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Abstract

Distributed event-based systems (DEBS) are gaining

increasing attention in new application areas such as

transport information monitoring, event-driven supply-

chain management and ubiquitous sensor-rich environ-

ments. However, as DEBS increasingly enter the enter-

prise and commercial domains, performance and quality of

service issues are becoming a major concern. While nu-

merous approaches to performance modeling and evalua-

tion of conventional request/reply-based distributed systems

are available in the literature, no general approach exists

for DEBS. This paper is the first to provide a comprehen-

sive methodology for workload characterization and perfor-

mance modeling of DEBS. A workload model of a generic

DEBS is developed and operational analysis techniques are

used to characterize the system traffic and derive an ap-

proximation for the mean event delivery latency. Following

this, a modeling technique is presented that can be used for

accurate performance prediction. The paper is concluded

with a case study of a real life system demonstrating the

effectiveness and practicality of the proposed approach.

1 Introduction

Distributed event-based systems (DEBS) based on the

publish/subscribe communication paradigmwere originally

motivated by the need for decoupled and asynchronous dis-

semination of information in large-scale event-driven ap-

plications such as stock trading, Internet-wide news dis-

tribution, air traffic control and dissemination of auction

bids. More recently, however, DEBS have been gaining in-

creasing attention in many other industry domains includ-

ing manufacturing, transportation, health-care and supply

chain management. With the advent of ambient intelli-

gence and ubiquitous computing, many new applications

of DEBS have been proposed, for example, in the areas of

transport information monitoring [3], event-driven supply

chain management [26, 1], ubiquitous sensor-rich environ-

ments [9, 24] and location-based services [15, 10].

Novel event-based applications, however, pose some se-

rious performance and scalability challenges. For example,

the next generation of event-driven supply chain manage-

ment based on RFID technology will be highly reliant on

scalable and efficient backend systems to support the pro-

cessing of acquired real-time data and its integration with

enterprise applications and business processes [25]. The

performance and scalability of the event-based middleware

used to process real-time event data will be of crucial im-

portance for the successful adoption of such applications in

the industry.

To avoid the pitfalls of inadequate Quality of Ser-

vice (QoS), it is essential that event-based systems are sub-

jected to a rigorous performance and scalability analysis

before they are put into production. The analysis should

include a detailed characterization of the expected system

workload as well as its anticipated development over time.

Furthermore, methods are needed to estimate the system

performance as a function of its configuration and the work-

load it is exposed to. Common performance metrics of in-

terest are the expected event notification latency as well as

the utilization and message throughput of the various sys-

tem components (event brokers, network links, etc). Ob-

taining such information is essential in order to determine

the optimal system topology, configuration and capacity

that would provide adequate QoS to applications at a rea-

sonable cost. Moreover, given the dynamics of most DEBS

applications, it is important that the performance of the sys-

tem is continuously monitored and analyzed during oper-



ation to help anticipate changes in the workload and take

proactive measures to ensure that QoS requirements are

continuously satisfied.

While numerous approaches for modeling conventional

distributed systems and evaluating their performance and

scalability are available in the literature, no general method-

ology has been proposed for DEBS. Current work on per-

formance modeling and evaluation of DEBS is targeted at

specific implementations or applications and is highly spe-

cialized. This paper is the first to provide a comprehen-

sive methodology for workload characterization and per-

formance modeling of DEBS that is applicable to a wide

range of systems. The methodology helps to identify and

eliminate bottlenecks and ensure that systems are designed

and sized to meet their QoS requirements. The method-

ology is based on operational analysis and Queueing Petri

Nets (QPNs). We first use analytical analysis techniques

to find the utilization of system components and derive an

approximation for the mean event delivery latency. We

then show how more detailed performancemodels based on

QPNs can be built to provide more accurate performance

prediction. After presenting the methodology, we present

a case study in which the methodology is successfully ap-

plied in the context of a supermarket supply chain appli-

cation. The case study demonstrates the effectiveness and

practicality of our modeling approach.

The rest of this paper is organized as follows. In Sec-

tion 2, we define a workload model of a generic DEBS and

then present our methodology for workload characteriza-

tion and performance modeling. First analytical analysis

techniques are used to characterize the utilization of system

components and derive an approximation for the mean event

delivery latency. Following this, more detailed and accu-

rate performance models based on QPNs are developed. In

Section 3, we present a modeling case study with a real life

system. Following this, we review related work in Section 4

and present some concluding remarks in Section 5.

2 Modeling Methodology for DEBS

A generic distributed event-based system (DEBS) is nor-

mally composed of a set of nodes deployed in a distributed

environment and exchanging information through a set of

communication networks. Clients of the system are either

publishers or subscribers depending on whether they act as

producers or consumers of information. Publishers pub-

lish information in the form of events which are commonly

structured as a set of attribute-value pairs. Subscribers ex-

press their interest in specific events through subscriptions.

Most generally, subscriptions are defined as a set of con-

straints on the content of events. The constraints are spec-

ified using a subscription language. A published event is

said to match a subscription if it satisfies all constraints of

the subscription on the event attributes. The main task of

the system is to deliver published events to all subscribers

that have issued matching subscriptions.

Depending on the subscription model, DEBS can be

classified into topic-based (channel-based and subject-

based being variants thereof), content-based, type-based,

XML-based or concept-based. Different subscription mod-

els have different expressive power. Highly expressivemod-

els enable subscribers to precisely specify the events they

are interested in, however, the more expressiveness, the

higher the system overhead for matching events. The typi-

cal architecture of DEBS can be decomposed into four log-

ical layers: network layer, overlay layer, event routing layer

and event matching layer. A detailed overview of these lay-

ers as well as the techniques used to implement them can be

found in [6].

Modeling DEBS is challenging because of the complete

decoupling of communicating parties, on the one hand, and

the dynamic changes in the system structure and behavior,

on the other hand. When a request is sent in a traditional

request/reply-based distributed system, it is sent directly to

a given destination which makes it easy to identify the sys-

tem components and resources involved in its processing.

In contrast to this, when an event is published in a DEBS, it

is not addressed to a particular destination, but rather routed

along all paths that lead to subscribers with matching sub-

scriptions. It is hard to know in advance which system

nodes will be involved in delivering the event. There are

numerous event routing algorithms and they all have dif-

ferent implementation variants leading to different routing

behavior. Moreover, depending on the subscriptions that ex-

ist, individual events published by a given publisher might

be routed along completely different paths visiting differ-

ent sets of system nodes. Therefore, it is hard to partition

events into workload classes that have similar resource us-

age. Another difficulty stems from the fact that every time

a new subscription is created or an existing one is modified,

or when nodes join or leave the system, this might lead to

significant changes in the workload. Thus, the dynamics of

DEBS necessitate that workload characterization be done

much more frequently in order to reflect the changes in the

system configuration and workload.

For the sake of an example, without loss of generality, let

us consider a distributed event-based system implemented

as a network of event brokers arranged in the topology de-

picted in Figure 1. We assume that brokers communicate

using TCP sockets. Formally, the system can be repre-

sented as a 5-tupleG = (N,C, P, S,E) where:

N = {n1, n2, ..., n|N |} is the set of system nodes.

C = {c1, c2, ..., c|C|} is the set of connections btw. nodes.

P = {p1, p2, ..., p|P |} is the set of publishers.



Figure 1. System topology.

S = {s1, s2, ..., s|S|} is the set of subscribers.

E = {e1, e2, ..., e|E|} is the set of event types.

We will use the following additional notation:

HP (r) is the id of the system node that publisher pr is con-

nected to.

HS(l) is the id of the system node that subscriber sl is con-

nected to.

HL
C(q) is the id of the system node on the “left side” of
connection cq. The left side is defined as the side of
the node with lower id.

HR
C (q) is the id of the system node on the “right side” of
connection cq.

Bq is the bandwidth of the underlying network corre-

sponding to connection cq .

M t
q is the size of the message that has to be transferred

(taking protocol overhead into account) when an event

of type et is sent over the network corresponding to

connection cq.

νt,k
i,j is the probability that an event of type et, published

by publisher pk, is forwarded to system node nj after

visiting system node ni. If i = j, νt,k
i,j

def
= 0.

λt,k is the rate at which events of type et are published

by publisher pk.

λt,k
j is the rate at which events of type et, published by

publisher pk, arrive at node nj .

λt
j is the total rate at which events of type et (published

by any publisher) arrive at node nj .

τ t
q is the rate at which events of type et (published by

any publisher) are sent over connection cq .

SCPU
t,j is the mean CPU service time of an event of type et

at node nj .

S
I/O
t,j is the mean disk I/O service time of an event of

type et at node nj .

SNET
t,q is the mean network service time when an event of

type et is sent over the network link corresponding to

connection cq .

δi,j is the Kronecker function, i.e., δi,j = 1 if i = j and
δi,j = 0 if i 6= j.

We can consider the events published in the system as

basic components of the workload. Events can be parti-

tioned into workload classes based on their type. How-

ever, events of the same type published by different pub-

lishers could have completely different routing behavior and

resource consumption. Therefore, to make the workload

classes more homogeneous in terms of resource consump-

tion, we further partition them based on the publisher.

2.1 Analysis of the Event Routing
Behavior

To determine the routing behavior of events in the sys-

tem, we suggest conducting some experiments in a small

testing environment. Brokers are configured according to

the desired topology (Figure 1), however, instead of being

deployed on separate servers distributed over a WAN, they

are deployed on a few locally hosted servers connected to

a LAN. Ideally, all brokers should be deployed on a single

machine, however, this might be impossible due to techni-

cal reasons. Note that co-located brokers still use TCP/IP

to exchange messages and event routing at the overlay and

event routing layers is done in exactly the same way that

it would be done in the target environment. Subscriptions

are set up according to the target workload and experiments

are conducted to estimate the routing probabilities νt,k
i,j for

1 ≤ i ≤ |N |, 1 ≤ j ≤ |N | and i 6= j. We assume that the
system has been instrumented to monitor the event traffic

and extract the routing probabilities. In each experiment, a

subset of the overall set of publishers are emulated by gener-

ating events of the respective types. The event publication

rates need not be equal to the target publication rates λt,k

and they should be chosen in such a way that the load in-

jected does not exceed the capacity of the testing environ-

ment. If content-based routing is used, it must be ensured

that events with content representative of the target work-

load are generated when conducting the experiments, i.e.,

the distributions of the event attributes must match their dis-

tributions in the target workload.



The following relationship between the routing prob-

abilities νt,k
i,j and the arrival rates λt,k

j holds for

j = 1, 2, ..., |N |:

λt,k
j = λt,kδj,HP (k) +

|N |
∑

i=1

λt,k
i νt,k

i,j (1)

Dividing both sides of Eq. (1) by λt,k we obtain:

λt,k
j

λt,k
= δj,HP (k) +

|N |
∑

i=1

λt,k
i νt,k

i,j

λt,k
(2)

The ratio
λt,k

j

λt,k
is equal to the mean number of visits to

node nj of an event of type et published by publisher pk.

This ratio is known as visit ratio or relative arrival rate and

we will denote it as V t,k
j . Thus, from Eq. (2) the following

relationship between the visit ratios and routing probabili-

ties follows:

V t,k
j = δj,HP (k) +

|N |
∑

i=1

V t,k
j νt,k

i,j (3)

Solving the above simultaneous equations enables us to

derive the visit ratios based on the measured routing proba-

bilities.

2.2 Estimation of the Event Service Times

The next step is to determine the service times of events

at the system resources. This includes all resources used by

the system to deliver published events. The two types of re-

sources that we have to consider are the CPUs of the system

nodes and the networks used for communication between

nodes. In addition, secondary storage devices at the system

nodes (e.g., disk drives) might have to be considered if they

are used by the event-based middleware, e.g., for reliable

delivery.

There are different approaches to estimate the service

times of events at the CPU of a system node. First, the

system node can be instrumented to directly measure the

CPU usage when processing events. Another approach

which does not require instrumentation is to estimate the

service times based on measured CPU utilization and event

throughput. Assume that the considered system node is

deployed on a separate dedicated machine running on a

given reference hardware configuration if possible similar

to the node’s configuration in the target environment. By

injecting events of the respective type and measuring the

throughputXt
j of events at the node and the machine CPU

utilization UCPU
j , we can derive the mean service time

SCPU
t,j = UCPU

j /Xt
j .

This obvious relationship follows from the Utilization

Law [16]. Once the CPU service times of events at the

considered system node on the reference hardware config-

uration have been estimated, they can be used as reference

values to extrapolate the service times to the node’s config-

uration in the target environment. Benchmark results (e.g.,

SPECcpu2006 or SPECjbb2005) for the respective hard-

ware configurations can be exploited in such extrapolations.

If the chosen reference configuration is similar to the target

configuration, no extrapolation is necessary. If, in addition

to the CPUs, further resources at the system node are used

when delivering events (e.g., secondary storage devices),

the mean service times at these resources can be estimated

based on the measured resource utilization in exactly the

same way as shown above for the CPUs. In certain cases,

techniques can be employed that help to estimate the ser-

vice times without the need to do any measurements on the

system [23]. Such techniques are based on analyzing how

the system components are implemented at the code level.

The mean network service time SNET
t,q can be calculated

based on the available bandwidth and the size of the mes-

sage that has to be transferred (taking protocol overhead

into account) when an event of type et is sent over the net-

work corresponding to connection cq: S
NET
t,q = M t

q/Bq.

2.3 System Operational Analysis

If we look at the CPUs of the nodes in our system as

M/M/1 queues, we can use the following relationship from

queueing theory to obtain an approximation for the mean

response time RCPU
t,j of events of type et at the CPU of

node nj :

RCPU
t,j =

SCPU
t,j

1 − UCPU
j

(4)

From the Utilization Law it follows that:

UCPU
j =

|E|
∑

t=1

λt
jS

CPU
t,j =

|E|
∑

t=1





|P |
∑

k=1

λt,k
j



SCPU
t,j (5)

Similarly, an approximation for the mean response

time R
I/O
t,j of events of type et at the disk I/O subsystem of

node nj can be obtained. The arrival rates λ
t,k
j can be de-

rived by solving the system of simultaneous equations (1).

Using the same approach, we can estimate the utilization of

the network links in the system and the network response

times. The rate at which events of type et (published by any

publisher) are sent over connection cq can be computed as
follows:

τ t
q =

|P |
∑

k=1

(

λt,k
l νt,k

l,r

)

+

|P |
∑

k=1

(

λt,k
r νt,k

r,l

)

(6)



where l = HL
C(q) and r = HR

C (q). Assuming that con-
nections use dedicated network links, the utilization UNET

q

of the network link corresponding to connection cq is given
by:

UNET
q =

|E|
∑

t=1

τ t
qS

NET
t,q (7)

An approximation for the mean response time RNET
t,q of

events of type et at connection cq is then given by:

RNET
t,q =

SNET
t,q

1 − UNET
q

(8)

If multiple connections are sharing a network link, the

utilization of the network link due to each of these connec-

tions must be taken into account when computing the mean

response times at the connections. Assume for example that

connections cq1
, cq2

, ..., cqm
all share a single physical net-

work link. The relative utilization of the link due to connec-

tion cqi
is given by:

UNET
qi

=

|E|
∑

t=1

τ t
qi
SNET

t,qi
(9)

The total utilization of the network link can be computed

by summing up the relative utilizations due to the connec-

tions that share it:

UNET
q1,...,qm

=
m
∑

i=1

UNET
qi

(10)

An approximation for the mean response time RNET
t,qi

of

events of type et at connection cqi
can then be obtained by

substituting UNET
q1,...,qm

for UNET
q in Eq. (8). Now that we

have approximations for the mean response times of events

at the system nodes and network links, we can use this in-

formation to derive an approximation for the mean event

delivery latency. In order to do that we need to capture the

paths that events follow on their way from publishers to sub-

scribers.

Definition 1 (Delivery Path) A delivery path of an event is

every ordered sequence of nodes (ni1 , ni2 , ..., nim
) without

repetitions that is followed by the event upon its delivery to a

subscriber (the event is published at node ni1 and delivered

to a subscriber at node nim
).

Event delivery paths can be determined by monitoring

the system during the experiments conducted to measure

the routing probabilities νt,k
i,j (Section 2.1). Every delivery

path can be seen as a vector ~w = (ni1 , ni2 , ..., nim
) whose

elements are system nodes.

Definition 2 (Dissemination Tree) The set W of all deliv-

ery paths of an event will be referred to as the dissemination

tree of the event.

Let W t,k be the union of the dissemination trees of all

events of type et published by publisher pk. By definition

W t,k = ∅, if publisher pk does not publish any events of

type et. Let W
t be the union of the dissemination trees

of all events of type et irrespective of the publisher, i.e.,

W t =
⋃|P |

k=1W
t,k is the set of all delivery paths of events

of type et. Let Q(i, j) for 1 ≤ i < j ≤ |N | be the id of the
connection between nodes ni and nj assuming that such a

connection exists.

Definition 3 (Mean Delivery Latency) If W̃ ⊆ W t, the

mean delivery latency Lt(W̃ ) of an event of type et over

the set of delivery paths W̃ is defined as the average time it
takes to deliver an event of type et over a randomly chosen

path from W̃ .

If W̃ includes a single delivery path ~w =
(ni1 , ni2 , ..., nim

), an approximation for Lt(W̃ ) can
be computed as follows:

Lt({~w}) =

(

m
∑

r=1

RCPU
t,ir

+

m
∑

r=1

R
I/O
t,ir

)

+

m−1
∑

r=1

RNET
t,Q(ir ,ir+1)

(11)

If W̃ includes multiple delivery paths {~w1, ~w2, ..., ~wh},
we have:

Lt({~w1, ~w2, ..., ~wh}) =

∑h
k=1 Lt({~wk})

h
(12)

2.4 Performance Model Construction and
Evaluation

If approximate results are not enough and accurate per-

formance prediction is required, a more detailed perfor-

mance model must be built. One possibility is to model

the system using a queueing network, where system nodes

and networks are represented as queues and events are rep-

resented as jobs served at the queues. Modeling the sys-

tem in this way would result in a non-product form queue-

ing network. This is because every time an event arrives

at a system node, it might be forwarded to multiple other

nodes, resulting in forking of multiple asynchronous tasks.

Even though extended queueing networks make it possible

to model the forking of asynchronous tasks, existing analy-

sis techniques for this type of models (for example [17]) are

rather restrictive and only provide approximate results.

An alternative approach is to model the system using a

QPN, where system nodes and networks are represented as

queueing places and events are represented as tokens. The



forking of asynchronous tasks is much easier to model in

this case. Whenever an event is forwarded to multiple sys-

tem nodes, a transition can be used to create an instance of

the event, i.e., an event token, at each of the queueing places

corresponding to the target nodes. Modeling the system us-

ing QPNs provides a number of important benefits. QPN

models provide excellent expressiveness and allow the inte-

gration of hardware and software aspects of system behav-

ior into the samemodel [20]. This can be exploited to model

the individual system nodes at a higher level of detail, cap-

turing both hardware and software contention aspects. Fur-

thermore, the knowledge of the structure and behavior of

QPNs can be exploited for fast and efficient simulation [21].

This, on the one hand, ensures that models of realistically

sized systems can be analyzed. On the other hand, it allows

us to have service times with non-exponential distributions,

thus improving the model’s representativeness. For an in-

troduction to modeling using QPNs, the reader is referred

to [20, 19].

Figure 2. High-level system model.
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Figure 3. Node QPN model.

Figure 2 shows a QPN model of the system topology

in Figure 1. In this model, we ignore the network, assum-

ing that network delays are negligible. We will later show

how the model can be extended to include contention for

network resources. Each system node is modeled using a

nested QPN (represented as a subnet place). The latter can

be made as detailed as required to accurately capture the in-

ternal behavior of the node. In the simplest case, a system

node can be modeled with a single queueing place repre-

senting the CPU of the node, assuming that this is the only

resource used by the workload. Figure 3 shows an example

of a nested QPN model of a system node. Two queueing

places are used, the first one representing the node CPUs

and the second one representing the node’s disk I/O subsys-

tem. Events are modeled using tokens and transitions are

used to move events among nodes as they are routed in the

system. Every system node has a single output transition.

Event publications are modeled using timed transitions. We

will use the following notation:

πi is the subnet place corresponding to node ni.

ϕi is the output transition of place πi.

φk is the timed transition used to model event publica-

tions by publisher pk.

To distinguish between events with different resource

consumption and routing behavior, a separate token

color xt,k is defined for every combination of event

type et and publisher pk that publishes events of this type

(λt,k > 0). The token color xt,k is defined for place πi, if

and only if events of type et, published by publisher pk,

visit the place, i.e., λt,k
i > 0.

Every timed transition φk has a separate firing mode η
t
k

for each event type et published by the publisher it repre-

sents:

ηt
k : ∅ → πHP (k){1

′xt,k} (13)

This definition specifies that whenever the transition fires

in mode ηt
k, no tokens are removed from any place and only

one xt,k token is deposited in place πHP (k). The firing de-

lay ρ(ηt
k) of this mode is set to the reciprocal of the rate

at which events of type et are published by publisher pk:

ρ(ηt
k) = 1/λt,k.

Since the firing delays of timed transitions in QPNs are

assumed to be exponentially distributed, the above approach

to modeling event publications results in Poisson event ar-

rivals. If, however, the distribution of the time between

successive event publications is not exponential, a differ-

ent approach can be used. Instead of a timed transition,

a queueing place and an immediate transition are used to

model event publications as shown in Figure 4. The queue-

ing place has an integrated queue with an Infinite Server (IS)

scheduling strategy. The queue service time distribution

is equal to the distribution of the time between successive

event publications. For every event type et published by

the publisher, there is a single event token xt,k in the initial



marking of the place. After an event token is served at the

IS queue, the immediate transition fires, moving the token

back to the queue and depositing a copy of it in the system

node the publisher is connected to. The latter corresponds

to an event publication.

�
[W�N

�
[W�N

�
[W�N

6\VWHP3XEOLVKHU�SN

Figure 4. Modeling non-Poisson event publi-

cations.

We now show how the firing weights of the immediate

transitions ϕi for i = 1..N must be set in order to achieve
the desired routing behavior. We use the notation

µ : A1{c1
′x1} ∧A2{c2

′x2} ∧ ... ∧An{cn
′xn} →

B1{d1
′y1} ∧B2{d2

′y2} ∧ ... ∧Bm{dm
′ym}

to denote a transition mode µ in which ci × xi tokens

are taken from place Ai for i = 1..n and dj × yj to-

kens are deposited in place Bj for j = 1..m. If an event
modeled by token color xt,k visits the system node cor-

responding to place πi, from there it can possibly be for-

warded to every node nj such that ν
t,k
i,j > 0. Assuming that

there are m such nodes, let us denote the set of their id’s
as ζ = {j1, j2, ..., jm} = {j : νt,k

i,j > 0}. For every subset
of these nodes σ = {l1, l2, ..., lr} ⊆ {j1, j2, ..., jm}, we de-
fine a firing mode µσ

i of transition ϕi as follows:

µσ
i : πi{1

′xt,k} → πl1{1
′xt,k}∧πl2{1

′xt,k}∧...∧πlr{1
′xt,k}
(14)

which means that a xt,k token is taken from place πi

and a xt,k token is deposited in each of the places

πl1 , πl2 , ..., πlr , as shown in Figure 5. This corresponds

to node ni forwarding an arriving event of type et, pub-

lished by publisher pk, to nodes nl1 , nl2 , ..., nlr . In or-

der to achieve the desired routing behavior, the firing

weight ψ(µσ
i ) of the mode is set as follows:

ψ(µσ
i ) =

∏

g∈σ

νt,k
i,g

∏

g∈ζ\σ

(1 − νt,k
i,g ) (15)

To explain this, let us consider the action of node ni

forwarding an arriving event to node nlh as an “event” in

terms of probability theory. For h = 1..r, we have r events
and their probabilities are given by νt,k

i,lh
. At the same time

for each g ∈ ζ \ σ we can consider the action of node ni

not forwarding an event to node ng as an event. We have

m − r such events in total and their probabilities are given

by (1 − νt,k
i,g ). If we assume that all these events are in-

dependent, the probability of all of them occurring at the

same time would be equal to the product of their probabili-

ties. Thus, Eq. (15) can be interpreted as the probability of

forwarding an arriving event of type et, published by pub-

lisher pk, to nodes nlh for h = 1..r and no other nodes.
Even though in reality the independence assumption might

not hold, it is easy to see that by setting the firing weights as

indicated above, routing behavior with equivalent resource

consumption is enforced.

�
[W�N

�
[W�N

�
[W�N

�
[W�N

L L

OU

Figure 5. Firing of transition ϕi in mode µ
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Figure 6. Modeling network connections.

The model we presented is focused on capturing re-

source contention inside the system nodes, however, it can

easily be extended to also capture contention for network

resources. Network links can be modeled using queueing

places that event tokens visit when they are sent from one

place to another. Figure 6 shows an example of how net-

works can be modeled. Nodes ni1 and ni2 (representedwith

places πi1 and πi2 ) communicate with nodes nj1 and nj2

over a network (e.g., a LAN) modeled using queueing

place χ1. Node ni2 communicates with node nj3 through

another network modeled using queueing place χ2. De-

pending on the size of QPN models, different methods can

be used for their analysis, from product-form solution meth-

ods [7] to optimized simulation techniques [21].



3 Case Study

Consider a scenario in which DEBS is used to manage

the interactions among participants in a supermarket supply

chain [26]. The participants involved are the supermarket

company, its stores, its distribution centers and its suppliers.

Since most of the interactions in the supply chain are asyn-

chronous in nature, they can be implemented using DEBS.

Some examples of services that can be handled by the

system are supermarket order and shipment handling, in-

ventory management in supermarkets and distribution cen-

ters, automated tracking of goods as they move through the

supply chain and dissemination of new product announce-

ments, price updates, special offers and discount informa-

tion from the company headquarters to the supermarkets.

Here we consider the dissemination of requests for quotes

sent when goods in a distribution center are depleted and an

order has to be placed to refill stock. A request for quote is

published as an event in the system and it is automatically

delivered to all suppliers that supply the respective types of

goods. It is assumed that suppliers have subscribed to all

events belonging to the product groups/categories they are

concerned about. We have implemented the dissemination

of requests for quotes using the SIENA publish/subscribe

system [12] enhanced with self-monitoring functionality.

We instrumented the system to monitor and collect the event

publication rates and routing probabilities needed for char-

acterizing the workload. We used a hierarchical topology

with 15 brokers, 8 publishers and 16 subscribes. Brokers

were communicating over a Gigabit LAN. The deployment

topology is depicted in Figure 7.

Following our methodology presented in the previous

section, we first characterized the workload and then built a

QPN model of the system and used it to predict the system

performance under load. Given that the network utilization

was very low, it was omitted from the model, assuming that

the network service times did not have any significant im-

pact on the overall system performance. We employed the

QPME tool (Queueing Petrinet Modeling Environment) to

build and analyze the model [22]. QPME greatly simplified

the task by providing a user-friendly graphical user inter-

face for constructing QPN models and an optimized simu-

lation engine for steady-state analysis [21]. We considered

a number of workload and configuration scenarios varying

the publication rates and the system topology. For lack of

space, here we only consider two of the scenarios we ana-

lyzed. Tables 1 and 2 show the results for these scenarios.

The broker throughput and the event delivery latency for a

randomly selected subscriber are shown. As we can see, the

predictions are pretty accurate and reflect the real system

behavior. The results for the rest of the subscribers as well

as for the other scenarios we considered were of similar ac-

curacy to the ones presented here. The model analysis was
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Figure 7. Broker topology

done using SimQPN [21] and took less than 2 minutes on a

standard PC hardware. A more detailed and comprehensive

analysis of the performance and scalability of the proposed

techniques will be presented in a follow up paper.

Table 1. Broker throughput (messages / sec)

Scenario 1 Scenario 2

Broker Model Measured Model Measured

1 94.66 93.46 61.88 62.11

2 94.65 96.15 61.88 62.11

3 89.93 89.29 59.28 59.17

4 90.40 89.29 58.27 57.80

5 83.42 84.03 56.42 56.18

6 85.24 84.75 56.35 56.18

7 71.90 71.94 48.63 48.54

8 78.91 79.37 51.12 51.28

9 67.15 68.03 43.49 43.48

10 67.14 67.11 47.01 46.95

11 59.54 59.88 41.72 41.67

12 58.26 58.82 40.01 40.16

13 73.09 72.46 48.23 48.08

14 56.35 57.47 38.49 38.46

15 63.11 63.29 42.97 42.92



Table 2. Delivery latency (ms)
Scenario 1 Scenario 2

Publisher Model Measured Model Measured

1 9.48 8.98 24.60 26.71

2 19.01 18.56 24.79 25.93

3 28.82 27.27 7.90 9.05

4 29.03 27.79 16.39 17.59

5 38.34 37.01 32.61 35.20

6 38.00 37.77 32.63 35.52

7 39.06 38.12 33.27 36.25

8 38.71 37.87 33.28 35.47

4 Related Work

To the best of our knowledge, there is currently very lim-

ited work on performancemodeling of DEBS. In the follow-

ing, we briefly discuss some related work on approaches to

modeling DEBS and then consider some more general work

on QoS in publish/subscribe systems. In [4, 27] a com-

putational model of a publish/subscribe notification service

is proposed, where the latter is abstracted as a black box

connecting all participants in the computation. Based on

the computational model, a probabilistic model for measur-

ing the effectiveness of the notification service in delivering

publications to the set of the interested subscribers is devel-

oped. The effectiveness of the notification service is studied

as a function of the subscription and diffusion delays. While

some interesting results are presented, the proposed model

is way too coarse grained and it is based on the assump-

tion that the subscription and diffusion delays are known

which is not realistic to expect. In [5], the authors present

an attempt to formally model a publish/subscribe commu-

nication system as a classical distributed computation. The

authors formalize the concept of information availability

and model a few properties of the computation, namely

completeness and minimality, that capture the expected be-

havior of a publish/subscribe system from an application

viewpoint. The protocol-level requirements for managing

availability and providing basic QoS properties under very

simplified conditions are discussed. In [18], a stochas-

tic analysis of self-stabilizing routing algorithms for pub-

lish/subscribe systems is presented. The analysis is based

on continuous time birth-death Markov Chains and investi-

gates the characteristics of systems in equilibrium. Closed

analytical solutions for the sizes of routing tables, for the

overhead required to keep the routing tables up-to-date, and

for the leasing overhead required for self-stabilization are

presented. The proposedmodeling approach, however, does

not provide means to predict the event delivery latency and

it is rather limited in terms of generality.

A general overview of relevant QoS metrics in the con-

text of distributed and decentralized publish/subscribe sys-

tems can be found in [8]. In [2] it is advocated that QoS

attributes in publish/subscribe systems should be managed

in a uniform way with regard to other event attributes such

as type or content. The authors propose a model for QoS-

aware publications and subscriptions in which QoS-related

properties are decoupled from event type and content. In

a follow up paper published in [11], the authors present an

architecture of a distributed QoS-aware publish/subscribe

broker. The broker, called IndiQoS, leverages on exist-

ing network-level QoS reservation mechanisms to automat-

ically select QoS-capable paths. The approach, however,

concentrates on QoS at the network level and does not con-

sider contention for processing resources at the broker level.

In [14] an overview of the QoS aspects of publish/subscribe

middleware is given. Two industrial standards for pub-

lish/subscribe middleware, the Java Message Service and

the Data Distribution Service are described and their QoS-

related features are discussed. Some general guidelines

for designing a benchmark suite for evaluating distributed

publish/subscribe systems are presented in [13], however,

no specific implementation or measurement results are pro-

vided.

5 Concluding Remarks

This paper presented the first comprehensive methodol-

ogy for workload characterization and performance model-

ing of DEBS. We developed a workload model of a generic

DEBS and used operational analysis techniques to charac-

terize the system traffic and derive an approximation for the

mean event delivery latency. We then showed how more

detailed performance models based on QPNs can be built

and used to provide more accurate performance prediction.

Finally, we presented a case study demonstrating the effec-

tiveness and practicality of our methodology in the context

of a real-world scenario. The advantage of the proposed ap-

proach is that it is both practical and general, and it can be

readily exploited for performance evaluation of DEBS.

As part of our future work, we plan to apply the tech-

niques proposed in this paper to develop a framework for

designing self-managed DEBS that dynamically reconfig-

ure themselves to ensure that QoS requirements are contin-

uously met. The first step will be to integrate our work-

load characterization technique with online monitoring data

and use it to automate the model generation and analysis

process so that performance prediction can be carried out

on-the-fly in an autonomic fashion. The task of managing

the system performance will be delegated to a centralized

QoS Controller that periodically receives the latest monitor-

ing data from system nodes and updates the internal work-

load model. Using the techniques presented in this paper,

the QoS controller will be able to predict the system per-



formance on-the-fly based on observed trends in the user

behavior (e.g., forecast changes in event publication rates).

Thus, violations of the application QoS requirements will

be anticipated and changes in the system configuration will

be undertaken in a proactive manner to avoid breaking the

SLAs.
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