
Interdatabase Existence Dependencies: a Metaclass Approach

Malú Castellanos, Thomas Kudrass*, Fèlix Saltor, Manuel García-Solaco

Dept Llenguatges i Sistemes Informàtics. U.P.Catalonia
{castellanos, mgarcia, saltor}@lsi.upc.es

*Technische Hochschule Darmstadt. F. Informatik
kudrass@dvs1.informatik.th-darmstadt.de

Abstract
We present a novel approach to deal with the

modeling and operational aspects of the interdatabase
existence dependency problem. By extending our
canonical model BLOOM with high level abstractions
(Metaclasses) for the different kinds of existence
dependencies and their corresponding enforcement
policies, inter-dependencies are declaratively specified
and their behavior embodied into the model by
exploiting the metaclass mechanism of BLOOM.

1. Introduction

In a federated environment, where the component
databases (DBs) represent overlapping or related parts of
the real world, some data in one DB depend on data in
another. These data are said to be "interdependent". If
consistency between interdependent data is desired, the
consistency requirements must be specified through
constraints named “interdatabase dependencies” [1]
(interdependencies for short). The price paid for the
consistency is the loss of some autonomy.

Several kinds of interdependencies exist, as shown in
[2] and [3]. In this paper we deal only with existence
dependencies (EDs), in which the presence of data in one
database depends on related data being present in
another. As observed in [2], EDs are perhaps the most
significant in practice, either alone or together with other
kinds of interdependencies. According to [3], EDs can be
either directional, if the values in one of the DBs are
treated as primary, or nondirectional, if values are
treated in a symmetric fashion between DBs.

Since interdependencies constitute common knowl-
edge about the federation, they should be specified at the
federated level in the canonical model. A good canonical
model should provide the necessary abstractions to
represent interdependencies and the support mechanisms
to enforce them. BLOOM [4] is an object model that was
developed as a canonical model for federated DBs.
Therefore, it provides, among other things, abstractions
needed to model interdependencies and enforces them

through policies expressed in metaclasses. Alternatively,
the relational or a generic object model such as
ODMG93 or C++, can be extended through event-
condition-action (ECA) rules to specify and enforce the
interdependencies [3], [5]. In this paper we concentrate
on the use of BLOOM to handle interdependencies by
exploiting its metaclass mechanism. Implementation
issues are not covered.

The paper presents the modeling (section 2) and
enforcement of EDs (section 3), and a comparison with
other work (section 4). It concludes with references to
future work.

2. Modeling Existence Dependencies

2.1 Inherent Directional EDs.

Two classes C1 and C2 of two export schemas, are
integrated in a federated schema by using different ab-
stractions according to their resemblance at the schema
level [6] and their relationship at the extension level.
One kind of resemblance is equality. Once C1 and C2
have been discovered to be equal at the schema level,
their relationship at the extension level is analyzed:
equality, inclusion, disjunction and overlapping are the
possibilities. Only the inclusion relationship involves a
directional ED: for each object O1i in C1 there must be a
corresponding object O2j in C2, but there may be objects
in C2 without a corresponding object in C1. At the fed-
erated schema level, C1 is a subclass of C2 by one of
several kinds of specialization supported in BLOOM, the
general specialization. The behavioral interpretation of
this abstraction corresponds to the desired directional
ED. This is similar to the sub_OC relationship to support
EDs in [2].

To illustrate the idea let us assume that any student
who appears in the DB of the CS_department (DB1)
must also appear in the general university DB (DB2).
This corresponds to an interdependency which states that
for an object to be a member of the class 'cs_students' in
DB1 it has to exist as a member of the 'univ_students'

class in DB2. In the federated schema, 'cs_student' would
be a subclass by general specialization of 'univ_student'.

2.2. Explicit Directional EDs.

The powerful specialization abstractions of BLOOM
are not enough to handle the full spectrum of existence
dependencies. In particular they fail to cover ad-hoc
cases which require to explicitly specify the ED. In order
to meet this requirement we identified different kinds of
EDs that result from the combination of different
orthogonal criteria (strict vs. relaxed and exclusive vs.
non exclusive) with their various enforcement policies,
and extended BLOOM with corresponding high level
abstractions. In this paper we deal only with exclusive
strict dependencies (strict EDs for short) where the
existence of an instance of a class (dependent) depends
on the existence of an instance of another class
(Dependor). By using these abstractions, EDs can be
specified declaratively. Since a given ED may apply only
to those members of the dependent class that satisfy a
given condition C, the ED specification optionally
includes C. In order to establish correspondences
between the dependent and the dependor class members,
an identification function I has to be previously defined.
Attributes of the classes may be used for such a function.
The classes involved in an ED belong to different
databases in the case of interdependencies.

The operations (violating actions) that may violate an
ED (no corresponding dependor object) are:
i) insertions into dependent: insert-d
ii) updates to dependent:
ii.1) on attributes used in the condition C:update-C(d)
ii.2) on attributes used in the identification function I:

update-i(d)
iii) deletions from Dependor: delete-D
iv) updates to Dependor on attributes used in the identi-

fication I: update-I(D)
A possible syntax for this kind of ED is:

d[C] strict-dep-on D with {insert-d-effect, update-C(d)-
ef., update-I(d)-ef., delete-D-ef., update-I(D)-ef.}
where:
• The condition C can be an arbitrarily complex query

(expressed in BOL (BLOOM Object Language)). At
present we restrict to simple logical expressions
involving simple comparison operators.

• The enforcement policy enclosed between {}: specifies
the effects or reactions that have to take place when
there is a violating action:
i) insert-d-effect: when no corresponding dependor

exists for the dependent being inserted, the insertion
can be either propagated (insert the corresponding
dependor) or blocked (not allowed)

ii.1) update-C(d)-effect: if the new value of the updated
attribute now satisfies the condition C, the object
turns into a dependent. If no corresponding dependor
exists the effect can be either 'insert' (insert the
corresponding dependor) or 'block'.

ii.2) update-I(d)-effect: when an attribute of a
dependent used in the identification function I is
updated, the corresponding dependor changes too. If
this dependor doesn't exist then the possible effects
are 'propagate' (update the old corresponding
dependor), 'insert' (insert the new corresp. dependor),
or 'block'.

iii) delete-D-effect: if there are dependents for the
dependor being deleted then either the deletion is
propagated (delete its dependents) or blocked.

iv) update-I(D)-effect: updating a dependor attribute
that participates in the identification function I leads
to a violation if there is no longer a dependor for the
dependents corresponding to the old value. In this
case the effect can be 'propagate' (update the
dependents), 'delete' (delete the dependents) or
'block'.

The following table summarizes these effects:

 Viol.Action

Effect

 insert
 _on_d

 update
 _C(d)

 update
 _I(d)

 delete
 _D

 update
 _I(D)

 propagate p X - X X X
 insert i - X X - -
 delete d - - - - X
 block b X X X X X

('X' means 'applicable' and '-' not applicable)

For the syntax given above, the effects must be
specified in the order: i), ii.1), ii.2), iii) and iv). Only the
updates on the attributes specified above may result in
violation of an ED. Dependencies that may affect the
values of other attributes of objects related by an
existence dependency are not EDs but 'value
dependencies', not covered here. An example borrowed
from [3] is: if there is a plant in the class Plants of the
DB of Italy whose region is Milano, then that plant must
exist in the class Nodes of the DB of the Milano region.

Assume that the desired enforcement policy is: i)
propagate on insert in Nodes, ii.1) insert on an update
that sets the attribute 'region' of a plant in Nodes to
'Milano, ii.2) propagate on an update of a Milano plant
in Nodes on an attribute that participates in the
identification function, iii) propagate on deletion from
Plants, and iv) block when there is an update of a plant
attribute (in Plants) that participates in the identification
function. The corresponding ED is:

Nodes [region = 'Milano' ^ function = 'plant']
strict_depends_on Plants
with {p, i, p, p, b}

2.3 Nondirectional Existence Dependencies

Nondirectional EDs are handled similarly to their
directional counterparts (sections 2.1 and 2.2). a) The
inherent ones occur when the relationship between the
extensions of the classes C1 and C2 is the equality: to
each object O1i in C1 there must be a corresponding
object O2j in C2, and vice versa. At the federated level
they are integrated into a single class. b) The
nondirectional explicit EDs correspond to the
bidirectional strict dependency of BLOOM. A possible
syntax is: i-d1 bidir-strict-dep-on i-d2, where i-d1 and i-
d2 are interdependent classes: the existence of any object
member of i-d1 depends on the existence of a
corresponding object member of i-d2, and vice versa. In
contrast to directional EDs, no enforcement policy has to
be specified because only 'propagate' on insert, delete
and update of any interdependent object makes sense.

3. Embodying Enforcement Policies into the
Model: a Metaclass Approach

3.1 Metaclasses.

In our approach metaclasses do not only specify the
behavior of their instance classes, but also that of the
instances of the instance classes, similar to [7].
Embodying the inherent behavior of abstractions into
metaclasses provides the basis for the extensibility of the
model: to extend the model with new abstractions, only
the corresponding metaclasses must be defined for them.
To extend BLOOM to cope with the interdependency
problem: new metaclasses corresponding to the different
kinds of explicit EDs are defined.

3.2 Inherent Directional EDs

As explained in 2.1, the behavioral interpretation of
the general specialization abstraction of BLOOM
corresponds to this kind of ED. For each BLOOM
abstraction there exists a metaclass. The metaclass
embodies the behavioral interpretation of the abstraction
given by its inherent existence dependencies. For the
general specialization abstraction the inherent ED states
that an object can exist as member of a subclass only if it
exists as member of the superclass. The enforcement is
done along the instantiation dimension in an analogous
way as for the explicit EDs explained below.

3.3 Explicit Directional EDs

To explain how existence dependencies are enforced
in BLOOM, we will first analyze behaviors
corresponding to single effects, then we will proceed
with behaviors given by the combination of these effects
to obtain the complete enforcement policies. For each
single effect there is a metaclass which embodies the
effect in the form of a metamethod. Along the
generalization dimension these metaclasses are
subclasses of the root strict_ED metaclass by using the
possible violating actions as specialization criteria. As an
example we show the metaclasses resulting from
specializing strict_ED by the insert-dependent (insert_d)
criteria. The specification of the metamethods is given
informally in an ECA rule style.

Metaclass p_strict_ED Metaclass b_strict_ED
Metamethod Metamethod
 propagate_on_insert_d block_on_insert_d
 {on insert in d {on insert in d
 if inserted1 not in D if inserted not in D
 then insert in D} then reject insert}

These metaclasses are defined explicitly and
constitute the first level of the 'Strict Existence
Dependency Specialization Semilattice' (SEDSS). The
rest of the levels of the semilattice are automatically
generated by applying the BLOOM specialization
mechanism [8]. Essentially, the mechanism consists in
progressively specializing each one of the metaclasses
given above, by the different specialization criteria.
Thus, at any level, a metaclass is further specialized by
the criteria that have not been used yet along the
successions of specializations leading to it. Since the
combinations of the different effects on violating actions
(specialization criteria) lead to a total of 72 (2x2x3x2x3)
enforcement policies, there are 72 kinds of explicit strict
EDs whose behavior is embodied in the metaclasses of
the leaf level: p_i_p_p_p, p_i_p_p_d, p_i_p_p_b,
p_i_p_b_p, etc. One such metaclass is shown next:

Metaclass p_i_b_p_d_strict_ED
specialization_of
 [by insert_d] x_i_b_p_d_strict_ED
 [by update_c(d)] p_x_b_p_d_strict_ED
 [by update_i(d)] p_i_x_p_d_strict_ED
 [by delete_D] p_i_b_x_d_strict_ED
 [by update_i'(D)] p_i_b_p_strict_ED
metamethods
 propagate_on_insert_d (inherited)

1objects manipulated by an action are kept in transitory
classes inserted, deleted, old-updated and new updated.

 insert_on_update_c(d) (inherited)
 block_on_update_i(d) (inherited)
 propagate_on_delete_D (inherited)
delete_on_update_i'(D) (inherited)

end_metaclass

Notice the modularity of the approach, which makes it
easy to extend the model with new abstractions. It is also
important to recall that metaclasses are just the vehicle to
automatically enforce EDs, therefore the user doesn't
have to deal with them.

When a dependency is specified, it is defined by
instantiation of the corresponding metaclass as shown in
the figure below. The metamethods are instantiated as
methods of this instance and insert, delete, and update
methods of the classes invoke them. Note that the
methods that embody the enforcement policies are not
specified for each ED again and again, but just once in
the metaclasses.
Metaclass Level: p_i_b_p_d_strict_ED

 ↑
Class Level: C1 --------->---------- C2

 ↑ ↑ ↑
Instance Level O1 ---------->---------- O2
where: --->--- = dependency, ↑ = instance of

3.4 Nondirectional Existence Dependencies

This kind of EDs are embodied similarly to their
directional counterparts. a) Non directional inherent EDs
are automatically translated from the federated schema
level to local schemas using corresponding mappings. b)
Non directional explicit EDs have specific metaclasses,
with metamethods analogous to those explained in
section 3.3.

4. Comparison with Other Work

Our approach strikes a balance between the fully
automatic approach of [3] and the fully user-defined
approach of [1]. Compared to [3] it provides a higher
degree of flexibility because we provide a choice of
enforcement policies as part of the dependency specifi-
cation and do not assume a single enforcement policy. In
contrast to [1], actions for the enforcement are generated
automatically relieving the user from the burden of
defining them and eliminating potential incorrectness. It
differs from ECA rules and triggers in commercial
relational DBMS, because the definition of dependencies
is declarative and the metaclasses model the behavior at
a higher level of abstraction. ECA rules can be seen as a
representation at a lower level providing more
capabilities to express operational semantics.

5. Conclusions and Future Work

We have presented an approach where users specify
interdatabase EDs declaratively using high level
abstractions of BLOOM and the enforcement policies are
embodied in corresponding metaclasses. A number of
issues still have to be addressed. In particular, value
dependencies, correctness of interdependency
specifications, and conflict resolution policies. Currently,
the enforcement of interdependencies is considered only
in a synchronous mode. A prototype to implement the
metaclass approach for the support of existence
dependencies is being developed in C++ on top of
ObjectStore.

Acknowledgments

We thank Alex Buchmann for his helpful advice and
the reviewers for their useful comments. This work is
partly supported by the Spanish PRONTIC program
TIC93-0436 and Spanish-German action 147-B.

References

[1] M.Rusinkiewicz, A.Sheth, G.Karabatis. "Speci-fying
Interdatabase Dependencies in a Multidatabase
Environment". IEEE Computer, Dec. 1991.

[2] Q.Li, D.McLeod. "Managing Interdependencies among
Objects in Federated Databases". In D.Hsiao, E.Neuhold &
R.Sack-Davis (eds) Interoperable DB Systems (DS-5),
North Holland, 1993.

[3] S.Ceri, J.Widom. "Managing Semantic Heteroge-neity with
Production Rules and Persistent Queues". Proc. 19th Int.
Conf. VLDB. Dublin, Aug. 1993.

[4] M.Castellanos, F.Saltor, M.García.-Solaco "The
Development of Semantic Concepts in the BLOOM
Model". Rep. LSI-91-22, Faculty of Informatics, Polytech.
Univ. of Catalonia, Barcelona, Oct. 1991.

[5] H.Branding, A.Buchmann, T.Kudrass, J.Zimmermann.
"Rules in an Open System: The REACH Rule System". Int.
Workshop on Rules in Databases, Edinburgh, 1993.

[6] M.García, M.Castellanos, F.Saltor. "Discovering Interda-
tabase Resemblance of Classes in Interoperable Data-
bases" 3rd Int Workshop RIDE-IMS93. Vienna, 1993.

[7] W.Klas, E.Neuhold, M.Schrefl. "Tailoring Object Oriented
Data Models Through Metaclasses". Tech.Rep GMD,
Darmstadt, Apr. 1989.

[8] F.Saltor, M.Castellanos, M.Garcia, T.Kudrass. "Modeling
Specialization as BLOOM Semilatti-ces". Proc. 5th Euro-
Jap. Seminar on Information Modeling & Knowledge
Bases. Kista, June 1994.

