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Abstract Message-oriented event-driven systems are
becoming increasingly ubiquitous in many industry do-
mains including telecommunications, transportation and
supply chain management. Applications in these areas
typically have stringent requirements for performance
and scalability. To guarantee adequate quality-of-service,
systems must be subjected to a rigorous performance
and scalability analysis before they are put into produc-
tion. In this paper, we present a comprehensive modeling
methodology for message-oriented event-driven systems
in the context of a case study of a representative ap-
plication in the supply chain management domain. The
methodology, which is based on queueing Petri nets, pro-
vides a basis for performance analysis and capacity plan-
ning. We study a deployment of the SPECjms2007 stan-
dard benchmark on a leading commercial middleware
platform. A detailed system model is built in a step-by-
step fashion and then used to predict the system perfor-
mance under various workload and configuration scenar-
ios. After the case study, we present a set of generic per-
formance modeling patterns that can be used as build-
ing blocks when modeling message-oriented event-driven
systems. The results demonstrate the effectiveness, prac-
ticality and accuracy of the proposed modeling and pre-
diction approach.

1 Introduction

Message-Oriented Middleware (MOM) is often used as
a communication mechanism for asynchronous data ex-
change in loosely-coupled event-driven applications such
as event-driven supply chain management, transport in-
formation monitoring, and ubiquitous sensor-rich appli-
cations to name just a few [1]. With their increasing
adoption in mission-critical areas, the performance and

scalability of such systems are becoming a major con-
cern. To ensure adequate Quality-of-Service (QoS), it
is essential that applications are subjected to a rigor-
ous performance and scalability analysis as part of their
software engineering lifecycle.

However, the decoupling of communicating parties
in event-driven applications makes it difficult to pre-
dict their behavior under load and ensure that enough
resources are available to meet QoS requirements. Ap-
plication developers and deployers are often faced with
questions such as: What performance will the applica-
tion exhibit for a given deployment topology, configura-
tion and workload scenario? What will be the expected
message delivery latency as well as the utilization of the
various system components? What maximum load (num-
ber of clients, messaging rates) will the system be able
to handle without breaking the service level agreements
(SLAs)? Which components will be most utilized as the
load increases and are they potential bottlenecks? What
influence do transactional and persistent messages have
on the system behavior? To answer such questions, tech-
niques for predicting the application performance as a
function of its configuration and workload are needed.
Common performance metrics of interest are the ex-
pected event notification latency as well as the utiliza-
tion and message throughput of the various system com-
ponents (e.g., event brokers, network links). Such tech-
niques are essential in order to ensure that systems are
designed and sized to provide adequate QoS to applica-
tions at a reasonable cost.

While numerous techniques for performance predic-
tion of conventional distributed systems exist in the lit-
erature, few techniques specialized for message-oriented
event-driven systems have been proposed. Most exist-
ing techniques suffer from simplifying assumptions lim-
iting their practical applicability and do not consider
important system aspects that occur in realistic appli-
cations such as different communication patterns, mul-
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tiple message types and message persistence. In this pa-
per, we present a comprehensive modeling methodology
for message-oriented event-driven systems in the context
of a case study of a representative event-driven appli-
cation deployed on a leading commercial MOM plat-
form. The application we study is the SPECjms2007
standard benchmark1 which is based on a novel scenario
in the supply chain management domain designed to
be representative of real-world event-driven applications.
The benchmark was developed by SPEC’s Java Sub-
committee with the participation of IBM, Sun, Oracle,
BEA Systems, Sybase, Apache, JBoss and TU Darm-
stadt. The benchmark workload comprises a set of sup-
ply chain interactions between a supermarket company,
its stores, its distribution centers and its suppliers. The
interactions represent a complex transaction mix exercis-
ing both point-to-point and publish/subscribe messaging
including one-to-one, one-to-many and many-to-many
communication [2]. The benchmark covers the major
message types used in practice including messages of dif-
ferent sizes and different delivery modes, i.e., persistent
vs. non-persistent, transactional vs. non-transactional.
The generated interaction mix can be configured to rep-
resent different types of customer workloads.

In this paper, we use SPECjms2007 as a represen-
tative application in order to evaluate the effectiveness
of our performance modeling technique when applied to
a realistic system under different types of event-driven
workloads typically used in practice. The reader is intro-
duced to the proposed modeling abstractions showing
how the various types of messaging workloads can be
modeled. A ”learning by example” approach is followed
presenting the models in the context of a real-life ap-
plication to ease understanding. The modeling approach
itself is general and, once understood, it can be easily
applied to other applications.

The paper starts with a brief introduction to MOM
and queueing Petri nets (QPNs) [3] which are used as
modeling formalism. Following this, a detailed model of
the SPECjms2007 benchmark is built in a step-by-step
fashion. QPNs make it possible to accurately model the
dissemination of messages in the system which involves
forking of asynchronous tasks. The developed model is
used to predict the benchmark performance for a num-
ber of different workload and configuration scenarios.
Model predictions are compared against measurements
on the real system and the results are used to evaluate

1 SPECjms2007 is a trademark of the Standard Perfor-

mance Evaluation Corporation (SPEC). The results or find-

ings in this publication have not been reviewed or ac-

cepted by SPEC, therefore no comparison nor performance

inference can be made against any published SPEC re-

sult. The official web site for SPECjms2007 is located at

http://www.spec.org/osg/jms2007.

the effectiveness, practicality and accuracy of the pro-
posed modeling and prediction approach. Finally, a set
of generic performance modeling patterns are presented
that address the various messaging scenarios and work-
loads that occur in practice.

The contributions of the paper are twofold:

1. Conceptually, we present a comprehensive modeling
approach and a set of modeling patterns reflecting
the needs of realistic applications. Further, we ex-
tend the QPN formalism simplifying the abstractions
for modeling logical software entities such as message
destinations (queues and topics).
– More specifically, QPNs are extended to support

multiple queueing places that share the same phys-
ical queue.

– A flexible mapping of logical to physical resources
that makes it easy to customize the model to a
specific deployment of the application is intro-
duced.

2. Practically, we present a novel case study of a com-
plex and realistic application deployed on a represen-
tative MOM platform.
– Both point-to-point and publish/subscribe mes-

saging are considered as well as multiple message
types, different message sizes and different mes-
sage delivery modes.

– An extensive evaluation of the accuracy of the
modeling approach is presented considering the
typical types of workloads used in practice.

Both analytical and simulation techniques for solv-
ing QPN models exist including product-form solution
techniques and approximation techniques [4–6]. For the
scenarios in the paper, we used simulation since we con-
sidered very large scenarios. For smaller scenarios an-
alytical techniques can be used. The research value of
the proposed modeling approach is that it presents a
set of adequate abstractions for messaging applications
that have been validated and shown to provide a good
balance between modeling effort, analysis overhead and
accuracy. Developing a simulation model using a general-
purpose simulation language is a time-consuming and
error-prone task, and there is no guarantee that the re-
sulting model will provide the required accuracy at rea-
sonable cost (simulation time). The abstractions we pro-
pose do not require any programming, they are compact
yet expressive, and provide good accuracy at low cost.

To the best of our knowledge, no models of represen-
tative event-based systems of the size and complexity of
the one considered here exist in the literature. The case
study we present in this paper is the first comprehen-
sive validation of our modeling approach. By means of
the proposed models we were able to predict the per-
formance of the modeled application accurately for sce-
narios under realistic load conditions with up to 30,000
messages exchanged per second (up to 4,500 transac-
tion p. sec.). The presented modeling technique can be
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Fig. 1 Point-to-Point vs. Pub/Sub Messaging

exploited as a tool for performance prediction and ca-
pacity planning during the software engineering lifecycle
of event-driven applications.

The rest of the paper is organized as follows. In Sec-
tion 2, we provide a brief introduction to MOM and
an overview of QPNs. In Section 3, we introduce our
modeling technique by showing how it can be used to
model the SPECjms2007 application. We then present a
detailed experimental evaluation of the accuracy of the
proposed technique in Section 4. Following this, in Sec-
tion 5, we introduce our performance modeling patterns
presenting three of them in detail. In Section 6, we sur-
vey related work in the area of performance analysis of
message-oriented event-driven systems. Finally, the pa-
per is wrapped up with some concluding remarks and a
discussion of future work in Section 7. Appendix A pro-
vides a detailed introduction to QPNs, while Appendix B
provides detailed specifications of the QPN models used
in the three selected modeling patterns that are pre-
sented in detail.

2 Background

2.1 Message-Oriented Middleware (MOM)

Modern event-driven systems are typically implemented
using Message-Oriented Middleware which provides sup-
port for loosely-coupled communication among distributed
software components by means of asynchronous message-
passing as opposed to a request/response metaphor. The
MOM acts as an intermediary between communicating
parties receiving messages from one or more message
producers and delivering them to possibly multiple mes-
sage consumers.

Most of the MOM platforms currently used in indus-
try (e.g., IBM WebSphere MQ, TIBCO EMS) support
the Java Message Service (JMS) [7] standard interface
for accessing MOM services. The JMS interface pro-
vides two messaging models: point-to-point (P2P) and
publish/subscribe (pub/sub). Point-to-point messaging is
built around the concept of a message queue which forms
a virtual communication channel. Each message is sent
to a specific queue and is retrieved and processed by a
single consumer. Pub/sub messaging, on the other hand,
is built around the concept of a topic. Each message is
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Fig. 2 QPN Notation

sent to a specific topic and it may be delivered to mul-
tiple consumers interested in the topic. Consumers are
required to register by subscribing to the topic before
they can receive messages. Consumers can additionally
specify filters (selectors) on the messages delivered to
the topic. In the pub/sub domain, message producers
are referred to as publishers and message consumers as
subscribers. JMS queues and topics are commonly re-
ferred to as destinations. The two messaging models are
depicted in Figure 1. The JMS specification defines sev-
eral modes of message delivery with different quality-of-
service attributes:

Non-Persistent vs. Persistent: In non-persistent mode,
pending messages are kept in main memory buffers
while they are waiting to be delivered and are not
logged to stable storage. In persistent mode, the JMS
provider takes extra care to ensure that no messages
are lost in case of a server crash. This is achieved
by logging messages to persistent storage such as a
database or a file system. Most JMS vendors provide
their own file storage implementation as well as a
JDBC interface.

Non-Durable vs. Durable: JMS supports two types of sub-
scriptions, durable and non-durable. With non-durable
subscriptions a subscriber will only receive messages
that are published while he is active. In contrast to
this, durable subscriptions ensure that a subscriber
does not miss any messages during periods of inac-
tivity.

Non-Transactional vs. Transactional: A JMS messaging
session can be transactional or non-transactional. A
transaction is a set of messaging operations that are
executed as an atomic unit of work.

For a detailed introduction to MOM and JMS the
reader is referred to [7–9].

2.2 Queueing Petri Nets (QPNs)

Queueing Petri Nets (QPNs) [3] can be seen as an ex-
tension of stochastic Petri nets that allow queues to be
integrated into the places of a Petri net. A place that
contains an integrated queue is called a queueing place
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and is normally used to model a system resource, e.g.,
CPU, disk drive or network link. Tokens in the Petri
net are used to model requests or transactions processed
by the system. In our case, tokens represent the mes-
sages processed by the MOM server. Arriving tokens at
a queueing place are first served at the queue and then
they become available for firing of output transitions.
When a transition fires, it removes tokens from some
places and creates tokens at others. Usually, tokens are
moved between places representing the flow-of-control
during message processing. QPNs also support so-called
subnet places that contain nested QPNs. Figure 2 shows
the notation used for ordinary places, queueing places
and subnet places. A detailed introduction to QPNs is
included in Appendix A.

As demonstrated in [10], QPNs provide greater mod-
eling power and expressiveness than conventional queue-
ing network models and stochastic Petri nets. Taking ad-
vantage of this, our approach provides several important
benefits. First of all, QPN models allow the modeling
of process synchronization and the integration of hard-
ware and software aspects of system behavior [10, 11].
Second, the use of QPNs makes it possible to accurately
model the dissemination of messages in the system which
involves forking of asynchronous tasks. Finally, by re-
stricting ourselves to QPN models, we can exploit the
knowledge of their structure and behavior for fast and
efficient analysis using simulation [6].

3 Modeling Methodology

We now present our modeling methodology based on
Queueing Petri Nets (QPNs) by showing how it can
be applied to model a deployment of the SPECjms2007
benchmark as a representative example of a realistic
message-oriented event-driven system. We follow a ”learn-
ing by example” approach presenting our methodology
in the context of a real-life application to ease under-
standing. As mentioned earlier, the modeling method-
ology itself is general and, once understood, it can be
easily applied to other applications. To make the paper
self-contained, we start by presenting a brief overview
of SPECjms2007. A detailed description of the bench-
mark, including a comprehensive workload characteriza-
tion showing how the workload can be customized, can
be found in [2, 9].

3.1 Scenario - SPECjms2007

The SPECjms2007 benchmark is based on a novel appli-
cation scenario modeling the supply chain of a supermar-
ket company where RFID technology is used to track the
flow of goods. The participants involved can be grouped
into the following four roles:

1. Supermarkets (SMs) that sell goods to end customers,
2. Distribution Centers (DCs) that supply the super-

market stores,
3. Suppliers (SPs) that deliver goods to the distribution

centers and
4. Company Headquarters (HQ) responsible for manag-

ing the accounting of the company.

SPECjms2007 implements seven interactions between the
participants in the supply chain:

1. Order/shipment handling between SM and DC
2. Order/shipment handling between DC and SP
3. Price updates sent from HQ to SMs
4. Inventory management inside SMs
5. Sales statistics sent from SMs to HQ
6. New product announcements sent from HQ to SMs
7. Credit card hot lists sent from HQ to SMs

The workflow of the seven interactions is shown in
Figure 3. Interactions 1, 4 and 5 exercise point-to-point
messaging whereas Interactions 3, 6 and 7 exercise pub/sub
messaging. A brief description of Interaction 2, which in-
cludes both point-to-point and pub/sub messaging, illus-
trates the complexity of the workload. The interaction is
triggered when goods in a DC are depleted and the DC
has to order from a SP to refill stock: i) A DC sends a
call for offers to all SPs that supply the required types of
goods, ii) SPs send offers to the DC, iii) The DC selects
a SP and sends a purchase order to it, iv) The SP ships
the ordered goods sending a confirmation and an invoice,
v) The shipment is registered by RFID readers upon en-
tering the DC’s warehouse, vi) The DC sends a delivery
confirmation to the SP, vii) The DC sends transaction
statistics to the HQ. The call for offers sent in the begin-
ning is addressed to a topic HQ ProductFamily<n>T
where n is the product family.

SPECjms2007 is implemented as a Java application
comprising multiple JVMs and threads distributed across
a set of client nodes. For every destination, there is a
separate Java class called Event Handler (EH) that en-
capsulates the application logic executed to process mes-
sages sent to that destination. Event handlers register as
listeners for queues/topics and receive call backs from
the messaging infrastructure as new messages arrive. In
addition to the event handlers, for every physical loca-
tion, a set of threads (referred to as driver threads) is
launched to drive the benchmark interactions that are
logically started at that location.

SPECjms2007 offers three different modes of running
the benchmark providing different levels of configurabil-
ity: horizontal, vertical and freeform. The modes are re-
ferred to as workload topologies. The horizontal topology
is meant to exercise the ability of the system to han-
dle increasing message traffic injected through increas-
ing number of destinations. To this end, the workload
is scaled by increasing the number of physical locations
(SMs, DCs, etc) while keeping the traffic per location
constant. The vertical topology, on the other hand, is
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meant to exercise the ability of the system to handle
increasing message traffic through a fixed set of desti-
nations. Therefore, a fixed set of physical locations is
used and the workload is scaled by increasing the rate
at which interactions are run. Both in the horizontal and
vertical topology, a single parameter called BASE de-
termines the overall target message traffic and is used as
a scaling factor. Finally, the freeform topology allows the
user to design his own workload scenario that stresses se-
lected features of the MOM infrastructure in a way that
resembles a given target customer workload.

We now show in a step-by-step fashion how the var-
ious components of the SPECjms2007 benchmark can
be modeled using QPNs. Given the size and complexity
of the modeled system, the resulting performance model
is much larger and more complex than existing queue-
ing models of message-oriented event-based systems (see
Section 6). Overall, the presented model contains a total
of 59 queueing places, 76 token colors and 68 transitions
with a total of 285 firing modes. Transition and service
rates as well as routing probabilities are derived from
the workload description published in [2]. For the sake
of compactness of the presentation, in the following, we
focus on the most important aspects that are relevant to
understanding and applying our modeling methodology.

3.2 Modeling Interaction Drivers

We start by building a model of the interaction drivers.
For illustration, we assume that the Vertical topology is
used. The QPN model we propose is shown in Figure 4.
The number of tokens configured in the initial marking
of place BASE is used to initialize the BASE parameter
of the Vertical topology. Transition Init fires a single
time for each token in place BASE destroying the token
and creating a respective number of tokens 10’SMs, 1’HQ
and 2’DCs in place Locations. This results in the cre-
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Fig. 5 Models of Interactions 3, 4, 5, 6 and 7

ation of the expected number of location drivers spec-
ified by the Vertical topology. The location tokens are
used to initialize the interaction drivers by means of
transitions Init_SMs, Init_HQ and Init_DCs. For each
driver, a single token is created in the respective queue-
ing place Ix_Driver of the considered interaction. Places
Ix_Driver, x=1..7 each contain a G/M/∞/IS queue
which models the triggering of the respective interaction
by the drivers. When a driver token leaves the queue of
place Ix_Driver, transition Ix_Start fires. This triggers
the respective interaction by creating a token represent-
ing the first message in the interaction flow. The message
token is deposited in one of the subnet places SMs, HQ or
DCs depending on the type of location at which the in-
teraction is started. Each subnet place contains a nested
QPN which may contain multiple queueing places mod-
eling the physical resources at the individual location
instances. When an interaction is triggered, the driver
token is returned back to the queue of the respective
Ix_Driver place where it is delayed for the time between
two successive triggerings of the interaction. The mean
service time of each G/M/∞/IS queue is set to the re-
ciprocal of the respective target interaction rate as spec-
ified by the Vertical topology. Customizing the model for
the Horizontal or Freeform topology is straightforward.
The number of location driver tokens generated by the
Init transition and the service time distributions of the
G/M/∞/IS queues have to be adjusted accordingly.

For the sake of compactness of the presentation, the
models we present here have a single token color for each
message type. In reality, we used three separate token
colors for each message type representing the three dif-
ferent message sizes (small, medium and large) modeled
by the benchmark, i.e., instead of InventoryInfo we
have InventoryInfo_S, InventoryInfo_M and InventoryInfo_L.
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The only exception is for the PriceUpdate messages of
Interaction 3 which have a fixed message size. With ex-
ception of I3_Start, each transition Ix_Start on Fig-
ure 4 has three firing modes corresponding to the three
message sizes. The transition firing weights reflect the
target message size distribution.

3.3 Modeling Interaction Workflows

We now model the interaction workflows. We start with
Interactions 3 to 7 since they are simpler to model. Fig-
ure 5 shows the respective QPN models. For each des-
tination (queue or topic) a subnet place containing a
nested QPN (e.g., SM_InvMovementQ, HQ_PriceUpdateT)
is used to model the MOM server hosting the desti-
nation. The nested QPN may contain multiple queue-
ing places modeling resources available to the MOM
server, e.g., network links, CPUs and I/O subsystems.
We briefly discuss the way Interaction 3 is modeled.
It starts by sending a PriceUpdate message (transi-
tion I3_1) to the MOM server. This enables transtion I3_2

which takes as input the PriceUpdate message and cre-
ates n PriceUpdateN messages representing the notifi-
cation messages delivered to the subscribed SMs (where
n = 10 for the Vertical topology). Each of these messages
is forwarded by transition I3_3 to place SMs represent-
ing the machine hosting the SMs. Interactions 4 to 7 are
modeled similarly.

We now look at Interactions 1 and 2 whose models
are shown in Figures 6 and 7, respectively. The work-
flow of the interactions can be traced by following the
transitions in the order of their suffixes, i.e., I1_1, I1_2,
I1_3, etc. In Interaction 2, the CallForOffers message
is sent to a HQ_ProductFamily<n>T topic where n repre-
sents the respective product family. The CallForOffers
message is then transformed to x CallForOffersN mes-
sages representing the respective notification messages
forwarded to the SPs (transition I2_2_FindSubscribers).
Each SP sends an offer (Offer message) to the DC and
one of the offers is selected by transition I2_6 which
takes the x offers as input and generates a purchase or-
der (POrder message) sent to the SP_POrderQ queue.
The rest of the workflow is similar to Interaction 1.

3.4 Mapping of Logical to Physical Resources

By using subnet places to represent the MOM server(s)
hosting the individual destinations and the clients (HQ,
SMs, DCs and SPs) exchanging messages through the
MOM infrastructure, we provide flexibility in choosing
the level of detail at which the system components are
modeled. Each subnet place is bound to a nested QPN
that may contain multiple queueing places represent-
ing logical system resources available to the respective
client or server components, e.g., CPUs, disk subsystems
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Fig. 7 Model of Interaction 2

and network links. The respective physical system re-
sources are modeled using the queues inside the queue-
ing places. Multiple queueing places can be mapped to
the same physical queue. For example, if all destinations
are deployed on a single MOM server, their correspond-
ing queueing places should be mapped to a set of central
queues representing the physical resources of the MOM
server. Similarly, if locations of the same type are de-
ployed on the same client machine, a single set of physi-
cal queues modeling the client machine should be shared
among the queueing places corresponding to the indi-
vidual locations. The hierarchical structure of the model
not only makes it easy to understand and visualize, but
most importantly, it provides flexibility in mapping log-
ical resources to physical resources and thus makes it
easy to customize the model to a specific deployment of
the benchmark.
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3.5 QPN Extensions and Tool Support

We employed the QPME tool (Queueing Petrinet Mod-
eling Environment) [12, 13] to build and analyze the
QPN models of the benchmark interactions. QPME is an
open-source tool providing a QPN editor for construct-
ing QPN models and an optimized simulation engine
SimQPN [6] for model analysis. SimQPN has already
been successfully used in multiple modeling studies of
significant size and complexity and has been shown to
scale well to large realistic systems. For an evaluation
of the scalability and efficiency of the tool we refer the
reader to [14] and [15]. An essential QPN feature re-
quired in order to realize the flexible mapping of logical
to physical resources described in the previous section is
the ability to have multiple queueing places configured
to share the same physical queue. This feature is not sup-
ported by standard QPN models and is an extension that
we introduced while conducting the case study presented
in this paper. While the same effect can be achieved by
using multiple subnet places mapped to the same nested
QPN containing a single queueing place, this would re-
quire expanding tokens that enter the nested QPN with a
tag to keep track of their origin as explained in [10]. How-
ever, currently available QPN modeling tools including
QPME do not support this feature which means that the
modeler would have to manage the tags manually which
is cumbersome and error-prone. Thus, the extension we
propose is much simpler and significantly reduces the
modeling effort for managing shared queues. In the lat-
est version of QPME, queues are defined centrally (sim-
ilar to token colors) and can be referenced from inside
multiple queueing places. This allows to use queueing
places to represent software entities, e.g., software com-
ponents, which can then be mapped to different hard-
ware resources modeled as queues. The introduced QPN
extension, combined with the support for hierarchical
QPNs, allows to build multi-layered models of software
architectures similar to the way this is done in layered
queueing networks, however, with the advantage that
QPNs enjoy all the benefits of Petri nets for modeling
synchronization aspects.

The case study presented in this paper exploits the
ability to share queues in multiple queueing places by
decoupling the software and hardware layers of the mod-
eled system allowing the same logical model of the bench-
mark interactions to be easily customized to different de-
ployment environments. Thus, the results presented in
the paper can also be seen as a validation of the intro-
duced extensions to our general-purpose modeling tools
and analysis techniques.
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Fig. 8 Experimental Environment

4 Experimental Evaluation

4.1 Experimental Environment

To evaluate the accuracy of the proposed modeling ap-
proach, we conducted an experimental analysis of the
modeled application in the environment depicted in Fig-
ure 8. A leading commercial MOM platform was used
as a JMS server installed on a machine with two quad-
core Intel Xeon 2.33 GHz CPUs and 16 GB of main
memory. The server was run in a 64-bit 1.5 JVM with
8GB of heap space. A RAID 0 disk array comprised of
four disk drives was used for maximum performance.
The JMS Server was configured to use a file-based store
for persistent messages with a 3.8 GB message buffer.
The SPECjms2007 drivers were distributed across three
machines: i) one Sun Fire X4440 x64 server with four
quad-core Opteron 2.3 GHz CPUs and 64 GB of main
memory, ii) one Sun Sparc Enterprise T5120 server with
one 8-core T2 1.2 GHz CPU and 32 GB of main memory
and iii) one IBM x3850 server with four dual-core Intel
Xeon 3.5 GHz CPUs and 16 GB of main memory. All
machines were connected to a 1 GBit network.

4.2 Model Adjustments

The first step was to customize the model to our de-
ployment environment. The subnet place corresponding
to each destination was mapped to a nested QPN con-
taining three queueing places connected in tandem. The
latter represent the network link of the MOM server, the
MOM server CPUs and the MOM server I/O subsystem,
respectively. Given that all destinations are deployed on
a single physical server, the three queueing places for
each destination were mapped to three central queues
representing the respective physical resources of the JMS
server. The CPUs were modeled using a G/M/n/PS
queue where n is the number of CPU cores (in our case
n = 8). The network and I/O subsystem were modeled
using G/M/1/FCFS queues. The mean message service
times at the queues were set according to the message
resource demands. The latter were estimated by running
the interactions in isolation and measuring the utiliza-
tion of the respective resources using OS tools. For inter-
actions consisting of multiple messages, the service de-
mands of the individual messages were estimated by con-
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Table 1 Service Demands in ms

CPU Disk IO

Place Size 1 Size 2 Size 3 Size 1 Size 2 Size 3

Intr. Message Probability 95 % 4 % 1 % 95 % 4 % 1 %

orderConf SM OrderConfQn 0.973 0.987 1.846 0.081 0.067 0.146

statInfoOrderDC HQ StatsQn 0.053 0.112 0.242 na

shipInfo SM ShipArrQn 0.616 1.170 2.501 0.051 0.080 0.198
1

shipDep DC ShipDepQn 0.539 1.148 2.494 0.045 0.078 0.198

order DC OrderQn 0.838 0.948 1.833 0.065 0.069 0.145

shipConf DC ShipConfQn 0.390 0.365 0.663 0.032 0.025 0.053

callForOffers HQ ProductFamilyTn 0.343 0.403 0.946 0.045 0.077 0.117

callForOffers Notification HQ ProductFamilyTn 0.130 0.153 0.359 0.017 0.029 0.044

offer DC IncomingOffersQn 0.452 0.831 1.945 0.033 0.056 0.176

pOrder SP POrderQn 0.921 1.097 2.580 0.121 0.209 0.318

pShipConf SP ShipConfQn 0.406 0.500 0.873 0.066 0.078 0.108

2 statInfoShipDC HQ ShipDCSTatsQn 0.053 0.112 0.242 na

pOrderConf DC POrderConfQn 1.025 1.090 2.504 0.134 0.208 0.309

invoice HQ InvoiceQn 0.842 0.882 2.018 0.110 0.168 0.249

pShipInfo DC PShipArrQn 0.485 0.403 0.872 0.064 0.077 0.108

priceUpdate HQ PriceUpdateT 0.501 0.118
3

priceUpdate Notification HQ PriceUpdateT 0.458 0.027

4 inventoryInfo SM InvMovementQn 0.895 1.447 2.985 0.068 0.140 0.267

5 statInfoSM HQ SMStatsQ 0.444 na

productAnnouncement HQ ProductAnnouncementT 0.164 0.177 0.168 na
6

productAnnouncement Notification HQ ProductAnnouncementT 0.034 0.024 0.177 na

creditCardHL HQ CreditCardHotlistT 0.096 0.364 0.430 na
7

creditCardHL Notification HQ CreditCardHotlistT 0.039 0.144 0.841 na

sidering their relative fraction of the whole interaction.
To derive the service demands of notification messages,
we repeated the experiments with different numbers of
subscribers and used linear regression to estimate the
service demands. This resulted in the service demands
presented in Table 1. As to the subnet places correspond-
ing to the client locations (SMs, HQ, DCs and SPs), they
were each mapped to a nested QPN containing a single
queueing place whose queue represents the CPU of the
respective client machine. In our setup, all instances of
a given location type were deployed on the same client
machine and therefore they were all mapped to the same
physical queue. Note that this represents the most typi-
cal deployment scenario for SPECjms2007. We used the
QPME tool to build and analyze the model.

4.3 Considered Workload Scenarios

We consider several different scenarios that represent
different types of messaging workloads stressing differ-
ent aspects of the MOM infrastructure including both
workloads focused on point-to-point messaging as well
as workloads focused on publish/subscribe. In each case,
the model was analyzed using SimQPN [6] which took
less than 5 minutes. We have intentionally slightly devi-

 0

 20

 40

 60

 80

 100

 100  200  300  400  500  600  700

Se
rv

er
 C

PU
 U

tili
za

tio
n

BASE (Customized Vertical)

Model
Measured

 0

 2000

 4000

 6000

 8000

 10000

 12000

 100  200  300  400  500  600  700

To
ta

l M
es

sa
ge

s 
Pe

r S
ec

BASE (Customized Vertical)

Sent
Received

Fig. 10 Server CPU Utilization and Message Traffic for Cus-

tomized Vertical Topology



10 Kai Sachs et al.

0 %

10 %

20 %

30 %

40 %

50 %

(0,1] (1,2] (2,5] (5,10] (10,20] (20,50] (50,!) (0,1] (1,2] (2,5] (5,10] (10,20] (20,50] (50,!) (0,1] (1,2] (2,5] (5,10] (10,20] (20,50] (50,!)

Pe
rc

en
ta

ge
s o

f M
sg

. C
ou

nt

Msg. Size (Kbytes) - Incoming Messages Msg. Size (Kbytes) - Outgoing Messages Msg. Size (Kbytes) - Overall

P2P P / T
P2P NT / NP

Pub/Sub P / T
Pub/Sub NP / NT

0 %

10 %

20 %

30 %

40 %

50 %

(0,1] (1,2] (2,5] (5,10] (10,20] (20,50] (50,!) (0,1] (1,2] (2,5] (5,10] (10,20] (20,50] (50,!) (0,1] (1,2] (2,5] (5,10] (10,20] (20,50] (50,!)

Pe
rc

en
ta

ge
s o

f T
ot

al
 T

ra
ffi

c

Msg. Size (Kbytes) - Incoming Messages Msg. Size (Kbytes) - Outgoing Messages Msg. Size (Kbytes) - Overall

P2P P / T
P2P NT / NP

Pub/Sub P / T
Pub/Sub NP / NT

(a) Scenario 1

0 %

10 %

20 %

30 %

40 %

50 %

60 %

(0,1] (1,2] (2,5] (5,10] (10,20] (20,50] (50,!)

Pe
rc

en
ta

ge
s o

f M
sg

. C
ou

nt

Msg. Size (Kbytes) - Overall

P2P P / T
P2P NT / NP

0 %

10 %

20 %

30 %

40 %

50 %

60 %

(0,1] (1,2] (2,5] (5,10] (10,20] (20,50] (50,!)

Pe
rc

en
ta

ge
s o

f T
ot

al
 T

ra
ffi

c

Msg. Size (Kbytes) - Overall

P2P P / T
P2P NT / NP

(b) Scenario 2

0 %

10 %

20 %

30 %

40 %

50 %

(0,.5] (.5,1.2] (1.2,2] (2,10] (10,!)

Pe
rc

en
ta

ge
s o

f M
sg

. C
ou

nt

Msg. Size (Kbytes) - Overall

Pub/Sub P / T
Pub/Sub NT / NP

0 %

10 %

20 %

30 %

40 %

50 %

(0,.5] (.5,1.2] (1.2,2] (2,10] (10,!)

Pe
rc

en
ta

ge
s o

f T
ot

al
 T

ra
ffi

c

Msg. Size (Kbytes) - Overall

Pub/Sub P / T
Pub/Sub NT / NP

(c) Scenario 3

Fig. 9 Distribution of the Message Size

ated from the standard vertical topology to avoid pre-
senting performance results that may be compared against
standard SPECjms2007 results. The latter is prohibited
by the SPECjms2007 run and reporting rules. To this
end, we use freeform topologies based on the vertical
topology with the number of DCs and HQ instances each
set to 10. We study the following specific workload sce-
narios:

– Scenario 1: A mix of all seven interactions exercising
both P2P and pub/sub messaging.

– Scenario 2: A mix of Interactions 4 and 5 focused on
P2P messaging.

– Scenario 3: A mix of Interactions 3, 6 and 7 focused
on pub/sub messaging.

In Table 2 and Fig. 9, we provide a detailed workload
characterization of the three scenarios to illustrate the
differences in terms of transaction mix and message size
distribution.

4.4 Experimental Results

Figure 10 shows the predicted and measured CPU uti-
lization of the MOM server for the considered customized
vertical topology when varying the BASE between 100
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Fig. 11 Model Predictions Compared to Measurements for Scenarios 1, 2 and 3

and 700. The total number of messages sent and re-
ceived per second is shown. As we can see, the model
predicts the server CPU utilization very accurately as
the workload is scaled. To gain a better understanding
of the system behavior, we used the model to breakdown
the overall utilization among the seven interactions as
shown in Table 4. The bulk of the load both in terms
of message traffic and resulting CPU utilization is pro-

duced by Interactions 1 and 5 followed by Interactions 2
and 4. Interactions 3, 6 and 7 which exercise only pub-
lish/subscribe messaging produce much less traffic which
is expected since the standard vertical topology that we
used as a basis places the emphasis on point-to-point
messaging [2]. In the following, we study in detail the
three scenarios under different load intensities consider-
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Table 2 Scenario Transaction Mix

Sc. 1 Sc. 2 Sc. 3

In Out Overall

No. of Msg.

P2P

- P/T 49.2% 40.7% 44.6% 21.0% -

- NP/NT 47.2% 39.0% 42.8% 79.0% -

Pub/Sub

- PT 1.8% 6.0% 4.1% - 17.0%

- NP/NT 1.7% 14.2% 8.5% - 83.0%

Overall

- PT 51.1% 46.7% 48.7% 21.0% 17.0%

- NT/NP 48.9% 53.3% 51.3% 79.0% 83.0%

Traffic

P2P

- P/T 32.2% 29.5% 30.8% 11.0% -

- NP/NT 66.6 % 61.0% 63.5% 89.0% -

Pub/Sub

- PT 0.5% 2.3% 1.6% - 3.0%

- NP/NT 0.8% 7.2% 4.1% - 97.0%

Overall

- PT 32.7% 31.8% 32.4% 11.0% 3.0%

- NT/NP 67.3% 68.2% 67.6% 89.0% 97.0%

Avg. Size (in KBytes)

P2P

- P/T 2.13 2.31 -

- NP/NT 4.59 5.27 -

Pub/Sub

- PT 1.11 - 0.24

- NP/NT 1.49 - 1.49

Overall

- PT 2.00 2.31 0.24

- NT/NP 3.76 5.27 1.49

For Scenario 2 &3: In = Out.

ing further performance metrics such as the interaction
throughput and completion time.

The detailed results for the scenarios are presented
in Tables 3(a), 3(b) and 3(c). For each scenario, we con-
sider two workload intensities corresponding to medium
and high load conditions configured using the BASE
parameter. For each scenario, the interaction rates and
the average interaction completion times are shown. The
interaction completion time is defined as the time be-
tween the beginning of the interaction and the time that
the last message in the interaction has been processed.
The difference between the predicted and measured in-
teraction rates was negligible (with error below 1%) and
therefore we only show the predicted interaction rates.
For completion times, we show both the predicted and
measured mean values where for the latter we provide

Table 3 Detailed Results for Scenario 1,2 and 3

(a) Scenario 1

Input

BASE

Inter- Rate Avg. Completion T (ms)

action p. sec Model Meas. (95% c.i.)

1 228.57 10.24 10.17 +/- 0.68

2 64 13.28 15.10 +/- 0.71

3 15 3.16 3.49 +/- 0.41

300 4 486.49 2.64 2.76 +/- 0.31

med. load 5 1731.60 1.79 1.97 +/- 0.27

6 42.69 0.97 1.96 +/- 0.29

7 30.77 1.02 2.10 +/- 0.24

1 419.05 20.41 25.19 +/- 2.56

2 117.33 30.73 28.27 +/- 2.05

3 27.50 7.12 7.20 +/- 0.67

550 4 891.89 7.33 7.35 +/- 0.89

high load 5 3174.60 4.95 6.52 +/- 1.13

6 78.27 4.01 3.26 +/- 0.26

7 56.41 4.05 3.67 +/- 0.34

(b) Scenario 2

Input

BASE

Inter- Rate Avg. Completion T (ms)

action p. sec Model Meas. (95% c.i.)

600 4 972.97 2.65 2.66 +/- 0.04

med. load 5 3463.20 1.81 1.54 +/- 0.10

800 4 1297.30 3.49 3.75 +/- 0.17

high load 5 4617.60 2.77 2.62 +/- 0.20

(c) Scenario 3

Input

BASE

Inter- Rate Avg. Completion T (ms)

action p. sec Model Meas. (95% c.i.)

6000 3 300 3.74 3.22 +/- 0.09

med. load 6 853.89 0.81 0.95 +/- 0.23

7 615.38 1.02 1.31 +/- 0.35

10000 3 500 4.65 6.75 +/- 0.30

high load 6 1423.15 1.42 1.44 +/- 0.07

7 1025.64 1.70 2.22 +/- 0.10

a 95% confidence interval from 5 repetitions of each ex-
periment. Given that the measured mean values were
computed from a large number of observations, their
respective confidence intervals were quite narrow. The
modeling error does not exceed 20% with exception of
the cases where the interaction completion times are be-
low 3 ms, e.g., for Interactions 6 and 7 in the first sce-
nario. In such cases, a small absolute difference of say
1 ms between the measured and predicted values (e.g.,
due to some synchronization aspects not captured by the
model) appears high when considered as a percentage of
the respective mean value given that the latter is very
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Table 4 Relative Server CPU Load of Interactions

Inter- Relative No of msgs. Traffic in KByte

action CPU load in out in out

1 31.82% 32.00% 26.48% 17.08% 15.74%

2 15.69% 14.19% 13.60% 9.05% 9.55%

3 2.53% 0.35% 2.90% 0.02% 0.23%

4 17.98% 11.35% 9.39% 8.01% 7.38%

5 30.36% 40.40% 33.44% 65.04% 59.91%

6 0.86% 1.00% 8.25% 0.39% 3.55%

7 0.76% 0.72% 5.94% 0.40% 3.65%

low. However, when considered as an absolute value, the
error is still quite small.

Figure 11 depicts the predicted and measured inter-
action completion times for the three scenarios as well
as detailed information on how the total message traffic
of each interaction is broken down into sent vs. received
messages, on the one hand, and transactional (T) persis-
tent (P) vs. non-transactional (NT) non-persistent (NP)
messages, on the other hand. In addition, aggregate data
for all of the seven interactions is shown. For example, in
Scenario 3, we see that the total number of received mes-
sages per second is about 10 times higher than the num-
ber of messages sent. This is because each message sent
in Interactions 3, 6 and 7 is delivered to 10 subscribers -
one for each SM. The results in Figure 11 reveal the ac-
curacy of the model when considering different types of
messaging. While for point-to-point messaging, the mod-
eling error is independent of whether (P T) or (NP NT)
messages are sent, for the publish/subscribe case under
high load (Scenario 3), the modeling error is much higher
for the case of (P T) than for the case of (NP NT). In
Scenario 1 where all interactions are running at the same
time, Interactions 1 and 2 exhibited the highest model-
ing error (with exception of the interactions with very
low completion times). This is due to the fact that these
interactions each comprise a complex chain of multiple
messages of different types and sizes. Finally, looking at
the mean completion time over all interactions, we see
that for the most part the model is optimistic in that the
predicted completion times are lower than the measured
ones. This behavior is typical for performance models
in general since no matter how representative they are,
they normally cannot capture all factors causing delays
in the system.

In summary, the model proved to be very accurate
in predicting the system performance, especially consid-
ering the size and complexity of the system that was
modeled. The proposed modeling methodology can be
used as a performance prediction tool in the software en-

gineering lifecycle of event-driven systems. For example
at system design time, predictive performance models
can be exploited for comparing alternative system de-
signs with different communication and messaging pat-
terns. At system deployment time, models help to de-
tect system bottlenecks and to ensure that sufficient re-
sources are allocated to meet performance and QoS re-
quirements.

5 Performance Modeling Patterns

In this section, we introduce a set of generic performance
modeling patterns (PerfMP) for message-oriented event-
driven systems. The patterns address common workload
scenarios and configurations that occur in practice and
can be used as building blocks to simplify the modeling
process. To the best of our knowledge, no similar pat-
terns have been proposed before for message-oriented
event-driven systems.

5.1 Overview of the Patterns

Overall, we define eleven different patterns summarized
in Table 5. Several of the patterns can be combined or
customized to reflect specific application scenarios. The
patterns capture the most common types of interactions
in message-oriented event-driven systems. The patterns
address the following aspects of MOM-based communi-
cation:

– Asynchronous communication
– Pull-based vs. push-based communication
– Point-to-point vs. pub/sub messaging
– Resource management, e.g., the number of messages

that can be processed in parallel
– Time controlled behavior, e.g., connection times of

consumers
– Load balancing

Pattern Template

Each pattern definition comprises four parts:

1. Characteristics: The main features of the pattern are
summarized with keywords.

2. Example: A sample scenario for the pattern.
3. Description: A detailed description of the pattern,

including motivation and high-level implementation.
4. QPN Definition: Specification of the respective QPN

model presented in four tables:
(a) Places: A list of all places including name, short

description and type (Q=queueing place, O=ordinary
place, S=subnet place).

(b) Colors: A list of all colors.
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Name Description

Pattern 1: Standard Queue A standard queue implementing point-to-point messaging to a single

consumer.

Pattern 2: Standard Pub/Sub - Fixed Num-

ber of Subscribers

A standard pub/sub scenario in which incoming messages are delivered

to a fixed number of subscribers.

Pattern 3: Standard Pub/Sub - Dynamic No.

of Subscribers

A standard pub/sub scenario in which incoming messages are delivered

to a variable number of subscribers.

Pattern 4: Time-Controlled Pull I Implementation of a simple time-controlled pull communication. A con-

sumer connects to the MOM periodically each time processing one mes-

sage.

Pattern 5: Time-Controlled Pull II A consumer connects to the MOM periodically each time processing all

waiting messages before disconnecting.

Pattern 6: Resource-Controlled Pull I A consumer pulls messages sequentially and processes them one at a

time.

Pattern 7: Resource-Controlled Pull II Similar to Pattern 6, but with support of parallel message processing.

Pattern 8: Time Window A consumer connects periodically to the MOM and stays online pro-

cessing messages for a specified time interval before disconnecting.

Pattern 9: Random Load Balancer A load balancer that distributes incoming messages randomly among a

set of consumers.

Pattern 10: Round Robin Load Balancer A load balancer that distributes incoming messages round-robin among

a set of consumers.

Pattern 11: Queueing Load Balancer A load balancer stores incoming messages which are pulled by con-

sumers asynchronously.

Table 5 Performance Modeling Patterns

(c) Initial Marking: The initial number of tokens of
each color available in the various places of the
QPN.

(d) Transitions: A description of all transitions in-
cluding colors, places and firing weights (FW, mostly
1 or ∞ ).

Additionally, a graphical illustration of the underly-
ing QPN is provided for each pattern. Where no cardi-
nality for a transition is specified in the illustration, the
cardinality is assumed to be 1.

5.2 Pattern Definitions

In this section, we describe three of the patterns in de-
tail. An overview of the rest of the patterns is given
in Figure 12. For more details, we refer the interested
reader to [9] where detailed definitions of all patterns
can be found. We selected three patterns each exhibit-
ing different complexity: Patterns 2 & 3 cover specific
aspects one-to-many communication and are helpful to

model typical pub/sub interactions, while Pattern 6 is
focusing on pull-based communication and can also be
applied to model a thread pool.
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Pattern 2: Standard Pub/Sub - Fixed Number of
Subscribers

Characteristics

– 1 : n communication (one message is delivered to n
consumers)

Description A producer publishes a message to a given
topic. The MOM forwards the message to the subscribers
of the respective topic by sending a notification to each
of them. The main idea of this pattern is based on the
presumption that the service demand of the MOM per
message delivery is composed of two parts, the service
demand incurred for every incoming message and the
aggregated service demands for the notification messages
to the subscribers:

DMsgTotal,MOM = DMsg,MOM + n ·DNotification,MOM

where

n No. of message notifications.
DMsg,MOM Service demand of the MOM for

receiving and processing an in-
coming message.

DNotification,MOM Service demand of the MOM for
creating, processing and sending
notifications.

In this version of the pattern, we implemented a
straight-forward approach for a 1:n communication. The
number of consumers is specified in the cardinality of the
transition (see Figure 13). The downside of this approach
is that the number of consumers is fixed in the transition
specification and therefore cannot be modified without
changing the definition of the model.

Pattern 3: Standard Pub/Sub - Dynamic No. of
Subscribers

Characteristics

– 1 : n communication (one message is delivered to a
dynamic number of consumers)

– Dynamic number of message notifications
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Fig. 14 Pattern 3 - Standard Pub/Sub - Dynamic No. of

Subscribers

Description In many realistic scenarios, the number of
subscribers varies over time and it is itself a dynamic
parameter of the model. Since the state of a QPN is
captured in its marking (i.e., token population), it is de-
sirable to be able to model subscribers using Subscriber
tokens located in a given place of the QPN. This way
the number of subscribers can change by adding or re-
moving tokens from the respective place. Pattern 3 is
based on the underlying idea of Pattern 2, however, the
number of subscribers is determined dynamically based
on the token population of a specified place. For each
Subscriber token, a message notification is created and
forwarded by the MOM.

To implement the above logic, we introduce an or-
dinary place Controller and define two colors, State A
and State B. These colors are used to represent whether
the Controller is either in state A or B, depending on
the token stored in its depository. Further, for each sub-
scriber, a token Subscriber A or Subscriber B depending
on the current state exists. An incoming Message trig-
gers a state change from state A to B (or vice versa). In
response to an incoming Message, the respective num-
ber of message notifications are generated. This is im-
plemented by Transition 2-III / 2-IV (see Figure 14).
As a reaction to a state change from A (B) to B (A),
all n Subscriber A (B) tokens are transformed to n Sub-
scriber B (A) tokens stored in the Controller and to n
Notification tokens forwarded to the consumers.

For a better understanding, we provide a detailed de-
scription of the different steps and states. The underlying
transitions are illustrated in Figure 14.

1. Initialization
First, we define the number of initial subscribers by
configuring the initial number of Subscriber tokens
n. These n tokens are then transformed by transi-
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Fig. 15 Example Behavior of Pattern 3

tion T0 to n Subscriber A tokens stored in the Con-
troller place. This step is illustrated in Figure 15(a).
Transition T0 is fired only once in the beginning. The
Controller place is in state A which is represented by
a State A token stored in its depository.

2. Creation of Notifications
(a) Producer Publishes Message

The producer publishes a Message token, which
arrives via T1 at the Topic. After the MOM re-
ceives the Message token, transition T2-II is fired
and changes the state of the Controller from A
to B by replacing the State A token with a State
B token.

(b) Notification of Subscribers
Since the Controller place is now in state B, tran-
sition T2-IV is fired for each of the n Subscriber A
tokens and transforms them as illustrated in Fig-
ure 15(b) into Notification tokens (sent to the
Topic) and into Subscriber B tokens stored in the
Controller, respectively. These Notification tokens
will be processed by the MOM and afterwards de-
livered to the consumers. Therefore, each Message
token triggers the generation of n Notifications.

Transition Priorities The Controller is defined as an
ordinary place. Since standard QPNs do not support pri-
orities of transition firings this may become an issue: if
two messages arrive exactly at the same time, the state of
the Controller can be changed to the next state without
waiting for the creation of the notifications to complete.

Imagine a situation where the Controller is in state A
and two Message tokens arrive at the same time. First,
transition T2-I is fired and the state of the Controller
is changed to state B. Second, n notifications should be
created by firing transition T2-IV n times. However, a
major problem arises if the second Message token trig-
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Fig. 17 Pattern 6 - Resource-Controlled Pull I

gers a second state change back to A (via T2-II ) before
all n notifications for the first token are generated.

To address this issue, we propose two approaches us-
ing standard QPNs:

1. Set the firing weight of T2-III and T2-IV to ∞
This solution does not completely rule out the incor-
rect state changes, but their probability converges to
zero.

2. Adding an additional queueing place Enqueuer (see
Figure 16)
This Enqueuer place is a queueing place with a sin-
gle server and used to form a line of messages. This
allows us to process the Messages one after another
and to avoid incorrect state changes. In addition to
the new queueing place, a new transition T4 has to
be added and the existing transitions T2-I and T2-II
have to be adjusted. By defining a service demand
close to zero for Message tokens in the Enqueuer
place, a distortion of the results should be avoided.

Note: The above problem does not occur if the Topic
place has a single server. In this case, two messages never
arrive at the same time.

Pattern 6: Resource-Controlled Pull I

Characteristics

– Pull-based communication on demand
– Resource modeling (number of service places)
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Description A message consumer connects frequently to
the MOM to check whether new messages have arrived.
If yes, the consumer receives one of them, closes the con-
nection and processes the message. As soon as the mes-
sage has been processed, the consumer connects again to
the MOM to pull the next message. If no further mes-
sages are available, the consumer closes the connection
and waits for a specified period of time before pursuing
the next pull attempt.

In this scenario the pull attempt of the consumer is
not only controlled by time, but also by the availability
of the consumer. The consumer tries to pull the next
message as soon as he is ready, i.e., after the last mes-
sage was processed. Only if no further message is avail-
able, the consumer disconnects and the next connection
is triggered after a specified time interval.

This behavior is reflected in transitions 2 & 3. When
the consumer has processed a message, the Message to-
ken is transformed by transition 3-I to a Trigger token.
Next, transition 2 is fired. Depending on the availability
of Message tokens in the depository of the T/Q place,
either mode 2-I (Message available) or mode 2-II (no
Message token) is chosen:

1. If a Message token exists, the consumer pulls it (tran-
sition 3-I ) and disconnects. He will not reconnect
before the Message token is processed.

2. If no Message token exists, the consumer disconnects
and waits for a specified time interval. Then, a new
Trigger token is generated by transition 3-II and the
consumer tries to pull a Message.

Number of Service Places (Parallel Messages) The pat-
tern offers a simple way to set the maximum number
of Messages processed in parallel by defining the initial
number of Trigger tokens.

However, there is a drawback of this approach: Imag-
ine a scenario where we set the number of parallel mes-
sages processed by the consumer to two. For the case
that no Message token was available at the Q/T, two
Trigger tokens were transformed to Sleep tokens and
moved to the Timer. After the specified time interval
one of the Sleep tokens is processed by the Timer and
transformed back to a Trigger token by transition T3-II :
the consumer ’wakes up’ and establishes a connection to
the MOM. In the meantime, two new Message tokens
arrived at the Q/T. Since there is one Trigger token,
only a single Message is moved to the consumer. The
second Message token remains in the depository of the
Q/T until the second sleep token has been processed by
the timer, even if the consumer has enough resources to
process both Messages.

Another approach is presented in Pattern 7, where
the consumer pulls as many Messages at once as free
resources are available. This avoids opening several con-
nections and allows processing them as fast as possible.
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Fig. 18 Modeling a Thread Pool

How to Modify Pattern 6 to Model Thread Pool By re-
moving the Timer place and transitions T2-II and T3-II,
the underlying idea of this approach is made suitable for
modeling a thread pool. As illustrated in Figure 18, all
we need to implement such a pool are Thread tokens and
a Thread Pool ordinary place (corresponding to Thread
tokens, respectively Thread Store).

6 Related Work

6.1 Performance Evaluation of Message-oriented

Event-driven Systems

We present an overview of existing performance model-
ing and analysis techniques for message-oriented event-
driven systems. In [16], an analytical model of the mes-
sage processing time and throughput of the WebSphereMQ
JMS server is presented and validated through measure-
ments. The message throughput in the presence of filters
is studied and it is shown that the message replication
grade and the number of installed filters have a signif-
icant impact on the server throughput. Several similar
studies using Sun Java System MQ, FioranoMQ, Ac-
tiveMQ and BEA WebLogic JMS server were published.
A more in-depth analysis of the message waiting time
for the FioranoMQ JMS server is presented in [17]. The
authors study the message waiting time based on an
M/G/1 − ∞ queue approximation and perform a sen-
sitivity analysis with respect to the variability of the
message replication grade. They derive formulas for the
first two moments of the message waiting time based
on different distributions (deterministic, Bernoulli and
binomial) of the replication grade. These publications,
however, only consider the overall message throughput
and latency and do not provide any means to model the
performance of complex event-driven interactions and
message flows.

A method for modeling MOM systems using perfor-
mance completions is presented in [18]. A pattern-based
language for configuring the type of message-based com-
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munication is proposed and model-to-model transforma-
tions are used to integrate low-level details of the MOM
system into high-level software architecture models. A
case study based on part of the SPECjms2007 workload
(more specifically Interaction 4) is presented as a valida-
tion of the approach. However, no interactions involving
multiple message exchanges or interaction mixes are con-
sidered and the studied deployment is unrealistic. In [19],
an approach to predicting the performance of messag-
ing applications based on the Java Enterprise Edition
is proposed. The prediction is carried out during appli-
cation design, without access to the application imple-
mentation. This is achieved by modeling the interactions
among messaging components using queueing network
models, calibrating the performance models with archi-
tecture attributes, and populating the model parameters
using a lightweight application-independent benchmark.
However, again the workloads considered are very simple
and do not include any complex messaging interactions.

Several performance modeling techniques specifically
targeted at distributed publish/subscribe systems [20]
exist in the literature. However, such techniques are nor-
mally focused on modeling the routing of events through
distributed broker topologies from publishers to sub-
scribers as opposed to modeling interactions and mes-
sage flows between communicating components in event-
driven applications. In [21], an analytical model of pub-
lish/subscribe systems that use hierarchical identity-based
routing is presented. The model is based on continu-
ous time birth-death Markov chains. Closed analytical
solutions for the sizes of routing tables, for the over-
head required to keep the routing tables up-to-date, and
for the leasing overhead required for self-stabilization
are presented. The proposed modeling approach, how-
ever, does not provide means to predict the event deliv-
ery latency and it suffers from a number of restrictive
assumptions. Many of these assumptions were relaxed
in [22, 23] where a generalization of the model was pro-
posed, however, the generalized model is still limited to
systems based on peer-to-peer and hierarchical routing
schemes. In [24], a basic approach for workload char-
acterization and performance modeling of distributed
event-based systems was proposed and applied to a sim-
ple publish/subscribe application. However, many sim-
plifying assumptions were made and important system
aspects, that occur in realistic applications, e.g., differ-
ent communication patterns, multiple message types and
message persistence, were not considered. Finally, in [25],
probabilistic model checking techniques and stochastic
models are used to analyze publish/subscribe systems.
The communication infrastructure (i.e., the transmis-
sion channels and the publish/subscribe middleware) are
modeled by means of probabilistic timed automata. Ap-
plication components are modeled by using statechart
diagrams and then translated into probabilistic timed
automata. The analysis considers the probability of mes-

sage loss, the average time taken to complete a task and
the optimal message buffer sizes.

To summarize, while a number of modeling approaches
and case studies of event-driven systems exist in the lit-
erature, they are mostly based on custom applications
and artificial workloads that are not representative of
real-life event-driven applications (see also [26]). To the
best of our knowledge, no realistic applications of the
size and complexity of the one considered in this paper
have been studied before.

6.2 Patterns in Performance Modeling

Performance models should reflect real world applica-
tions. In this context we face commonly occurring themes.
The goal of design patterns is to identify, name, and ab-
stract these themes [27]. Similar to software engineer-
ing, where the concept of design patterns is well es-
tablished, several research results focusing on the us-
age of patterns in performance engineering and mod-
eling were published. Most of these publications fall in
one of the following two categories. The first category fo-
cuses on describing knowledge of experienced modelers
in a structured way and/or providing reusable building
blocks, which can be used by modelers. The goal is to
transfer expert knowledge to less experienced modelers,
to decrease the time needed for modeling the applica-
tions and, by reusing expertise and proven components,
to improve the quality of models. In the second category
we find research focusing on model-to-model transforma-
tion, e.g., UML models to (C)PNs. The ongoing research
is closely related to the question how CPNs, QPNs and
similar models can be applied in the software develop-
ment life cycle.

A template for the description of Petri net patterns
is introduced in [28]. The authors use a template to de-
scribe a number of sample patterns and suggest the in-
troduction of a Petri net pattern repository. In [29] a
template is proposed for the systematic description of
CPNs. Furthermore, the same authors present a compre-
hensive and structured collection of 34 design patterns
for CPNs in [30]. These patterns have been modeled us-
ing CPN Tools. In [31] the authors mention that they
created a library of QPN patterns, which contains mod-
els of basic constructs appearing repeatedly in the Tom-
cat architecture such as blocking. An extension to hier-
archical colored Petri nets (HCPN) named reusable col-
ored Petri nets (RCPN) is published and demonstrated
in [32]. RCPN support the definition of reusable compo-
nents.

The authors of [33–35] discuss how to construct an
underlying CPN representation based on an UML soft-
ware architecture model. For this purpose behavioral de-
sign patterns (BDP) are specified and mapped to CPN
templates. This allows software engineers to focus on the
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UML design independent from the CPN model. The gen-
erated CPN may be analyzed for performance and func-
tionality. Observed behavioral problems resulting from
the CPN analysis can be corrected in the UML software
design.

Our work differs from the previous ones in at least
two ways. To the best of our knowledge, no patterns for
QPNs are published. Existing work focuses mostly on
CPNs and PNs. Furthermore, there is no work discussing
such patterns for event-based applications.

7 Conclusions and Future Work

We presented a novel modeling methodology for event-
based systems in the context of a case study of a repre-
sentative state-of-the-art event-driven system. The sys-
tem we studied was a deployment of the SPECjms2007
standard benchmark on a leading commercial middle-
ware platform. A detailed model of the benchmark ap-
plication was developed in a step-by-step fashion and it
was shown how the model can be customized for a par-
ticular deployment scenario. The system modeled was
much larger and more complex than those considered in
existing literature. Overall, the model contains a total
of 59 queueing places, 76 token colors and 68 transitions
with a total of 285 firing modes. To validate our mod-
eling technique we considered a real-life deployment of
the benchmark in a representative environment compar-
ing the model predictions against measurements on the
real system. A number of different scenarios varying the
workload intensity and interaction mix were considered
and the accuracy of the developed models was evaluated.
The results demonstrated the effectiveness and practical-
ity of the proposed modeling and prediction approach.
The presented case study is the first comprehensive val-
idation of our modeling technique on a representative
application. The technique can be exploited as a tool
for performance prediction and capacity planning dur-
ing the software engineering lifecycle of message-oriented
event-driven systems. Additionally, we introduced a set
of generic performance modeling patterns that can be
used as building blocks when modeling message-oriented
event-driven systems.

As part of our future work, we will be working on
self-adaptive event-based systems based on the presented
modeling methodology. Such systems will dynamically
adjust their configuration to ensure that QoS require-
ments are continuously met. The idea is to generate per-
formance models at run-time based on monitoring data
and to use them to predict the system performance un-
der forecast workloads. Since performance analysis will
be carried out on-the-fly, it is essential that the process
of generating and analyzing the models is completely au-
tomated. As a first step, we are working on a tool that
will allow us to automatically generate system models of
jms2009-PS [36], an extended version of SPECjms2007,

and a runtime measurement framework. We then plan to
integrate our approach into an open-source event-based
middleware and provide a prototype implementation.
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A Introduction to Queueing Petri Nets

In this section we provide a brief introduction to queue-
ing Petri nets (QPNs). QPNs can be considered an ex-
tension of stochastic Petri nets that allow queues to be
integrated into the places of a Petri net [37]. QPNs al-
low the modeling of process synchronization and the in-
tegration of hardware and software aspects of system
behavior [10, 11] and provide greater modeling power
and expressiveness than conventional queueing network
models and stochastic Petri nets [10]. QPNs were ap-
plied successfully in several case studies to model sys-
tem behavior, e.g., [11, 11, 24, 38, 39]. First, we present
the formal definition of QPNs. This section is based
on [11, 39, 40]. Afterwards we discuss the existing tool
support for QPNs.

A.1 Formal Definition

Queueing Petri nets can be seen as a combination of
a number of different extensions to conventional Petri
nets (PNs) along several dimensions. In this section, we
include some basic definitions and briefly discuss how
queueing Petri nets have evolved. A more detailed treat-
ment of the subject can be found in [3, 40]. Petri nets
(PNs) were originally introduced by C.A. Petri in the
year 1962. An ordinary Petri net is a bipartite directed
graph composed of places P , drawn as circles, and tran-
sitions T , drawn as bars, which is defined as follows [11,
40,41]:

Definition 1 An ordinary Petri net (PN) is a 5-tuple

PN = (P, T, I−, I+,M0) where:

1. P = {p1, p2, ..., pn} is a finite and non-empty set of

places,

2. T = {t1, t2, ..., tm} is a finite and non-empty set of

transitions, P ∩ T = ∅,

3. I−, I+ : P × T → N0 are called backward and forward

incidence functions, respectively,

4. M0 : P → N0 is called initial marking.

Different extensions to ordinary PNs have been de-
veloped in order to increase the modeling convenience
and/or the modeling power, e.g., [42, 43]. One of these
extensions are colored PNs (CPNs) which were intro-
duced by K. Jensen [44, 45] and provide the base for
QPNs. In CPNs a type called color is attached to a to-
ken. A color function C assigns a set of colors to each
place, specifying the types of tokens that can reside in
the place. In addition to introducing token colors, CPNs
also allow transitions to fire in different modes, so-called
transition colors. The color function C assigns a set of

modes to each transition and incidence functions are de-
fined on a per mode basis. Formally CPNs are defined
as follows [40]:

Definition 2 A colored PN (CPN) is a 6-tuple

CPN = (P, T,C, I−, I+,M0) where:

1. P = {p1, p2, ..., pn} is a finite and non-empty set of

places,

2. T = {t1, t2, ..., tm} is a finite and non-empty set of

transitions, P ∩ T = ∅,

3. C is a color function that assigns a finite and non-

empty set of colors to each place and a finite and

non-empty set of modes to each transition.

4. I− and I+ are the backward and forward incidence

functions defined on P × T , such that

I−(p, t), I+(p, t) ∈ [C(t)→ C(p)MS ], ∀(p, t) ∈ P × T 2

5. M0 is a function defined on P describing the initial

marking such that M0(p) ∈ C(p)MS.

Other extensions of ordinary PNs allow timing as-
pects to be integrated into the net description [40,41]. In
particular, generalized stochastic PNs (GSPNs) attach
an exponentially distributed firing delay (or firing time)
to each transition, which specifies the time the transition
waits after being enabled before it fires. Two types of
transitions are defined: immediate (no firing delay) and
timed (exponentially distributed firing delay). If several
immediate transitions are enabled at the same time, the
next transition to fire is chosen based on firing weights
(probabilities) assigned to each of the transitions. Timed
transitions fire after a random exponentially distributed
firing delay. The firing of immediate transitions always
has priority over that of timed transitions. GSPNs can
be formally defined as [40,41]:

Definition 3 A generalized Stochastic PN (GSPN) is a

4-tuple GSPN = (PN, T1, T2,W ) where:

1. PN = (P, T, I−, I+,M0) is the underlying ordinary

PN,

2. T1 ⊆ T is the set of timed transitions, T1 6= ∅,

3. T2 ⊂ T is the set of immediate transitions,

T1 ∩ T2 = ∅, T1 ∪ T2 = T ,

2 The subscript MS denotes multisets. C(p)MS denotes the

set of all finite multisets of C(p).
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4. W = (w1, ..., w|T |) is an array whose entry wi ∈ R+

is a rate of a negative exponential distribution speci-

fying the firing delay, if ti ∈ T1 or is a firing weight

specifying the relative firing frequency, if ti ∈ T2.

Combining definitions 2 and 3 leads to Colored GSPNs
(CGSPNs) [40]:

Definition 4 A colored GSPN (CGSPN) is a 4-tuple

CGSPN = (CPN, T1, T2,W ) where:

1. CPN = (P, T,C, I−, I+,M0) is the underlying CPN,

2. T1 ⊆ T is the set of timed transitions, T1 6= ∅,

3. T2 ⊂ T is the set of immediate transitions,

T1 ∩ T2 = ∅, T1 ∪ T2 = T ,

4. W = (w1, ..., w|T |) is an array with wi ∈ [C(ti) 7−→ R+]

such that ∀c ∈ C(ti) : wi(c) ∈ R+ is a rate of a nega-

tive exponential distribution specifying the firing de-

lay due to color c, if ti ∈ T1 or is a firing weight spec-

ifying the relative firing frequency due to c, if ti ∈ T2.

CGSPNs have proven to be a very powerful model-
ing formalism. However, they do not provide any means
for direct representation of queueing disciplines. To over-
come this disadvantage, queueing Petri nets (QPN) were
introduced based on CGSPNs with so-called queueing
places. Such a queueing place consists of two compo-
nents, a queue and a token depository (see Figure 2). The
depository stores tokens which have completed their ser-
vice at the queue. Only tokens stored in the depository
are available for output transitions. QPNs introduce two
types of queueing places:

1. Timed queueing place:
The behavior of a timed queueing place is as follows:
(a) A token is fired by an input transition into a

queueing place.
(b) The token is added to the queue according to the

scheduling strategy of the queue.
(c) After the token has completed its service at the

queue, it is moved to the depository and available
for output transitions.

2. Immediate queueing place:
Immediate queueing places are used to model pure
scheduling aspects. Incoming tokens are served im-
mediately and moved to the depository. Scheduling
in such places has priority over scheduling/service in
timed queueing places and firing of timed transitions.

Apart from this, QPNs behaves similar to CGSPN.
Formally QPNs are defined as follows:
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Fig. 19 A QPN Model of a Central Server with Memory

Constraints (reprinted from [40]).

Definition 5 A Queueing PN (QPN) is an 8-tuple

QPN = (P, T,C, I−, I+,M0, Q,W ) where:

1. CPN = (P, T,C, I−, I+,M0) is the underlying Col-

ored PN

2. Q = (Q̃1, Q̃2, (q1, ..., q|P |)) where

– Q̃1 ⊆ P is the set of timed queueing places,

– Q̃2 ⊆ P is the set of immediate queueing places,

Q̃1 ∩ Q̃2 = ∅ and

– qi denotes the description of a queue taking all

colors of C(pi) into consideration, if pi is a queue-

ing place or equals the keyword ‘null’, if pi is an

ordinary place.

3. W = (W̃1, W̃2, (w1, ..., w|T |)) where

– W̃1 ⊆ T is the set of timed transitions,

– W̃2 ⊆ T is the set of immediate transitions,

W̃1 ∩ W̃2 = ∅, W̃1 ∪ W̃2 = T and

– wi ∈ [C(ti) 7−→ R+] such that ∀c ∈ C(ti) : wi(c) ∈

R+ is interpreted as a rate of a negative exponen-

tial distribution specifying the firing delay due to

color c, if ti ∈ W̃1 or a firing weight specifying the

relative firing frequency due to color c, if ti ∈ W̃2.

Example 1 (QPN [40]) Figure 19 shows an example of

a QPN model of a central server system with memory

constraints based on [40]. Place p2 represents several ter-

minals, where users start jobs (modeled with tokens of

color ‘o’) after a certain thinking time. These jobs re-

quest service at the CPU (represented by a G/C/1/PS

queue, where C stands for Coxian distribution) and two

disk subsystems (represented by G/C/1/FCFS queues).
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To enter the system each job has to allocate a certain

amount of memory. The amount of memory needed by

each job is assumed to be the same, which is represented

by a token of color ‘m’ on place p1. According to Defini-

tion 5, we have the following:

QPN = (P, T,C, I−, I+,M0, Q,W ) where

– CPN = (P, T,C, I−, I+,M0) is the underlying Col-

ored PN as depicted in Figure 19,

– Q = (Q̃1, Q̃2, (null,G/C/∞/IS,G/C/1/PS, null,

G/C/1/FCFS,G/C/1/FCFS)),

Q̃1 = {p2, p3, p5, p6}, Q̃2 = ∅,

– W = (W̃1, W̃2, (w1, ..., w|T |)), where W̃1 = ∅, W̃2 =

T and ∀c ∈ C(ti) : wi(c) := 1, so that all transition

firings are equally likely.

A.2 Solving of QPNs & Tools for QPNs

For QPNs, the analytic solving approach is well-defined
[40] and implemented by several tools, e.g. [5, 46]. How-
ever, the analytic approach has limitations regarding
the number of possible tokens and places which lead
to a state explosion for models of real world applica-
tions [39]. Therefore, we decided to use a simulation-
based QPN solver for our models. Such a simulation-
based approach was presented in [39] which is imple-
mented by the QPME tool (Queueing Petri net Model-
ing Environment) [6, 12, 13, 47]. We employed this tool
to build and analyze our QPN models. QPME provides
a QPN editor including a graphical user interface, which
helps to construct QPN models and the optimized sim-
ulation engine SimQPN [6, 39] for model analysis. As a
result of our work, several new features were added to
QPME and to the SimQPN engine. Further, the perfor-
mance of the solver was increased significantly.
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B QPN Definitons

B.1 QPN Definition of Pattern 2

Places:

Place Type Description

Producer S Publish messages.

Topic Q Receives all incoming messages and forwards message notifIcations to n consumers.

Consumer S Consumes incoming message notifications.

Colors:

Color Description

Message Represents the sent message.

Message Notification

(Not.)

Message notification.

Transitions:

Id Input Output Description

T1 1 Message (Producer) 1 Message (Topic) Producer sends messages.

T2 1 Message (Topic) n Not. (Topic) Notifications are created.

T3 1 Not. (Topic) 1 Not. (Consumer) Consumer receives message notification.
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B.2 QPN Definition of Pattern 3

Places:

Place Type Description

Producer S Publishes messages.

Topic Q Receives all incoming messages and forwards notifications to the consumers.

Consumer S Consumes incoming messages.

Controller O Controls the creation of notification token.

Init O Central place for the configuration.

Colors:

Color Description

Message Represents the published message.

Notification (Not.) Message notification.

State A Exists only if Controller is in state A.

State B Exists only if Controller is in state B.

Subscriber A (Sub.

A)

Each Sub. A stands for a notification, which will be generated after the state of the Controller

place changes to state B.

Subscriber B (Sub.

B)

Each Sub. B stands for a notification, which will be generated after the state of the Controller

place changes to state A.

Subscriber Is used to initialize the number of subscribers. Each token represents one subscriber.

Init No. of Colors:

Color Place No. Description

State A Controller 1 At the beginning the Controller place is in state A.

Subscriber Init n One token for each consumer.

Transitions

Id Input Output FW Description

T0 1 Conf. Not. (Init) n Not. B (Controller) 1 Initialization of Controller place.

T1 1 Message (Producer) 1 Message (Topic) 1 Producer publishes message.

T2-I 1 State A (Controller) 1 State B(Controller) 1 Switch state of

1 Message (Topic) Controller to B.

T2-II 1 State B (Controller) 1 State A(Controller) 1 Switch state of

1 Message (Topic) Controller to A.

T2- 1 State A (Controller) 1 State A (Controller) ∞ If in state A, all Not.

III 1 Sub. B (Controller) 1 Not. (Topic) A are converted

1 Sub. A (Controller) to Notications

T2- 1 State B (Controller) 1 State B (Controller) ∞ If in state B, all Not.

IV 1 Sub. A (Controller) 1 Not. (Topic) B are converted

1 Sub. B (Controller) to Notications

T3 1 Notification (Topic) 1 Not. (Consumer) 1 Consumer receives messages.
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B.2.1 QPN Definition of Pattern 6

Places:

Place Type Description

Producer S Publishes messages.

T / Q S Stores all incoming messages.

Timer Q Timer queue (scheduling strategy: infinite server).

Trigger Store O Stores trigger tokens.

Consumer S Consumes incoming messages.

Colors:

Color Description

Message Represents the published messages.

Trigger Triggers pull commands.

Sleep Exists for time between an unsuccessful pull attempt and a reconnect.

Init No. of Colors:

Color Place Count Description

Trigger Trigger Store j j is equal to the number of messages the consumer can process in parallel.

Transitions:

Id Input Output FW Description

T1 1 Message (Producer) 1 Message (T/Q) 1 Producer publishes a message.

T2-I 1 Message (T/Q) 1 Message (Consumer) ∞ Consumer pulls a

1 Trigger (Trigger Store) message and processes it.

T2-II 1 Trigger (Trigger Store) 1 Sleep (T imer) 1 If no message is stored at the T/Q → go to

sleep.

T3-I 1 Message (Consumer) 1 Trigger (Trigger Store) 1 After a message is processed, the consumer

creates a trigger for a pull attempt.

T3-II 1 Sleep (T imer) 1 Trigger (Trigger Store) 1 After a specified time interval, the consumer

wakes up to pull a message.


