
Visibility as Central Abstraction in Event-based Systems

Ludger Fiege, Mira Mezini, Gero Mühl, and Alejandro P. Buchmann

Department of Computer Science
Darmstadt University of Technology, D-64283 Darmstadt

{fiege,gmuehl}@gkec.tu-darmstadt.de
{mezini,buchmann}@informatik.tu-darmstadt.de

Abstract. We introduce scopes as basic abstraction in event-based systems. While existing work
disregarded the role of an administrator and simply focused on using pub and sub primitives in
flat design spaces, we devise on top of the visibility concept abstractions that support bundling
and composing of new components, refining delivery semantics in these bundles, and mappings in
heterogeneous systems.

1 Engineering Event-based Systems ...

Publish/subscribe or event notification services are used increasingly often in distributed systems. They
offer the ability to easily compose varying sets of components, facilitating loose coupling and asyn-
chronous operations. The existing notification services typically have simple APIs with plain semantics:
pub() and sub() methods for publishing notifications and registering callbacks with subscriptions [2]
that are called when matching notifications are published. The notification services implement sim-
ple distributed broadcast and filter mechanism, and they are used for asynchronous notification and
exception handling purposes, often besides the ‘normal’ operation of request/reply-based distributed
systems.

However, event-based cooperation can also be used for designing general purpose, highly configurable
distributed systems, although the inherent complexity increases drastically if no further abstractions are
available. The engineering support is not adequate and nowhere near the support we know for systems
based on remote method invocation (RMI). For coordinating and composing loosely coupled systems
there exists lot of related work in the area of Linda-like coordination systems [6] and composition
languages, e.g., [10], but the characteristics of event-based systems are not fully supported.

We analyze the engineering requirements of event-based systems and propose a module construct
for abstraction and encapsulation by applying the notion of scoping to event-based systems in [3]. The
visibility of events and components is used as fundamental basis for designing and engineering these
systems. From an engineering point of view, scopes offer a module construct for event-based systems,
being an abstraction and encapsulation unit at the same time. As an abstraction unit, a scope provides
the rest of the world with common higher-level input and output interfaces to the bundled subcom-
ponents. As an encapsulation unit, a scope constrains the visibility of the notifications published by
the grouped components. It hides the details of the composition implementation, such as the under-
lying data transmission mechanisms, the interface mappings that map between internal and external
representations of notifications, security policies, transmission policies controlling the way notifications
are forwarded, etc. The structure built thereby is orthogonal to the components’ implementation, sep-
arating concerns of implementation and interaction. As defined in our model, scopes have the flavor of
component frameworks in the sense of Szyperski [13]: they encode the interactions between components
and can themselves act as components in higher-level frameworks.

In this position paper, the scoping concept is revaluated from the viewpoint of providing abstractions
of communication between event-based components, reflecting the ongoing work on transforming a
straightforward Java implementation of the basic features to a coordination and configuration language
for event-based systems.

2 ... and the Role of Visibility

Software engineering research early identified information hiding and abstraction [12] as basic princi-
ples that have influenced the development of structured programming, modules, classes, and compo-



2 L. Fiege et al.

nents, all of which provide mechanisms to structure software systems. While being an integral part of
request/reply-based distributed systems, e.g., Corba [11], comparable hierarchical structuring mecha-
nisms are missing in event-based systems. As a result, event-based systems are generally characterized
by a ‘flat design space’: Subscriptions select out of all published notifications without discriminating pro-
ducers. Any further distinctions are necessarily hard-coded into the communicating components, mixing
application structure and component implementation. Loose coupling, the very feature of event-based
systems, is thereby sacrificed.

2.1 What abstractions do we need?

Design, engineering, and administration of open distributed systems incorporate a multitude of different
roles that are responsible for different aspects of the system. In event-based systems, we can identify
an especially important role besides producers and consumers which do not know of each other: it is
the administrator’s task to combine and orchestrate the otherwise ‘blind’ event-based components so
that the bundle accomplish a common functionality. However, typical implementation techniques of
publish/subscribe systems concentrate on efficiency issues and overlook the need for effective support of
appropriate programming abstractions. Beside the known pub and sub we additionally need abstractions
supporting the role of the administrator. We identify the following requirements lying in this role’s
responsibility:

– Bundling of components
It should be possible to bundle individual components into higher-level syntactical and semantical
units, offering higher levels of abstraction and reusability. Locality, encapsulation, and composing
existing units are well-known concepts for mastering complexity and support evolution.

– Heterogeneity
A single uniform event notification service with uniform syntax and semantics will hardly be able
to cope with the requirements of all parts of large distributed systems operating in heterogenous
environments. We draw the requirement that bundling of related components should not only en-
capsulate functionality but also delimit common syntax and semantics.

– Flexible configurations
Similar to the diverse requirements regarding data representation in heterogeneous environments,
a static definition of notification transmission semantics is not adequate either.

– Support of activities
The engineering of complex systems not only benefits from bundling related components according to
application structure but also from identifying sessions of interdependent activities. This is especially
important in event-based systems, where the identity of peers is unknown and communication is a
priori stateless in the sense that consecutive notifications cannot be interrelated.

The requirements, although similar to those of request/reply-based systems, emphasize the role of the
administrator since the mentioned aspects lie in the glue between a system’s components.

2.2 Visibility and Scopes

Encapsulation is a prerequisite to system evolution [12] and the notion of visibility is widely used in
software engineering as structuring technique in order to limit the impact of changing parts of the
system.

In order to address the requirements stated in the previous section, we introduce the concept of
scopes for decomposing event-based systems. A scope is an abstraction that bundles a set of producers
and consumers in that the visibility of notifications published by a producer is confined to the consumers
belonging to the same scope as the publisher. It can recursively be a member of other scopes. It offers
a powerful structuring mechanism to group constituent components which belong together according
to some criteria derived from the application structure and/or semantics. Vice versa, it defines locality
that can be used to customize semantics in a discriminated part of the system and that provides
an encapsulated module whose interaction with the remaining system can be explicitly controlled,
localizing the relationships between components, outside of the components themselves. Scopes offer



Visibility as Central Abstraction in Event-based Systems 3

the missing notion of a module in event-based systems, for bundling several components into a higher-
level component.

Scoped event-based systems are modeled by a directed, acyclic graph G = (C,E) (see Fig. 1) that
describes the superscope/subscope relationship. The set of nodes C is comprised of simple components
C and complex components S, i.e., scopes. The edges E are a binary relation over C. An edge from
node c1 to c2 in G stands for c2 being a superscope of c1. A more formal treatise is published in [5].

2.3 Controlling Visibility

Using the graph of scopes G given above, we define the visibility of components as a reflexive, symmetric
relation v over C. Informally, component X is visible to Y iff X and Y have a common superscope. For
a component X, let super(X) = {X ′ | (X,X ′) ∈ E} denote the set of scopes that are direct superscopes
of X. With the transitive closure super∗ visibility is defined by v(X,Y )⇔ super∗(X)∩ super∗(Y ) 6= ∅.
In the graph in Fig. 1, for example, v(Y, U) holds but not v(X,U).

Scope

Simple component

U

R

X Y Z

S T

Fig. 1. A graph of components/scopes

As a primary structuring mechanism we enhance scopes with interfaces in order to compose its
constituents into new components with its own interface. Input and output interfaces for components
are defined by filters that determine the set of notifications allowed to cross a component’s boundaries.
Input filters are specified in subscriptions and output filters are issued in advertisements that define
the set of notifications a component is able to publish. A filter F ∈ F := {f | f(e) = e ∨ f(e) = ε}
is a mapping function over the set of all possible notifications N plus the empty notification ε. Often,
filters are defined as boolean functions returning true if a notification matches. In our model, we use a
generalized form of filters that are allowed to pass matched events in an unchanged form. A notification
n is either mapped to itself or to ε, indicating that n is matched or blocked, respectively. Allowing filters
to pass matched events in an unchanged form facilitates filter composition: (F1 ◦ F2)(e) = F1(F2(e)).

The semantics of event publication and delivery can now be refined: A notification is delivered to a
consumer if (a) the producer and the consumer are visible to each other, (b) the notification matches
one of the subscriptions previously issued by this consumer, and (c) the notification is allowed to pass
all interfaces along the path of visibility in the graph.

3 The Role of Scopes

The scopes represent a unit of encapsulation that allows to bind further processing control and semantics
to a delimited part of an application. We already have bound interfaces in a straightforward way to
scopes and will sketch further extensions in the following.

Delivery and dissemination semantics can be refined on a per scope basis by introducing delivery
policies that affect deliverable notifications produced in a superscope or by some constituent subcom-
ponent and determines which members of the scope are to receive the notification. An example is a
1-of-n policy which delivers only to one out of a group of possible receivers. The idea of meta object
protocols [8] of object-oriented programming languages is applied here in order to offer the ability to
order, queue, redirect incoming messages. Policies can also be viewed in the opposite direction. A pub-
lishing policy controls publication into the direct superscopes. This selection is part of the scope and not



4 L. Fiege et al.

interwoven with the application functionality in simple components. Publishing policies are different
from interfaces in that they operate on a per notification basis and might be used to delay notifications
for a certain amount of time or until a condition becomes valid, for example.

A generalized form of filters, i.e., input and output interfaces, is allowed to transform events passing
a scope boundary: The set of event mappings include the set of filters,M⊃ F ; for a further discussion
we refer to [3, 5].

The described features of scopes are used to implement session scopes that facilitate having and
differentiating multiple sessions, i.e. superscopes, simultaneously; a further discussion is excluded here
due to space limitations.

A scope bundles a set of components and reifies a common context. The components need not to
be explicitly aware of this context, but it distinguishes all notifications published within the scope from
those published elsewhere. We use this idea by binding a set of name/value pairs with each scope,
automatically add these pairs to all events published by the scope, and strip them from incoming events
that originated in a superscope. As an additional filter, the context can also be used to discard all
incoming events which, compared to the scopes context, carry a name/value pair with a matching name
and mismatching value.

4 Enhancing Pub/Sub

From an engineering point of view, scope implementation is software composition: it orchestrates the
composed entities. On the other hand, a scope addresses the implementation issues in distributed envi-
ronments, e.g., localizing the implementation used to address the components, like broadcast, multicast,
point-to-point connections, etc.

We have to distinguish the role of the producer/consumer and that of an administrator. Accord-
ingly, the abstractions accessible for application functionality are those already known for unstructured
event-based systems (e.g., [2]). They must be realized in the programming language used for imple-
menting the application code. Currently, a component’s implementation in Rebeca, our prototype of
an event notification service [4], is required to inherit from the base class Component that offers pub
and sub methods to access the notification service. In a sense this approach is a ‘pure’ solution since it
requires all participating components to inherit from a specific superclass. However, other approaches
using precompilers might offer a cleaner interface but generate a comparable implementation without
enhancing expressiveness [2].

The abstraction describing the scopes themselves may use any other language which is suitable as
configuration and composition language and allows to reconfigure running systems on-line. We distin-
guish three different, layered approaches: a visual configuration tool used to adapt the graph of scopes
and their individual features, a composition language used to describe the scope implementation, and a
Java implementation realizing the features. In general, we assume that a transformation from a visual
to a compositional to an imperative language is possible, although simplicity and, in the second step,
flexibility is degrading.

Basically, a scope describes an event stream shaping entity, controlling boundary passing data and
directing the delivery within the boundary. Known solutions from both information flow (e.g., [7]) and
composition languages (e.g., [1]) are eligible candidates for specification. System engineers benefit from
the main feature of scopes of delimiting and localizing varying implementations in that not all ‘types’
of scopes need to be specified/implemented with the same language. The implementation of a given
subgraph of scopes can be tailored to the specific needs of the respective scopes and their constituents.
For this reason, the concept is evaluated with a näıve Java implementation, instantiating scopes as
first-class objects and connecting components point-to-point. Every type of scope is implemented by
a Java class, following the diagram in Fig. 2. The component interfaces are distinguish from the more
general mappings although they are conceptually related because the former depends on the implemen-
tation of the underlying transport mechanism (JMS, TCP point to point, etc.) while the latter is scope
dependent. Furthermore, the interfaces are part of the subscriptions and advertisements if the scopes
are implemented on top of a generic pub/sub mechanism [9].

Any policy inherits from DeliveryPolicy the destinations(event) method that maps an deliver-
able event to a set of eligible destinations. The following sequence illustrates processing of an incoming
event if we assume point-to-point connections to all components:



Visibility as Central Abstraction in Event-based Systems 5

Component

SimpleComponent Scope

Component
Interface *

*

2

Session
Scope

Delivery
Policy

Security
Policy

Event
Mappings

Fig. 2. The Meta-Model of the Scope Model

1. Apply input filters if the superscope uses unfiltered broadcast
2. Apply event mappings
3. Routing decision: generate eligible destinations based on the known input interfaces of constituent

components.
4. Apply delivery policy to reduce the set of destinations
5. Transmit the data

As part of the scope implementation, methods for scope graph management, i.e., scope movement
and deletion, are provided. We do not go into the details of security policies here but only introduce
them as entities controlling access to the graph management.

Specific, predefined types of scopes may use exactly one static set of policies and even the scope
interfaces may be determined at time of scope instantiation. A configurable scope type can be parame-
terized at run-time with changing policies; it simply implements a ConfigurableScope interface which
lets an administrator externally provide new policy implementations.

5 Summary and Future Work

This position paper presented the notion of scopes as an abstraction of visibility in event-based sys-
tems and uses them as an extension of the well-known semantics of pub/sub systems. We specifically
facilitate structuring and creation of event-based components and the management of relations between
components outside of the components themselves. In addition to a native Java implementation, existing
abstractions like composition languages and information flow specifications can be used and tailored to
realize a module construct for event-based systems. Clearly, investigating and combining the different
forms of scope-based programming in visual, compositional, and classical imperative languages is future
work.

References

1. Franz Achermann, Markus Lumpe, Jean-Guy Schneider, and Oscar Nierstrasz. Piccola – a small composition
language. In Howard Bowman and John Derrick, editors, Formal Methods for Distributed Processing – A
Survey of Object-Oriented Approaches, pages 403–426. Cambridge University Press, 2001.

2. Patrick Th. Eugster, Rachid Guerraoui, and Christian Heide Damm. On objects and events. In Proceedings
of the OOPSLA ’01 Conference on Object Oriented Programming Systems Languages and Applications,
pages 254–269, Tampa Bay, FL, USA, 2001. ACM Press.

3. Ludger Fiege, Mira Mezini, Gero Mühl, and Alejandro P. Buchmann. Engineering event-based systems with
scopes. In Proceedings of the European Conference on Object-Oriented Programming (ECOOP), LNCS, 2002.
to be published.

4. Ludger Fiege and Gero Mühl. Rebeca Event-Based Electronic Commerce Architecture, 2000.
http://www.gkec.informatik.tu-darmstadt.de/rebeca.



6 L. Fiege et al.

5. Ludger Fiege, Gero Mühl, and Felix C. Gärtner. A modular approach to build structured event-based
systems. In Proceedings of the 2002 ACM Symposium on Applied Computing (SAC’02), pages 385–392,
Madrid, Spain, 2002. ACM Press.

6. David Gelernter. Generative communication in Linda. ACM Transactions on Programming Languages and
Systems, 7(1):80–112, January 1985.

7. J. Huang, A.P. Black, J. Walpole, and C. Pu. Infopipes – an abstraction for information flow. In ECOOP
2001 Workshop on the Next 700 Distributed Object Systems. Springer-Verlag, 2001. Also available as OGI
technical report CSE-01-007.

8. Gregor Kiczales, Jim des Rivieres, and D. G. Bobrow. The Art of the Meta-Object Protocol. MIT Press,
Cambridge, MA, USA, 1991.

9. Gero Mühl, Ludger Fiege, and Alejandro Buchmann. Filter similarities in content-based publish/subscribe
systems. In H. Schmeck, T. Ungerer, and L. Wolf, editors, International Conference on Architecture of
Computing Systems (ARCS), volume 2299 of Lecture Notes in Computer Science, pages 224–238. Springer-
Verlag, 2002.

10. Oscar Nierstrasz and Theo Dirk Meijler. Requirements for a composition language. In Paolo Ciancarini, Os-
car Nierstrasz, and Akinori Yonezawa, editors, Object-Based Models and Langages for Concurrent Systems,
volume 924 of LNCS, pages 147–161. Springer-Verlag, 1995.

11. Object Management Group. The Common Object Request Broker: Architecture and Specification. Version
2.3. Object Management Group, Framingham, MA, USA, 1998.

12. David L. Parnas. On the criteria to be used in decomposing systems into modules. Communications of the
ACM, 15(12):1053–1058, December 1972.

13. Clemens Szyperski. Components Software, Beyond Object-Oriented Programming. Addison-Wesley, 1997.


