the latest,
when the state is written to persistent storage, e.g. on a
regular basis or when a client disconnects, any deviations
will be either detected (since all RCs have to agree) or lost
(and thus the cheating wouldn’t have any effect).

As mentioned before, preventing leakage of information is
difficult in a P2P system. But if a client is never an RC for
its own region (i.e. the region where the player’s avatar is
currently located) he needs at least one colluding RC to get
a glimpse on hidden information about this region. And if
only the state of a foreign region is managed on his client,
it makes it even less tempting to alter its state, since there
is no direct benefit for the player.

To implement the approach as described above, some non-
trivial problems have to be solved. Maybe the most difficult
issue is consistency. First of all, inevitable deviations of
the game state will occur due to network delays. Any dis-
agreements on the current state of a region must be resolved
through some kind of consensus, thus the consensus scheme
must be loose enough to allow for certain deviations caused
by latency but at the same time strict enough to prevent
cheating with a sufficiently high probability. Again, any
of the participants may be a cheater that tries to manipu-
late the result to his own advatage or, even worse, tries to
make the participants come to different results, thus break-
ing consistency. This makes the consensus problem actually
an instance of the Byzantine Generals Problem [16]. The
solution to this problem generally introduces a significant
messaging overhead. Unfortunately, cheat prevention and
communication efficiency are conflicting issues. The more
randomly selected RCs are responsible for a region, the less
likely it is to coerce enough of them to perform a successful
cheat. On the other hand, the more RCs have to agree, the
more messaging overhead it will cause.

Another non-trivial challenge is the dynamic region as-
signment. On the one hand, regions of arbitrary shape are
difficult to implement and may cause fragmentation of the
game world, due to the constant splitting and merging of re-
gions. On the other, regions made up of fixed size tiles (e.g.
squares or hexagons) may not be flexible enough to han-
dle a very uneven distribution of avatars, e.g. many people
gathering in a single region.

5.3 LogAuditing

Rather than attempting to prevent cheating in real-time
(and suffering synchronization costs), we could instead try to
detect cheaters. The idea is, that if a cheater is detected, his
account can be closed. Furthermore, the effects of the cheat,
once detected, could be (at least partially) rolled back.

A primary concern with such a system is that hackers may
possess multiple accounts stolen from honest players. By
keeping an audit history, the actual criminal can be located
by tracing the cheat to the beneficiary. Of course, this is
very similar to real-world fraud. It might be expected that
organized crime groups may form and attempt to “money”
launder the benefits.

To implement such a detection scheme, we again propose a
Region Controller. This time, however, there is only one RC
responsible for a given area. When started, the RC receives
the initial game state, a random-seed, and a unique log-file
name from the central server farm. As clients join, they are
provided with the log-file name.

The RC then proceeds to run a deterministic event-driven
state-machine (EDSM). Clients send their commands as a
signed sequence of packets, each referring to the last packet
and including the log-file name. After a predetermined in-
terval, or on RC log off, the current state and a digest of the
signed player commands is returned to the central server
farm. The whole procedure is illustrated in figure 1.

It is relevant to note that in a real system there may
need to be several slave RCs which follow the current state.
Their purpose would be to replace failing RCs in the P2P
system. There need not be any synchronization overhead
beyond forwarding the commands. Furthermore, due to the
EDSM nature of the RC, it would also be possible to replay
the server computation in case of a failure, relieving such
backup RCs from needing to compute the state in real-time
or in the non-failing case.

The clients in this system are identical to clients in a typ-
ical C/S system. Therefore, they have no further capability
for cheating. Furthermore, the load of signing their player
commands is not that high since even a low-end laptop can
sign 1024-bit RSA 80 times a second. This should be signif-
icantly higher than the injection rate of player commands.

The RC, however, has several new cheating capabilities.
Similar to the Mutual Checking (MC) RCs of section 5.2, the
RC could collaborate with a client in order to provide that
client with unfair additional information about the game
state. Also, as in the MC scheme, the RC could introduce
delays or disconnect clients when run by a griefer.

The new attacks of an RC include falsifying returned game
state, falsifying player commands, and confusing clients. We
believe that all of these threats are addressable. Each will
be discussed in turn.

The first threat, falsifying game state, is where the RC
reports a bogus game state, for example, too much experi-
ence awarded to a player. Since the entire RC is running

Double-check updates were correct

Initial Game State

Client Player Commands

Region
Event Updates

Controller

DDD

i Central Server Farm

Client p/

layer Commands

Final Game State
Digest of Commands

0 O U

Double-check updates were correct

Figure 1: Message passing for audit checking

a event-driven state-machine (EDSM), the correct output
can be reproduced by rerunning the EDSM on a trusted
machine given the same initial state and player commands.
Therefore, falsified game state can be detected.

This double-check can be pushed to several untrusted (but
randomly chosen) clients as in the MC system. However,
with this system there is no synchronization overhead dur-
ing game-time. Furthermore, the double-check can also be
performed in the trusted server-farm during periods of low
activity or when a complaint is received.

The second threat, falsifying player commands, is where
an RC alters the commands of one of the players, for ex-
ample, forcing that player to trade-away valuable items.
Since the player commands are signed, however, an audit
will catch that the wrong command was provided in the
digest. Finally, the chaining of player commands prevents
intentional omission of some of the commands.

The final threat is where the RC sends confusing client
information, similar to the distributed state dissemination
scheme. However, unlike that scenario where the costs of
signing state updates were too high; here they are not. The
RC is only responsible for a few clients, and can therefore
be required to sign his state updates. To save bandwidth
on the server farm, these updates need only be stored by
the receiving client. After a game session, a client can ask
the trusted central server farm for a summary of the game
state, and if it wishes to dispute the result, it can provide
the signed logs of the cheating RC.

54 Trusted Computing

Trusted Computing (TC) is a highly controversial initia-
tive of the Trusted Computing Group [20]. Discussing the
social and political implications of T'C is not subject of this
paper. It is unlikely that the computer games industry will
have a significant influence on whether TC will be deployed
on a broad base or remain a niche market. Since the de-
cision is up to hardware manufacturers and eventually the
customer, game developers may some day find that TC is
available on most computers and thus will want to make use
of it.

Two things that TC could provide are of interest to
providers of online games. First, the possibility that only
software that is signed by the producer (and thus is trusted)
may run on a TC enabled computer (or in a specially secured
environment within the operating system). Second, the pos-
sibility that a TC enabled computer can prove its trustwor-
thiness to other systems. The first thing would guarantee
that the client software could not be manipulated, the sec-
ond enables game providers to identify trusted game clients

over the Internet.

Depending on which fraction of an online game’s clients
are trustworthy, different possibilities for game developers
arise. The easiest case would be that all clients are trusted.
A game could be completely distributed without worrying
about possible attacks due to manipulated clients, which
are the main problem with distributed computation on the
client-side. Achieving consistency would be simplified com-
pared to the mutual checking approach, since every game
object needs only one trusted primary owner. Of course,
multiple secondary copies are necessary to deal with the
high fluctuation of nodes in a P2P sytem, but discussing
availability issues is out of the scope of this paper.

Even if only a certain percentage of the clients are trust-
worthy, the game could significantly benefit from distribu-
tion. Only trusted clients would adopt the role of a Re-
gion Controller (RC) (see subsection 5.2). Players could
be encouraged to enable TC features on their computer by
lowering their subscription fees or offering them access to
exclusive game content.

Trusted clients could even store (at least their own) player
data locally, but since TC doesn’t improve reliability this is
not really an alternative to storing the data on a separate
persistent storage. But maybe the frequency with which
data is periodically written to persistent storage could be
reduced. If a client crashes or loses its connection to the
server, it could use the information stored locally when re-
suming the game. Only in case of severe failures where the
local data is lost, need the backup state be restored from
persistent storage.

Enforcing the subscription model with TC is straightfor-
ward: a single server run by the game provider may act as
an entry point to the system. Since RCs always run on a
trusted system, they will not allow players without an active
subscription to join the game.

As the public discussion shows, Trusted Computing comes
along with many dangers to the autonomy and privacy of
the user. However, from an online game providers’s point of
view, it seems to be an ideal solution, provided that the secu-
rity mechanims are functional and cannot be circumvented.
An example for a platform that could be called “trusted”
is the video game console Xbox from Microsoft [18]. It has
built-in, hardware-based security mechanisms that should
prevent untrusted client software from running. Neverthe-
less, sophisticated hackers were able to circumvent these
mechanisms, since then a cat-and-mouse game has started
between Microsoft, trying to ban modified Xboxes from their
online service, Xbox LIVE, and those hackers, trying to pro-
tect their modifications from being detected. Fortunately,

hacked Xboxes appear to be outnumbered, since applying
the necessary modifications requires a certain degree of ex-
pertise which the average user does not possess. Regardless,
this clearly shows one major pitfall of TC systems: if the
security mechanisms are broken once, trust may never be
fully restored. And with the fall of the security system, the
success of an online game that relies on them may fall, too.

6. CONCLUSION

Due to the high upfront and running costs, developing
and deploying MMOGs is a risky business. Without suf-
ficient funding and good game experience, a MMOG may
easily become a failure. The approaches presented in this
paper show possible ways to reduce resource consumption
on the server-side (and thus costs) by applying techniques
from Peer-to-Peer systems. Special attention was paid to
retaining control over the global game state, since this is
necessary to avoid cheating and to lock out players without
valid subscriptions.

7. REFERENCES

[1] Nathaniel E. Baughman and Brian Neil Levine.
Cheat-proof playout for centralized and distributed
online games. In Proceedings IEEE INFOCOM,
volume 2, pages 104-113, April 2001.

Ashwin R. Bharambe, Sanjay Rao, and Srinivasan

Seshan. Mercury: a scalable publish-subscribe system

for internet games. In Proceedings of the 1st workshop

on Network and system support for games, pages 3-9.

ACM Press, 2002.

[3] Michael Buro. ORTS: A hack-free RT'S game

environment. In Proceedings of the International Joint

Conference on AI 2003, 2003.

Féabio Reis Cecin, Rafael de Oliveira Jannone, Claudio

Fernando Resin Geyer, Marcio Garcia Martins, and

Jorge Luis Victoria Barbosa. FreeMMG: a hybrid

peer-to-peer and client-server model for massively

multiplayer games. In Proceedings of ACM SIGCOMM

2004, Workshops on NetGames ’04, pages 172-172.

ACM Press, 2004.

[5] Fébio Reis Cecin, Rodrigo Real, Mfcio Garcia
Martins, Rafael de Oliveira Jannone, Jorge
Luis Victéria Barbosa, and Cladudio Fernando Resin
Geyer. Freemmg: A scalable and cheat-resistant
distribution model for internet games. In 8th IEEE
International Symposium on Distributed Simulation
and Real Time Applications, 2004.

[6] Chris Chambers, Wu chang Feng, Wu chi Feng, and

Debanjan Saha. Mitigating information expose to

cheaters in real-time strategy games. In Proceedings of

NOSSDAV 2005, 2005.

Chris GauthierDickey, Daniel Zappala, Virginia Lo,

and James Marr. Low latency and cheat-proof event

ordering for peer-to-peer games. In Proceedings of the
14th international workshop on Network and operating
systems support for digital audio and video, pages

134-139. ACM Press, 2004.

[8] Laurent Gautier and Christophe Diot. Distributed
synchronization for multiplayer interactive
applications on the internet. Unpublished, 1998.

[9] Laurent Gautier and Chritophe Diot. Design and
evaluation of MiMaze, a multi-player game on the

2

[4

7

(14]

(15]

(16]

internet. In Proceedings of the IEEE International
Conference on Multimedia Computing and Systems,
page 233. IEEE Computer Society, June 1998.

Michi Henning. ICE - Massively Multiplayer
Middleware. ACM Queue Magazine, 1(10), February
2004.

IBM. Butterfly.net: Powering next-generation gaming
with computing on-demand, 2002.

Intel. Digital media: Massively multiplayer online
gaming, 2003.

Daniel James, Gordon Walton, Brian Robbins, Elonka
Dunin, Greg Mills, John Welch, Jeferson Valadares,
Jon Estanislao, and Steven DeBenedictis. IGDA 2004
Persistent Worlds Whitepaper, 2004.

Alex Jarett, Jon Estanislao, Elonka Dunin, Jennifer
MacLean, Brian Robbins, David Rohrl, John Welch,
and Jeferson Valadares. IGDA Online Games White
Paper 2003, 2003.

Bjorn Knutsson, Honghui Lu, Wei Xu, and Bryan
Hopkins. Peer-to-peer support for massively
multiplayer games. In INFOCOM 2004, March 2004.
Leslie Lamport, Robert Shostak, and Marshall Pease.
The byzantine generals problem. ACM Trans.
Program. Lang. Syst., 4(3):382-401, 1982.

Emmanuel Lety, Laurent Gautier, and Christophe
Diot. MiMaze, a 3D multi-player game on the internet.
In Proceedings of the 4th International Conference on
Virtual System and MultiMedia, November 1998.
Microsoft. XBOX. www.xbox.com, 2005.

Jessica Mulligan, Bridgette Petrovsky, Bridgette
Patrovsky, and Raph Koster. Developing Online
Games: An Insider’s Guide. Pearson Education, 2003.
TCG. Trusted Computing Group.
www.trustedcomputinggroup.org, 2005.

Bruce Sterling Woodcock. An Analysis of MMOG
Subscription Growth. www.mmogchart.com, 2005.

