
Emergence as Competitive Advantage
Engineering Tomorrow’s Enterprise Software Systems

S. Frischbier1, M. Gesmann2, D. Mayer2, A. Roth3 and C. Webel4
1Databases and Distributed Systems Group (DVS), TU Darmstadt, Darmstadt, Germany

2Software AG, Darmstadt / Saarbrücken, Germany
3 SAP AG, Darmstadt, Germany

4 Fraunhofer IESE, Kaiserslautern, Germany

Keywords: Emergence, Business Process Modeling, Emergent Enterprise Software Systems, Interoperability, Adapt-
ability, System-of-Systems, Software Evolution, Event-based Systems, Service-oriented Architectures, SOA,
EBS, EDA.

Abstract: Companies rely heavily on complex software systems and tightly integrated supply-chains to serve their cus-
tomers in increasingly fast changing markets. To gain competitive advantage in such a setting, companies
must adapt their processes, products and inter-organizational relationships quickly to changing environments.
In the future, enterprise software systems must be explicitly designed for flexibly switching intensive inter-
organizational relationships and for rapidly implementing changes in requirements or context while retaining
existing functionality and user acceptance. In this position paper we introduce the notion of emergence in
enterprise software systems as a guiding principle. Emergent Enterprise Software Systems (EESS) will be
capable of reacting to changes in the environment by adapting their behavior and exposing new functionality.
The consequent challenges we face when designing, building and operating EESS are discussed.

1 ENTERPRISE SOFTWARE
BEYOND DESIGN-TIME
ADAPTABILITY

Companies rely heavily on large-scale enterprise soft-
ware systems tailored to support their specific busi-
ness processes. To meet rapidly changing expec-
tations of customers and partners, processes and
business relationships have to be changed at an in-
creasing speed (Buchmann et al., 2010). Enter-
prise software systems today, however, still lack the
level of flexibility needed in both intra- and inter-
organizational process adaptation. With regard to
cross-organizational interoperability, they are often
designed in a company-centric way with implicitly
shared semantics and models (Blair et al., 2011;
Freudenreich et al., 2012). When implementing
changed requirements or allowing third parties to ex-
tend today’s systems this is rarely achievable in busi-
ness real-time. Once designed and implemented us-
ing a vast variety of modular but specialized building
blocks, today’s enterprise software systems remain

rather static. Altering single subsystems in isolation
may even have unintended implications for the sys-
tem as a whole - often forcing a redesign of the sys-
tem landscape. This dramatically limits a company’s
flexibility to react to changing market situations and
gain competitive advantage.

We introduce the notion of emergence to evolve
software beyond design-time adaptability. In nature,
emergence refers to the development of order and/or
new behavior in response to changes in the environ-
ment based on local perception. In emergent software
we expect the system to exhibit new behavior in re-
sponse to changes of the environment. Emergent En-
terprise Software Systems (EESS) must combine ex-
isting software paradigms (e.g., service-orientation)
with reactive behavior (e.g., complex event process-
ing) and self-x behavior (i.e., self-awareness and self-
organization) into stable and reliable software sys-
tems. Furthermore, they have to take into account
constraints of the business domain.

Project EMERGENT is a joint research project
between academia and industry aiming at engineer-
ing EESS. As part of the government funded research

181
Frischbier S., Gesmann M., Mayer D., Roth A. and Webel C. (2012).
Emergence as Competitive Advantage - Engineering Tomorrow’s Enterprise Software Systems.
In Proceedings of the 14th International Conference on Enterprise Information Systems, pages 181-186
DOI: 10.5220/0003970501810186
Copyright c
 SciTePress

cluster Software Cluster – Innovation for the Digital
Enterprise it brings together vendors and users of en-
terprise software with academic researchers.

The contributions of this position paper are three-
fold: i) we illustrate the shortcomings of today’s en-
terprise software with an example based on our indus-
trial partners’ experience in §2; ii) we sketch out our
vision of EESS in §3 and; iii) we discuss key chal-
lenges regarding their design, development and oper-
ation in §4 to be met in future work in our project (§5).
Due to the expertise of the partners involved, this pa-
per focuses on aspects of EESS related to architecture,
business process modeling (BPM) and governance.

2 THE NEED FOR EMERGENCE

We illustrate the problems enterprise software ven-
dors and users face today using a motivating sce-
nario from the area of logistics. It involves the roles
of online retailers, global parcel service providers
and local retailers. We show that: i) fostering inter-
organizational cooperation in this setting is not feasi-
ble with today’s enterprise software; ii) business mod-
els and software architectures have to be synchronized
to support end-to-end processes; iii) this leads to chal-
lenging requirements for tomorrow’s enterprise soft-
ware systems.

Metropolitan areas are the centers of our modern
society as an ever increasing proportion of the world’s
population lives in an urban region. Public admin-
istration and enterprises have to react to new chal-
lenges like rising traffic, awareness for energy con-
sumption or increased needs for transparency. In such
a setting information needs to be efficiently and se-
curely shared between all stakeholders and to be ad-
hoc combined in innovative ways. Processes and sup-
porting IT services need to allow citizens or compa-
nies to consume them easily and to build new value-
added services on top of existing ones.

Fostering inter-organizational cooperation. In
our scenario we assume an Urban Management Plat-
form (UMP). Among many services for citizens, local
companies, online retailers and local administration,
an UMP provides services for urban logistics. This is
depicted in Figure 1: End customers (citizen network)
in urban regions can rely on a large number of local
retailers with delivery services (e.g., for short distance
delivery of food or flowers). These local urban logis-
tics providers act efficiently and customer-centrally
by getting short-run orders and delivering immedi-
ately. Pure inter-city logistics service providers in
turn are essential for online retailers as they are highly
efficient in distributing goods over long distances.

Factory

GIS Services

Urban Management Platform

Innovative
Retail Customer

Urban Production

B
2B

B2B

Citizen network

Purchasing

Urban
Logistics

Inter-city
Logistics

Tracking/
N

avigation

Local&
Government/&
Regulatory&
Agency&

B2G

Delivery Distribution Online order

Figure 1: Urban Management Platform example.

However, they often fall short in delivering the ex-
pected user experience on the last mile (e.g., cus-
tomers are not at home, delivery attempts fail sev-
eral times and the customers have to pick up the
parcel by themselves). Allowing for both types of
service providers to dynamically set up or terminate
business relationships based on the resources avail-
able would provide considerable benefits; especially
end consumers would enjoy more convenient delivery
conditions while keeping overhead for transportation
low among suppliers. For example, online retailers
could offer additional local goods (e.g., enhancing a
birthday gift with flowers from a local store delivered
in time) while the local retailer could offer the addi-
tional delivery of online ordered goods (e.g., deliv-
ering meals together with a movie on DVD ordered
online).

Not feasible with today’s enterprise software. Un-
fortunately, today’s business software components
and associated software engineering methods and
tools do not allow for such flexibility. While large
inter-city logistics service providers are supported by
interoperable large-scale enterprise systems, the ma-
jority of small delivery service providers is often not
supported by such systems. Therefore, the former
have to rely on pre-defined local retailers with com-
patible systems to distribute their goods efficiently
on short distance while the latter have to invest into
systems which allow for the required interoperability.
However, current systems are typically designed in an
isolated way - they almost always require a lot of in-
tegration effort before efficient business relationships
can be established and end-to-end processes can be
supported.

We illustrate the challenge of supporting end-to-
end processes in this setting by comparing the pro-
cess steps of (fictitious) online and offline retail stores
in Figure 2. On a high level of abstraction the main
process steps seem to be similar: online order, distri-
bution and delivery. However, when trying to estab-
lish business-relationships on-the-fly by hooking-up
the software systems of the involved parties we are
confronted with interoperability problems on the pro-

ICEIS�2012�-�14th�International�Conference�on�Enterprise�Information�Systems

182

cess level (P1) and the software level (P2): Processes
and their underlying sub-processes differ extremely
in detail depending on the company realizing each
process step (P1). As today’s enterprise software is
usually custom-tailored to the company-specific pro-
cess implementations this leads to implicitly shared
semantics and models being designed into the soft-
ware. Trying to connect two modules (red squares
in Figure 2) of different enterprise software systems
results in interoperability problems on the software
level which require a lot of manual integration effort
(P2). Both kinds of interoperability problems become
explicit when we try to substitute the business process
for the internet retailer (including delivery by selected
intra-city providers via inter-city logistics providers)
with the business process for the local retailers (local
retailers directly hooking-up with small urban logis-
tics providers for instant delivery).

Delivery
(intra-city)

Distribution
(inter-city)

Local Retailer
 CRM System

Shopping(
basket(

Product(
catalog(

Customer((
Mgmt.(

„local�-
order

Urban Logistics
CRM+Deliv. System

Customer((
mgmt.(

Order(
entry(
(meal)(

Pay(desk(
system(

Order
entry (ext.)

Online order
(internet retailer)

Inter-city Logistics
Delivery System

Order((
tracking(

Stock((
Mgmt.(

Planing(
system(

Ware-
house Mgmt.

Delivery Coordination

Delivery (urban logistics) Online/Phone order (local retailer)

Urban Management Platform

Symbols

= Functional mismatch /
 missing interoperability
 between software systems

= Process for online retailer

= Process for local retailer

= Software
 (sub)system

Figure 2: Interoperability problems between today’s enter-
prise software systems when trying to implement an Urban
Management Platform.

Synchronizing business models and architectures.
The next generation of enterprise software shall help
to overcome these difficulties. It will support the de-
velopment of software that interacts smoothly across
company borders and can be easily used from the par-
ticipating parties’ processes. There is a strict coher-
ence between the comprehensive high level business
process, a software module pool supporting different
functional steps and the seamless integration of these
within the landscape of the shareholders. In addi-
tion, new solutions are required to engineer BPM soft-
ware components supporting the different process-
shareholder’s BPM phases.

Additional requirements (R*) for business process
modeling and architecture. Building such enterprise
software systems, however, imposes heavy functional
and non-functional requirements: As we have seen,
we cannot anticipate the final integration scenarios.

Thus, the involved software systems have to be ready
for unforeseen adaptations (R1), in particular to be
conducted by independent service providers (R2). Ex-
tending these systems has to be allowed conveniently
without jeopardizing core business-critical function-
ality originally designed into the system (R3). As
the integrity of the core functionality is vital, constant
quality control has to be ensured as well as interoper-
ability in form of unambiguous models (R4). Above
all, rapid business model prototyping has to be sup-
ported by software systems to allow for experiment-
ing with new business models without compromising
existing core business functions (R5). The systems
need to collect and expose data about their usage in
real-time (R6) to provide for the necessary monitor-
ing information.

We advocate the use of emergence and emergent
behavior in tomorrow’s enterprise software systems to
meet these conflicting objectives.

3 BRINGING EMERGENCE TO
ENTERPRISE SOFTWARE

Emergence enables complex systems consisting of
autonomous entities to adapt to changing environ-
ments and expose new functionality that has not been
explicitly designed into them beforehand. Emergent
behavior refers to the successful combination of un-
coordinated interactions by the different autonomous
entities making up a system-of-systems (SoS). Emer-
gence materializes if the interactions inside a system
create an advantage for the system within a given
context. With these new emergent abilities a system
can now pursue objectives that would be too complex
for a single entity to handle - leading to a change in
scale and scope (Boardman and Sauser, 2006). In
that, emergent systems are not only state-preserving
(i.e. self-organizing and adaptive) but proactive as
they are able to actively utilize changes in their en-
vironment to their own benefit (Fromm, 2004). Con-
sequently, the concept of emergence has long since
been subject to multiple areas of research spanning
from biology to philosophy to mechanical engineer-
ing (Fromm, 2004; Stepney et al., 2006). In computer
science it is currently most prominent in the context of
autonomous systems (AC), organic computing (OC),
and systems-of-systems (SoS) from the military do-
main (De Wolf and Holvoet, 2005; Boardman and
Sauser, 2006; Huebscher and McCann, 2008; Würtz,
2008; Blair et al., 2011). Although Gartner featured
emergent (or middle-out) architectures as an inter-
esting new perspective for enterprise architectures in

Emergence�as�Competitive�Advantage�-�Engineering�Tomorrow's�Enterprise�Software�Systems

183

20091 and 20102, enabling emergent behavior in en-
terprise software systems is currently not a prominent
research topic.

Emergent behavior in software systems is typ-
ically leveraged using nature-inspired mechanisms
such as evolutionary algorithms based on simulated
natural selection. Nevertheless, this approach accepts
unstable system-states or the evolvement of undesired
behavior at times that are hard to predict (Fromm,
2004; Stepney et al., 2006). Engineering emergent
behavior in the domain of enterprise software, how-
ever, has to take into account at least three additional
constraints (C*): Enterprise software is business crit-
ical and needs to be compliant to business and legal
constraints at all times (C1). Humans, equipped with
natural adaptability and independence, are always di-
rectly or indirectly involved (C2). Emergent behavior
should lead to benefits on a technical or organizational
level (C3). With regard to these constraints and the
requirements (R1)-(R6) presented before, we define
Emergent Enterprise Software Systems (EESS) as:

Emergent Enterprise Software Systems:
Component-based software systems offering
new value added services efficiently due to
(semi-)automatic adaptation and self-organisation
without violating critical core functionalities.
This adaptation can be pursued by integration,
combination and modification of emergent
software-components from different vendors even
if this use has not been intended initially. In
addition, emergence can be accomplished by
unanticipated use by humans. Quality attributes
and functionalities are conserved or enhanced
under changing conditions.

Using EESS represents a competitive advantage
for all parties involved. First, EESS allow for quickly
implementing new or changed business-relationships
(c.f. §1), thus reducing time to market for new ser-
vices and enabling even small companies to extend
their portfolio of products and services for end cus-
tomers easily. Second, EESS allow for small and mid-
dle enterprises (SMEs) to operate custom tailored but
interoperable software systems inexpensively (e.g.
Cloud-based (Frischbier and Petrov, 2010)). Third,
ESS are easy to maintain as they are able to com-
pensate changing requirements (semi-)automatically.
These objectives, however, go far beyond the scope of
isolated technological approaches currently pursued.
Therefore we have to combine these approaches to en-
able emergence in enterprise software. Unfortunately,
constrains (C1)-(C3) prevent us from directly apply-
ing most of the mechanisms used in other domains to
enable emergent behavior in software systems.

1https://www.gartner.com/it/page.jsp?id=1124112
2https://www.gartner.com/it/page.jsp?id=1358913

4 ENGINEERING CHALLENGES

When designing, building and operating EESS we
have to meet the special requirements (R1)-(R6) to-
gether with the constraints (C1)-(C3) of business soft-
ware in general. We will discuss the arising chal-
lenges from two perspectives: 1) architecture and 2)
business process modeling & governance.

4.1 Architectural Perspective

Supporting reactivity, interoperability and extensibil-
ity by third parties while preserving core business
functionality (R1) - (R3). In nature, complex systems
exposing emergent behavior are usually federations of
interacting and cooperating subsystems. This has to
be reflected in the structure of an EESS.

Distinguishing emergent components, systems and
the fabric (R4),(R6). From an architectural perspec-
tive, we have to distinguish between a component
with emergent capabilites and an emergent system ex-
posing emergent behavior.

Figure 3 depicts the structure of an EESS. It shows
how traditional pull-based functionality centered on
persistent data is combined with push-based manage-
ment of event flows in components. These compo-
nents with emergent capabilities are then combined
into an EESS by a fabric. Figure 3 also identi-
fies the main levels of abstraction: data level (han-
dling of information either as persistent data or non-
persistent flows of event-objects), building block level
(pull- or pushed-based building blocks to embody an
emergent component), component level (components
and subsystems with emergent capabilities compos-
ing EESS), and system level (complex software sys-
tems exhibiting emergent behavior).

Fabric'

Emergent'Enterprise'So2ware'Systems'

Push8based! Pull8based!

Event8based'
Systems'

Service'Oriented'
Compu>ng!

Flows of Event Objects
Persistent Data

...!...!

Level!of!abstrac.on!

Building
Block
Level

Emergent'Component'Legacy!System! Emergent!Component!Component
Level

System
Level

Data
Level

Figure 3: Architecture and building blocks of EESS.

Pull-based building blocks are the backbone of
current software systems. They implement business
processes on the software level by relying on persis-
tent data and stable workflows identifying the par-
ticipating subsystems. Service-oriented computing

ICEIS�2012�-�14th�International�Conference�on�Enterprise�Information�Systems

184

(SOC) in particular enables reuse and modularization
by encapsulating functionalities in implementation-
independent services. Service-oriented concepts
have already provided significant steps towards more
flexible enterprise software systems within compa-
nies (Frischbier and Petrov, 2010). However, they
are not yet ready for unanticipated changes across
company borders and do not yet provide the self-
monitoring capabilities needed (Frischbier et al.,
2011).

Therefore we advocate to combine pull-based
building blocks with push-based building blocks op-
erating on streams of information. In contrast to pull-
based building blocks, event-based systems (EBS) do
not rely on persistent data but work on continuous
flows of event objects. Event objects represent in-
formation on meaningful changes in the environment
disseminated by event-producers and consumed by
event-consumers. With the information itself defin-
ing the participating subsystems, event-driven build-
ing blocks easily adjust to changes in the environ-
ment. Using complex event processing (CEP) and
rule engines to react according to given (or learned)
rules, event-based systems transform patterns of in-
formation into functionality. Today, event-based sys-
tems are primarily used in the context of business
intelligence to quickly gain knowledge and react on
it (Castellanos et al., 2010; Buchmann et al., 2010).

The fabric acts as a coordinator and handles
the information flow between emergent components,
emergent systems and legacy systems. Therefore, it is
able to: i) balance components’ different expectations
regarding quality of service (QoS) and quality of in-
formation (QoI) in a distributed way; ii) handle differ-
ent semantics of the exchanged information; and iii)
allow for anonymous introspection and monitoring of
components (cf. (R6)).

The two main challenges from an architectural
point of view are: i) integrating pull- and push-based
building blocks into emergent components; ii) en-
abling the fabric to connect emergent components and
legacy systems while allowing for minimal-inversive
introspection and seamless monitoring at runtime
even across company borders.

4.2 BPM & Governance Perspective

Supporting rapid business model prototyping while
keeping models synchronized (R1), (R3)-(R5). Engi-
neering EESS is strictly correlated with BPM. Having
a closer look at the phases and overlying processes
of BPM shows that today the life-cycle phases (i.e.,
process strategy, design, implementation, execution
and controlling) are supported individually by soft-

ware tools using distinct methods and technologies.
Integrating them is difficult if not impossible. Engi-
neering EESS, however, requires a seamless process
of process management where strategy-defining mod-
els and methods are aligned with those for design-
ing business processes. Thus it is of vital importance
to procure interoperability within the BPM life-cycle
by developing integrated models, methods and trans-
formation tools to allow for emergence between the
BPM software components. Already implemented
digital process models must be easily transform- and
(re)implementable when new emergent components
are added to the EESS. For this purpose, EESS need
modular and flexible capabilities to track the dynam-
ically implemented processes even if they span com-
pany borders. Business processes, however, are the
core assets of any company and none of them is in-
terested in sharing valuable process experience with
other companies without compensation. Thus, soft-
ware providers have to act as mediators between dif-
ferent business processes - not only inside a business
line but also between different industries.

EESS need to be open for third-party extensions
at a larger scale than today while consumers and
providers may not necessarily know about each other
beforehand. Therefore, an integrated governance and
compliance model needs to span all existing types
of used software building blocks (e.g., business pro-
cesses, services in SOC, or entities in EBS). As we
cannot assume a central authority to control the evo-
lution of EESS, governance and compliance models
have to: i) allow all parties to integrate services into
an open EESS without impairing the quality of exist-
ing configurations; ii) prevent dependencies on exter-
nal processes to compromise a constant level of qual-
ity for information and services.

Linking runtime and design-time information us-
ing feedback (R1), (R3)-(R6). EESS are continuously
evolving as they react to changes in their environment.
Thus, development has to take uncertainty into ac-
count as neither the final relationships to other entities
nor the final requirements may be known at design-
time. This calls for a strong feedback loop between
runtime and design-time: The monitoring of systems
and components at runtime that allows for a compar-
ison between de-facto and expected behavior. Thus,
methodology has to focus on selecting, adapting, ex-
tending, composing and testing emergent components
to form emergent systems based on that feedback
without violating required levels of quality. Espe-
cially components being partly deployed and systems
in different life-cycle stages have to be considered.
Typically, changes to EESS require a detailed picture
and governance process on the application landscape

Emergence�as�Competitive�Advantage�-�Engineering�Tomorrow's�Enterprise�Software�Systems

185

including involved organizations, users, roles, or re-
sources used. Anticipating system usage and detailed
planning in advance has to be at the core of the devel-
opment and runtime life-cycles of an EESS.

Enabling life-cycle-wide self-adaptation to sup-
port change management (R2), (R3), (R6). The cre-
ation and roll-out of new services/processes or new
versions due to changes in functionality, performance,
or pricing will be simplified, fastened, and even be
(partly) automated with EESS. As a consequence,
life-cycle changes like publishing, replacement or re-
tirement will happen more frequently. While change
management tasks have usually been executed as part
of planning and testing stages before a roll-out of new
functionality they will blend into continuous monitor-
ing and enforcement tasks at runtime.

In sum, the three main challenges from a BPM
& governance point of view are: i) integrating
method- and tool-support for the various BPM life-
cycle phases; ii) providing holistic governance and
compliance methods across distributed organizations,
business processes and components; iii) taking dy-
namics and unpredictability into account.

5 OUTLOOK & FUTURE WORK

Enterprise software systems still lack the interoper-
ability and flexibility necessary for companies to gain
competitive advantage in fast changing markets. In
this position paper we sketched out a solution based
on the concept of emergence and identified the main
challenges related to architecture, business process
modeling (BPM) and governance. Future work in
this area will focus short term on implementing first
solutions in current industry-strength software sys-
tems and academic prototypes. Longterm, the re-
sults of academic research and industrial expertise
will be combined into Emergent Enterprise Software
Systems (EESS) as envisioned here.

We tackle the arising research challenges within
the research project EMERGENT in four work pack-
ages: Interoperability focuses on new concepts and
techniques to provide interoperability in ESS. Adap-
tivity works on dynamic adaptation of heterogeneous
information infrastructures across enterprises and the
optimization of (business) processes based on the
available resources or current usage. Usability and
User Context explores how to interact with emergent
software in different and varying user contexts. Secu-
rity focuses on fundamental security-related concepts
and technologies.

ACKNOWLEDGEMENTS

The work presented in this paper was performed in
the context of the Software-Cluster project EMER-
GENT. It was funded by the German Federal Min-
istry of Education and Research (BMBF) under grant
no. 01IC10S01. The authors assume responsibility
for the content.

REFERENCES

Blair, G., Bennaceur, A., Georgantas, N., Grace, P., Issarny,
V., Nundloll, V., and Paolucci, M. (2011). The role
of ontologies in emergent middleware: Supporting in-
teroperability in complex distributed systems. In Mid-
dleware 2011.

Boardman, J. and Sauser, B. (2006). System of systems-the
meaning of of. In SYSOE 2006.

Buchmann, A., Pfohl, H., Appel, S., Freudenreich, T.,
Frischbier, S., Petrov, I., and Zuber, C. (2010). Event-
Driven services: Integrating production, logistics and
transportation. In SOC-LOG 2010.

Castellanos, M., Dayal, U., and Hsu, M. (2010). Live Busi-
ness Intelligence for the Real-Time Enterprise, vol-
ume 6462 of LNCS, pages 325–336. Springer.

De Wolf, T. and Holvoet, T. (2005). Emergence versus
self-organisation: Different concepts but promising
when combined, volume 3464 of LNCS, pages 77–91.
Springer.

Freudenreich, T., Appel, S., Frischbier, S., and Buchmann,
A. (2012). ACTrESS - automatic context transforma-
tion in event-based software systems. In DEBS’2012.

Frischbier, S., Buchmann, A., and Pütz, D. (2011). FIT
for SOA? Introducing the F.I.T. - metric to optimize
the availability of service oriented architectures. In
CSDM 2011.

Frischbier, S. and Petrov, I. (2010). Aspects of Data-
Intensive Cloud Computing, volume 6462 of LNCS,
pages 57–77. Springer.

Fromm, J. (2004). The Emergence of Complexity. Kassel
University Press.

Huebscher, M. C. and McCann, J. A. (2008). A survey of
autonomic computing - degrees, models, and applica-
tions. ACM Comput. Surv., 40:7:1–7:28.

Stepney, S., Polack, F., and Turner, H. (2006). Engineering
emergence. In ICECCS 2006.

Würtz, R. (2008). Organic computing. Springer.

ICEIS�2012�-�14th�International�Conference�on�Enterprise�Information�Systems

186

