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Abstract. Modern pub/sub systems perform message routing based on the mes-
sage content and allow subscribers to receive messages related to their subscrip-
tions and the current context. Both content and context encode sensitive infor-
mation which should be protected from third-party brokers that make routing
decisions. In this work, we address this issue by proposing an approach that as-
sures the confidentiality of the messages being published and subscriptions being
issued while allowing the brokers to make routing decisions without decrypting
individual messages and subscriptions, and without learning the context. Further,
subscribers with a frequently changing context, such as location, are able to issue
and update subscriptions without revealing the subscriptions in plaintext to the
broker and without the need to contact a trusted third party for each subscrip-
tion change resulting from a change in the context. Our approach is based on a
modified version of the Paillier additive homomorphic cryptosystem and a novel
group key management scheme. The former construct is used to perform pri-
vacy preserving matching, and the latter construct is used to enforce fine-grained
encryption-based access control on the messages being published. We optimize
our approach in order to efficiently handle frequently changing contexts. We have
implemented our approach in a prototype using an industry strength JMS broker
middleware. The experimental results show that our approach is highly practical.

1 Introduction

The publish/subscribe (pub/sub) paradigm is a well known approach for disseminating
information between multiple interested parties in a decoupled and asynchronous man-
ner [7]. Message producers submit messages to a broker network which routes them
to interested subscribers. Subscribers express their interest by issuing subscriptions.
Content-based pub/sub systems allow subscribers to express their interest based on the
message content. This content can be an arbitrary payload, e.g., a set of attribute-value
(att/val) pairs, XML documents, or combinations of different types. The supported mes-
sage content depends on the pub/sub middleware which performs message routing and
matching. In many systems it is common to use att/val pairs to describe content and to
express subscription filters as logical expressions on these attributes (e.g., MessageType
== StockTickMessage ∧ StockPrice > 38).



Context-sensitive message dissemination extends pub/sub content dissemination by
taking into account the subscriber context [6]. Subscribers express interest in mes-
sages based on their current context, e.g., their current location. A major challenge
for context-sensitive message dissemination is that the context of subscribers, and thus
the subscriptions, change frequently over time, e.g., as the location changes. Context-
dependent information dissemination is however a crucial requirement in many appli-
cation scenarios. One example is a traffic information system (TIS) where informa-
tion about the traffic situation is provided. Due to the characteristics of this scenario a
pub/sub middleware supporting context-sensitive message dissemination is an appropri-
ate infrastructure. Information about the current traffic situation is published and partic-
ipants express their interest in information with subscriptions. As subscribers move and
thus their contexts constantly change, subscriptions need to change accordingly, e.g.,
subscribers would typically be interested in traffic information along the route they are
traveling.

A major shortcoming of existing context-based pub/sub approaches is that they do
not assure privacy. In such systems, the broker receives subscriptions in plaintext and is
thus aware of the context of subscribers. In case of the TIS example, this implies that
brokers are aware of the exact position of subscribers. In order to assure privacy, we
propose an approach to construct a privacy-preserving context-based pub/sub system.
We extend and improve our preliminary work [15] in order to propose a new security
model and construct our privacy preserving context-based pub/sub system.

In our previous model [15], each subscriber is required to submit a new subscrip-
tion via a secure channel to a trusted third-party (TTP) that encrypts the subscription
in a special way. This special encryption operation is called blinding and the encrypted
value blinded value. Such blinded values are semantically secure (IND-CPA secure)
where two blindings of the same value result in two different blinded values. The sub-
scriber then registers with such blinded subscriptions at an untrusted broker. Such an
approach allows the use of honest-but-curious brokers3 to perform matching and routing
on encrypted notifications using the blinded subscriptions. Although such an approach
is privacy preserving, it is not suitable for context-based pub/sub systems. The reason is
that as the context of subscribers changes frequently, subscriptions have to be updated
often and involving a TTP to blind every subscription is not any longer feasible. Fur-
ther, the previous model does not support fine-grained access control of notifications.
Thus, a new security model and mechanisms are required whereby subscribers are al-
lowed to create their own blinded subscriptions without compromising the security of
the overall system and enforce fine-grained access control of notifications. In this work,
we achieve our first objective by allowing authorized subscribers to create blinded sub-
scriptions after obtaining some public security parameters at the time of registration.
After the initial interactions, subscribers are not required to contact a TTP unless the
public security parameters are updated. We achieve the second objective by introducing
a fine-grained encryption-based access control mechanism. An advantage of such an
approach compared to approaches based on shared secrets is that no secret information

3 Brokers are obliged to follow the protocol, but they are curious to learn as much as possible
during the execution of the protocol.



is given to subscribers to generate blinded subscriptions and therefore our approach
avoids the problem of leakage of shared secrets by malicious subscribers.

Each notification in our approach is encrypted twice. The first encryption, referred
to as blinding operation, is performed to blind each attribute value in the notification
that is used by brokers to perform matching operations. The notification blinding is
similar to the subscription blinding operation mentioned earlier except that the two op-
erations use different blinding parameters so that certain parameters cancel off when
a blinded notification and a subscription are homomorphically added by multiplying
them. It should be noted that brokers cannot decrypt individual blinded values and they
only learn a randomized difference between subscription and notification values when
they perform matching operations. The second encryption, referred to as broadcast en-
cryption, is performed to encrypt the payload of notifications based on fine-grained
access control policies (ACPs). According to current initiatives on identity manage-
ment [17], fine-grained ACPs are specified using the attributes of subscribers, referred
to as identity attributes. Our broadcast encryption is based on a recently proposed group
key management (GKM) scheme, referred to as attribute based GKM (AB-GKM) [20,
14, 16]. In the AB-GKM scheme, unlike conventional GKM schemes [2, 9], subscribers
are allowed to dynamically derive the data decryption keys based on the attribute cre-
dentials they possess and some public information provided by publishers.

We also provide support for multiple publishers that produce messages with over-
lapping attribute sets; a blinded subscription may match notifications from several pub-
lishers. Especially for context-based pub/sub, it is crucial to support multiple publishers
located in the same context, e.g., the same geographical region. We thus introduce con-
text managers as TTPs in our approach. Context managers provide publishers as well
as subscribers with information required to publish encrypted/blinded notifications and
to issue blinded subscriptions. Once publishers and subscribers obtain the required se-
curity parameters, the context manager is responsible for controlling the level of pro-
tection. It decides when to renew and redistribute security parameters to publishers and
subscriber in order to reduce the risk of adversaries learning the content of notifications
and subscriptions.

We implement our scheme based on the Java Message Service (JMS), the de-facto
industry standard for messaging. We chose Apache ActiveMQ as JMS broker and ex-
tended it to support subscription evaluation on encrypted data. This allows us to perform
a realistic evaluation of our approach since ActiveMQ is used in many real-world pro-
duction pub/sub systems.

Our paper is structured as follows. Section 2 introduces the cryptographic constructs
used in our approach. Section 3 introduces context-based pub/sub systems and presents
an overview of our solution. Sections 4 and 5 present the technical details of the mod-
ified Paillier cryptosystem which is used to blind subscriptions and notifications, and
our overall scheme. Section 6 shows experimental results for various algorithms and
the overall system implemented in Apache ActiveMQ. Section 7 discusses related work
and Section 8 concludes the paper.



2 Background

2.1 Paillier homomorphic cryptosystem

The Paillier homomorphic cryptosystem is a public key cryptosystem by Paillier [18]
based on the “Composite Residuosity assumption (CRA)”. The Paillier cryptosystem
is homomorphic in that, by using a public key, the encryption of the sum m1 +m2 of
two messages m1 and m2 can be computed from the encryption of m1 and m2. Our
approach and protocols are inspired by how the Paillier cryptosystem works. Hence, we
provide some internal details of the cryptosystem below so that readers can follow the
rest of the paper.
Key generation:
Set n = pq, where p and q are two large prime numbers. Set λ = lcm(p−1, q−1), i.e.,
the least common multiple of p − 1 and q − 1. Randomly select a base g ∈ Z/(n2)×
such that the order of gp is a multiple of n. Such a gp can be efficiently found by
randomly choosing gp ∈ Z/(n2)×, then verifying that gcd(L(gλp (mod n2), n)) =
1, where L(u) = (u− 1)/n. for u ∈ Sn = {u < n2|u = 1 (mod n)}. In this case, set
µ =

(
L(gλp (mod n2))

)−1
(mod n). The public encryption key is a pair (n, gp). The

private decryption key is (λ, µ), or equivalently (p, q, µ).
Encryption E(m, r):
Given plaintext m ∈ {0, 1, . . . , n − 1}, select a random r ∈ {1, 2, . . . , n − 1}, and
encrypt m as E(m, r) = gmp · rn (mod n2). When the value of r is not important to
the context, we sometimes simply write a short-hand E(m) instead of E(m, r) for the
Paillier ciphertext of m.
Decryption D(c):
Given ciphertext c ∈ Z/(n2)×, decrypt c as D(c) = L(cλ (mod n2)) · µ (mod n).

In the construction of our pub/sub system, the Paillier homomorphic cryptosystem is
used in a way that public and private keys are judiciously distributed among publishers,
subscribers, and brokers such that the confidentiality and privacy are assured based
on homomorphic encryption. A detailed description of the construction is presented in
Section 4.

2.2 Attribute Based Group Key Management

Broadcast Group Key Management (BGKM) schemes [24, 20] are a special type of
GKM scheme whereby the rekey operation is performed with a single broadcast with-
out requiring private communication channels. Unlike conventional GKM schemes,
BGKM schemes do not give subscribers private keys. Instead subscribers are given
a secret which is combined with public information to obtain the actual private keys.
Such schemes have the advantage of requiring a private communication only once for
the initial secret sharing. The subsequent rekeying operations are performed using one
broadcast message. Further, in such schemes achieving forward and backward security
requires only to change the public information and does not affect the secrets given
to existing subscribers. However, BGKM schemes do not support group membership
policies over a set of attributes. A recently proposed attribute based GKM (AB-GKM)



scheme [13] provides all the benefits of BGKM schemes and also supports attribute
based access control policies (ACPs).

Subscribers are required to show their identity attributes to the group controller to
obtain secrets using the AB-GKM scheme. In order to hide the identity attributes from
the group controller while allowing only valid subscribers to obtain secrets, we utilize
oblivious commitment based envelope (OCBE) protocols [8]. We omit the details of the
OCBE protocols due to the page limit.

The idea behind the AB-GKM scheme is as follows. A separate BGKM instance for
each attribute condition, which is a predicate over an attribute, is constructed. The ACP,
a Boolean expression over attribute conditions, is embedded in an access structure T . T
is a tree with the internal nodes representing threshold gates and the leaves representing
BGKM instances for the attributes. T can represent any monotonic policy. The goal
of the access tree is to allow deriving the group key for only the subscribers whose
attributes satisfy the access structure T .

The AB-GKM scheme consists of five algorithms: Setup, SecGen, KeyGen, Key-
Der and ReKey. Setup initializes the system. SecGen generates a unique secret for
each attribute condition. For a given ACP, KeyGen creates a symmetric key, public
information and an access structure. KeyDer derives the symmetric key given one or
more secrets and public information. ReKey regenerates the symmetric key and public
information.

3 Overview

Our approach requires a modification of the matching algorithm inside the message
broker to support the evaluation of blinded subscriptions against blinded notifications
without decrypting them. Our system also supports fine-grained encryption based ac-
cess control over notifications. Publishers encrypt notifications so that only authorized
subscribers can derive the key and decrypt the notifications. In order to assure privacy,
publishers and subscribers must perform an initialization to obtain secrets and pub-
lic parameters that they later need for encryption and blinding operations. In this sec-
tion, we give an overview of the modified Paillier cryptosystem and our context-based
pub/sub model and present our system architecture. We describe the initialization phase
as well as the regular runtime behavior. Finally, we present the trust model assumed in
our approach.

3.1 Modified Paillier Cryptosystem

In our work, we adapt the Paillier cryptosystem so that brokers can perform match-
ing operations without decrypting individual subscriptions and notifications. A high
level overview of the modifications we perform to the Paillier cryptosystem and the
rationale behind our modifications are provided below. We first shift the computation
towards encryption so that decryption is computationally more efficient than the Pail-
lier decryption. We also allow brokers to perform certain operations without knowing
the private key. Such shifting of computation improves the performance of the overall



pub/sub system since publishers and subscribers, which perform encryption, are typi-
cally distributed to many nodes while brokers have to handle notifications from many
publishers and subscribers. Thus, by making decryption efficient, we eliminate a bot-
tleneck in the system and improve the overall efficiency. We also blind the encrypted
values and make µ, a parameter of the Paillier cryptosystem, public so that individual
values cannot be decrypted, but a blinded subscription and a blinded notification can be
multiplied together to obtain the difference. In order to make the correct matching de-
cision by calculating the difference, we limit the domain size (l bits) of the subscription
and notification values. We assume that l is much smaller compared to the plaintext
space of the Paillier cryptosystem, n. For example, the subscription and notification
for the attribute age, which may take values from 0 to 200, can be represented using a
domain size of 8 bits. Since the domain size is much smaller than the plaintext space,
brokers can make the matching decision by calculating the difference as follows: If the
difference between a notification and a subscription value is in the first half of the plain-
text space, the difference is positive and the notification value is greater than or equal to
the subscription value. Otherwise, the difference is negative and the notification value
is less than the subscription value.

The above modifications allow brokers to make matching decisions without learn-
ing the actual values. However the modified matching protocol still reveals the actual
difference between the notification value and subscription values which leaks informa-
tion about these values. In order to address this issue, we introduce controlled random
values to the subscription and notification blinding operations so that the difference is
randomized. The brokers can still make correct matching decisions by comparing which
half the computed difference falls in the plaintext space, without however learning the
actual difference.

3.2 System Architecture

We assume that logical expressions based on att/val pairs are used by subscribers to
express their interest in notifications. We distinguish between two sets of attributes,
namely context set and static set, and an additional payload which by itself can be a set
of att/val pairs. The context set contains attributes representing the subscriber context,
e.g., location. The static set represents general attributes describing the message, e.g.,
message type.

Our approach consists of four entities (see Figure 1a and Figure 1b): publisher,
subscriber, broker, and context manager. In order to assure the privacy of subscriptions,
subscribers must hide the content of their subscriptions from brokers. Further, since
the attributes in the context set frequently change, subscribers must be able to update
their subscriptions without contacting a TTP, referred to as the context manager. In our
approach, publishers and subscribers communicate with context managers only either
during the initialization phase or when security parameters change in order to obtain
secrets and public parameters.

A context manager is responsible for a certain context in the system. The context
is described by a set of attributes, such as location with attributes latitude and longi-
tude. To assure the privacy of the context, subscribers must be able to issue and update
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subscriptions with blinded context set attribute values and publishers must be able to
publish notifications and blind context set attribute values.

When publishers join the system and want to publish messages for a certain context,
they first contact the responsible context manager. After successful authentication the
context manager provides some security parameters and a set of secrets corresponding
to valid subscribers to the publishers which allow them to blind and encrypt notifi-
cations. The blinding operation is performed using the modified Paillier cryptosystem
described in the next section and the encryption is performed using the symmetric key
generated using the AB-GKM’s key generation algorithm.

A similar bootstrapping process is necessary for subscribers. They contact the con-
text manager and receive some other security parameters which allow them to issue
blinded subscriptions for a certain context and secrets for identity attributes they have.
Further, our scheme allows the subscribers to update their subscriptions within a context
without contacting the context manager.

Brokers only receive blinded and encrypted notifications, and blinded subscriptions.
Upon receiving a notification, they execute the matching operation on the blinded no-
tification and the blinded subscriptions to make forwarding decisions. If a notification
matches a subscription, the broker strips the blinded portion of the notification and
sends only the encrypted notification to matching subscribers. It should be noted that
brokers do not learn the individual notification and subscription values during matching
operations.

Once subscribers receive encrypted notifications, using the secrets obtained from
the context manager during the initialization phase, they can derive the decryption key
using the AB-GKM’s key derivation algorithm. The AB-GKM scheme makes sure that
only valid subscribers can derive the key and hence decrypt notifications. Since sub-
scribers are not given decryption keys during the registration and they must dynami-
cally derive the keys, our approach can efficiently handle subscriber revocations and
additions as well as access control policy changes without affecting the existing sub-
scribers.



3.3 Trust Model

We consider threats and assumptions from the point of view of publishers and sub-
scribers with respect to third-party brokers. We assume that brokers are honest but cu-
rious; they perform pub/sub operations correctly, but are curious to know the notifica-
tions and subscriptions. In other words, brokers are not trusted for the confidentiality
of the notifications and subscriptions. The context manager is fully trusted. Publishers
are trusted to keep the secrets obtained from the context manager confidential and to
perform notification blinding and encryption as specified. Subscribers are not trusted in
our system. They can decrypt encrypted notifications only if they have valid credentials.
Brokers may collude with one another as well as with malicious subscribers.

4 Modified Paillier Cryptosystem

In this section we provide the details of our modified Paillier cryptosystem.
Making µ Public:
Recall that in the original Paillier cryptosystem, the tuple (λ, µ) is the private key.
However, µ does not need to be private since it is hard to decrypt an encrypted message
by only knowing µ. In order to decrypt, one needs to know both λ and µ. It can be
shown that if a probabilistic polynomial time (PPT) adversary can obtain λ from µ, it
can solve the discrete logarithm problem (DLP). Since DLP is a known hard problem,
it is hard to obtain λ from µ. Hence, we can make µ public while achieving the same
security guarantees as the unmodified Paillier cryptosystem. We take advantage of this
fact in order to shift the computation towards encryption and make decryption light
weight.
Shifting the Computation:
With the above modification, the new public and private keys are (n, gp, µ) and λ re-
spectively. First, we modify the Paillier cryptosystem so that anyone can decrypt using
the new public key, but only those holding the private key can encrypt. This is similar to
how digital signatures work. The following equations show the modifications to the en-
cryption and decryption algorithms: Encryption E′(m, r, λ) = E(m, r)λ = gmλp · rnλ
(mod n2) = c. and Decryption D(c) = L(c (mod n2)) · µ (mod n).

It should be noted that one can perform all the homomorphic operations on the
modified Paillier cryptosystem similar to the unmodified Paillier cryptosystem as the
above modification only shift the computation from decryption to encryption.
Computing Differences (but not Individual Values):
With the shift of computation described above, anyone can find the difference by sim-
ply decrypting each value. However, such an approach does not assure the privacy of
individual values. Therefore, we introduce an additional parameter to the encryption
operation in order to allow one to compute the difference while at the same time not
allowing the decryption of individual values.

Assume that there are two values x1 and x2. We perform the following modifica-
tion to the encryption operation so that a decryptor can learn the difference (x1 − x2)
without learning either x1 or x2. We call the modified encryption as blinding operation.
The modified encryption E′′(x1, x2) outputs x′1 and x′2 where x′1 = gt · E′(x1, r1)
(mod n2) and x′2 = g−t · E′(−x2, r2) (mod n2).



Notice that even though the decryptor knows µ, it can decrypt neither x′1 nor x′2 as
they are modular multiplied with gt and g−t respectively. Due to the additive homo-
morphic property, the following holds: x′1 · x′2 = E′(x1 − x2, r3).

Since the multiplication of x′1 and x′2 cancels the blinding parameters, anyone can
compute the difference as follows using the public key of the modified Paillier cryp-
tosystem: D(x′1 · x′2) = x1 − x2.
Allowing Comparison:
Recall that in Section 3.1 we introduced the notion of domain size which is much
smaller than the plaintext space of the Paillier cryptosystem. According to our assump-
tions, 0 ≤ x1, x2 ≤ 2l where l is the domain size and 2l << n. Let the difference of
x1 and x2 be d. Due to the restriction on the domain size, d is either between 0 and 2l

or n− 2l and n. We use this fact to compare the numbers; if d ≤ 2l, then x1 ≥ x2 and
if d > n− 2l, then x1 < x2.

During the above comparison process, the party performing the comparison learns
the difference d which leaks certain information about the actual values. Hence, the
comparison is not privacy preserving. We introduce a technique to randomize the dif-
ference so that it is difficult to learn the difference yet the party can learn the exact
comparison result.

Notice that in the above calculation, we only utilize a small range of the plaintext
space to make the comparison decision. We utilize the unused space in the plaintext
space in the above calculation to randomize the difference while still allowing one to
make the correct matching decision. The key idea is to expand the difference from
0 − 2l to 0 − n/2 and (n − 2l) − n to n/2 − n by introducing controlled random
values to the encryption operation. We introduce two random values rp and rq during
the encryption operation shown below: x′′1 = gt · E′(x1, r1)rpE′(rq) (mod n2) and
x′′2 = g−t · E′(−x2, r2)rp (mod n2). The decryption results in the following output:
D(x′′1 · x′′2) = rp(x1 − x2) + rq = d′.

rp and rq are randomly selected so that d′ ≤ n/2 if x1 ≥ x2 and d′ > n/2 if
x1 < x2. Each time a party performs the comparison it gets a different d′ due to the
random values and thus the difference preserves the privacy of the individual values
under comparison.

5 Privacy-Preserving Brokering Scheme

In this section, we describe in detail our approach to construct a privacy preserving
context-aware publish subscribe system using the modified Paillier cryptosystem pre-
sented in Section 4 and the AB-GKM scheme.

As introduced in Section 3, there are four entities in our system: context manager,
publisher, subscriber, and broker. The context manager acts as a TTP and generates
the parameters for the modified Paillier cryptosystem and manages secrets obtained by
the SecGen algorithm of the AB-GKM scheme to subscribers based on the identity
attributes they possess. The context manager maintains a set of contexts C and a set of
secrets issued to subscribers. Each context Ci ∈ C is a tuple of the following form:
Ci = 〈λi, µi, ti, ri〉, where λi and µi are Paillier parameters for E′ and D′ algorithms.
ti and ri are random values.



Brokers match notifications with subscriptions within the same context only. µi
values are public. λi and ti values are private to the context manager.
Subscriber Registration:
Each subscriber registers with the context manager. Let the context of a random sub-
scriber be Ci. During the registration, the subscriber receives the following values from
the context manager: E′(−ri), E′(−1), and g−ti · E′(−ri).

These parameters are used by the subscriber to blind subscriptions. Since µi is pub-
lic, the subscriber may decryptE′(−ri) usingD′ and obtain ri. However, the subscriber
can recover neither g−ti nor ti from g−ti · E′(−ri).

Using the SecGen algorithm of the AB-GKM scheme, each subscriber i also obtains
secrets sij for each identity attribute j they possess from the context manager. These
secrets are later used to derive the decryption key using the key derivation (KeyDer)
algorithm of the AB-GKM scheme and decrypt notifications.

It should be noted that the identity attributes are not revealed to the context manager
in plaintext as the SecGen algorithm internally utilizes the OCBE protocols. Thus the
privacy of the identity attributes are preserved from the context manager.
Publisher Registration:
Each publisher also registers with the context manager. Let the context of a random
publisher be Ci. During the registration, the publisher receives the following values
from the context manager: E′(ri), E′(1), and gti · E′(ri).

Similar to subscriber registration, these parameters are used by the publisher to
blind notifications. Since µi is public, the publisher may decrypt E′(ri) using D′ and
obtain ri. Notice that the context manager may provide E′(1) and ri, and allow the
publisher to compute E′(ri) homomorphically instead of providing the value directly.
Also, notice that the publisher can recover neither gti nor ti from gti · E′(ri).

In addition to the above modified Paillier cryptosystem parameters, each publisher
also obtains the set of secrets issued to subscribers using the SecGen algorithm. These
secrets are used to selectively encrypt notifications based on the identity attributes that
subscribers possess. The publisher first uses the key generation (KeyGen) algorithm of
the AB-GKM scheme to generate the encryption key based on these secrets and then
encrypts the notifications using the generated key. Notice that these secrets do not reveal
the actual identity attributes of subscribers to publishers. Thus the identity attributes of
subscribers are preserved from publishers as well.
Notifications:
Assume that a publisher wants to publish a notification for the attributes a1 and a2 with
values v1 and v2 respectively. The publisher first blinds v1 and v2 to create v′1 and v′2
respectively using the modified Paillier cryptosystem presented in Section 4. We show
the blinding operation for a general value v as follows: v′ = gti · E′(ri) · E′(ri(v −
1)) ·E′(rv) = gti ·E′(riv+ rv), where rv is a controlled random value selected by the
publisher. E′(ri(v − 1)) is homomorphically computed using E′(ri). Notice that this
value can be computed efficiently using fast multiplication.

Based on the ACP and the secrets issued to subscribers, the publisher generates
the encryption key k using the KeyGen algorithm of the AB-GKM scheme. It then
encrypts the payload of the notification (a1 = v1, a2 = v2) using the key k. We denote
the encrypted payload as Ek(payload). The publisher sends the blinded and encrypted



notification ((a1 = v′1, a2 = v′2), Ek(payload)) to brokers. Notice that brokers cannot
decrypt any of the blinded values as well as the encrypted payload.

An advantage of having two sets of encrypted values for each notification is that
our approach allows to perform privacy preserving matching and enforce fine-grained
ACPs independently.
Subscriptions:
Assume that a subscriber wants to subscribe for the attribute a1 with the value x. The
subscriber blinds x and creates x′ as follows: x′ = g−ti · E′(−ri) · E′(ri(1 − x)) =
g−ti · E′(−rix). E′(ri(1− x)) is homomorphically computed using E′(−ri).

The tuple (a, x′, α), where α = {<,>}, is sent to brokers. Similar to the blinded
notifications, notice that brokers cannot decrypt x′.

The tuple (a, x′, α) represents a single attribute condition and we call such a sub-
scription an atomic subscription. A subscription, in general, can be a Boolean expres-
sion over a set of atomic subscriptions and is called a composite subscription. Notice
that the atomic subscription intentionally leaves the equality comparison operator. The
motivation behind such a scheme is to further hide subscriptions and notifications from
brokers. In our scheme, equality subscriptions are performed using range queries so that
brokers cannot distinguish between equality subscriptions and range queries. In order
to submit an equality subscription for attribute a with the value x, the subscriber sub-
mits the query (a, x1, >) ∧ (a,x2, <), where x1 and x2 are the blinded values of x− 1
and x+1. Since the blinded values are semantically secure, the conjunctive query does
not reveal any information about the range and therefore brokers cannot distinguish an
equality subscription from a general range subscription.
Broker Matching:
For each context Ci, brokers receive µi. Assume that for the context Ci, a broker has
received the blinded notification and subscription values v′1 and x′ respectively for the
attribute a1. As mentioned above, we emphasize that the broker can decrypt neither v′1
nor x′. As described in Section 4, the broker computes the randomized difference d′ as
follows: d′ = D′(v′ · x′) = ri(v − x) + rv

It decides v1 > x if d′ ≤ n/2 and d′ 6= 0, v1 < x otherwise. The above matching
algorithm is described for an atomic subscription. Usually notifications contain more
than one attribute and the broker has to match such notifications with either atomic
or composite subscriptions. The matching for a composite subscription is performed
by evaluating each atomic subscription in the subscription and evaluating the Boolean
expression. After successful matching, the broker forwards only the encrypted payload
Ek(payload) to matching subscribers. Subscribers having valid credentials can derive
the key k using the KeyDer algorithm of the AB-GKM scheme and access the payload
of the notification.

6 Implementation and Evaluation

We extended Apache ActiveMQ, a production strength and widely used messaging mid-
dleware, with our proposed mechanisms for privacy preserving pub/sub. We used a
distributed setup with one 8 core and one 16 core Intel Xeon machine as message gen-
erating clients connected to an 8 core Intel Xeon 3.5 GHz machine running Linux 2.6



that acts as our extended ActiveMQ broker. An extended discussion of the evaluation is
presented in our technical report [11].
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Fig. 2. Results CONSTANT Scenario: CPU Utilization and Latency for Different Message Rates
and Blinding Strength

Figures 2a, 2b, and 2c show CPU utilization and latency for the CONSTANT sce-
nario where a constant number of entities are used.
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Fig. 3. Results DYNAMIC and COMPLEXITY Scenarios: Frequent Re-Subscriptions and Dif-
ferent Filter Lengths

Figures 3a and 3b show the CPU utilization for the DYNAMIC scenario where
subscribers leave and join the system at a certain rate to simulate context changes and
user churn. The results show that the additional overhead of joining subscribers is not
the factor that dominates CPU utilization at the broker. Further, the increase occurs
independent of blinding which shows that the overhead of joining is inherent to the



broker. On the client side CPU utilization is increased by about one third in the High
Dynamics configuration compared to the Static configuration.

The results for the COMPLEXITY scenario, where subscribers use different mes-
sage selector lengths, are shown in Figure 3c. For unencrypted subscriptions an increase
in CPU utilization is not observable. For blinded subscriptions the CPU utilization of
the broker increases slightly with increasing complexity. The utilization on the client
side increases faster since for each message all attributes have to be blinded, but the
broker does not necessarily evaluate the whole message selector.

7 Related Work

In this section, we compare our approach with existing work on secure content based
pub/sub systems, and search over encrypted data.
Secure content based pub/sub systems: Most of prior work on data confidentiality
in the context of content based pub/sub systems is based on the assumption that bro-
kers are trusted with respect to the privacy of the subscriptions [1, 22, 12]. However,
when such an assumption does not hold, both publication confidentiality and subscrip-
tion privacy are at risk. Further, such approaches limit brokers’ ability to make routing
decisions based on the content of the messages and thus their applicability is very lim-
ited. Approaches have also been proposed to assure confidentiality/privacy in the pres-
ence of untrusted third-party brokers. These approaches however suffer from several
limitations [19, 23, 10, 5]: inaccurate content delivery, because of the limited ability of
brokers to make routing decisions based on content; weak security protocols; lack of
privacy guarantees. For example, some of these approaches are prone to false positives,
that is, sending irrelevant content to subscribers.
Search over encrypted data: Search on encrypted data is a privacy-preserving tech-
nique used in the outsourced storage model where a user’s data are stored on a third-
party server and encrypted using the user’s public key. The user can use a query in the
form of an encrypted token to retrieve relevant data from the server, whereas the server
does not learn any more information about the query other than whether the returned
data matches the search criteria. There have been efforts to support simple equality
queries [21, 3] and more recently complex ones involving conjunctions and disjunc-
tions of range queries [4]. These approaches cannot be applied directly to the pub/sub
model.

8 Conclusions

We proposed an approach to construct a privacy preserving context-based pub/sub sys-
tem. Our approach assures the confidentiality of notifications and subscriptions from
third-party brokers while allowing the brokers to perform matching operations. Further,
publishers are able to enforce fine grained ACPs over encrypted notifications. Our so-
lution is based on a modified Paillier cryptosystem and a recent group key management
scheme. Unlike the existing approaches, in our approach, publishers and subscribers are
able to generate notifications and subscriptions without contacting a TTP. We imple-
mented our approach in ActiveMQ and the experimental results show that our approach



is practical and efficient. As part of future work, we plan to investigate performance
improvement techniques and specifically the trade-off between subscriber privacy and
the message routing efficiency.
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