Modeling and Execution of Event Stream Processing in Business Processes

Stefan Appel, Pascal Kleber, Sebastian Frischbier, Tobias Freudenreich, Alejandro Buchmann

TU Darmstadt, Databases and Distributed Systems Group, Darmstadt, Germany

Abstract

The Internet of Things and Cyber-physical Systems provide enormous amounts of real-time data in form of streams of events.
Businesses can benefit from the integration of these real-world data; new services can be provided to customers, or existing business
processes can be improved. Events are a well-known concept in business processes. However, there is no appropriate abstraction
mechanism to encapsulate event stream processing in units that represent business functions in a coherent manner across the process
modeling, process execution, and IT infrastructure layer. In this paper we present Event Stream Processing Units (SPUs) as such an
abstraction mechanism. SPUs encapsulate application logic for event stream processing and enable a seamless transition between
process models, executable process representations, and components at the IT layer. We derive requirements for SPUs and introduce
EPC and BPMN extensions to model SPUs at the abstract and at the technical process layer. We introduce a transformation from
SPUs in EPCs to SPUs in BPMN and implement our modeling notation extensions in Software AG ARIS. We present a runtime
infrastructure that executes SPUs and supports implicit invocation and completion semantics. We illustrate our approach using a
logistics process as running example.

Keywords:
Event-stream processing, Business process modeling, Business process execution, EPC extensions, BPMN extensions

1. Introduction dissemination mechanism. Commonly, publish/subscribe sys-
tems are used; they allow asynchronous m:n communication
between fully decoupled participants. Event consumers specify
their interest in events in form of subscriptions; event producers
specify the type of events they may publish in advertisements.

While single events are a well-known and established con-
cept in BP models [3, 4], event stream processing lacks an ap-
propriate abstraction for the seamless integration across the pro-
cess modeling, process execution, and IT infrastructure layer.
In collaboration with Software AG' we developed Event Stream
Processing Units (SPUs) as such an integration concept for event
stream processing.

In this paper we present SPUs. SPUs provide a service-like
abstraction to encapsulate event stream processing logic at the
abstraction level of business functions. They hide implementa-
tion details and are suitable building blocks for the integration
of event stream processing with BPs. We analyze BP model-
ing, BP execution, and the IT infrastructure, and derive require-
ments for SPUs at the modeling, execution, and IT infrastruc-
ture layer. We address the decoupled nature of event-based sys-
tems and provide process modelers with an appropriate repre-
sentation of SPUs that can be mapped to executable workflow
representations and the IT infrastructure seamlessly. At the IT
layer, SPUs are manageable components that are conceptually
equivalent to services in a SOA. SPUs contain, for example,
complex event processing (CEP) functionality.

This paper extends previous work: In [5] we introduce Busi-
ness Process Model and Notation 2.0 (BPMN) extensions to

Business process modeling and execution is widely adopted
in enterprises. Processes are modeled by business experts and
translated into executable workflow representations. They are
executed inside IT infrastructures, e.g., Service-oriented Archi-
tectures (SOAs) or workflow management systems. With the
adoption of the Internet of Things and Cyber-physical Systems,
huge amounts of information become available that reflect the
state of the real world. The integration of this up-to-date infor-
mation with business processes (BPs) allows quick reactions
on unforeseen situations as well as offering new services to
customers, e.g., monitoring of environmental conditions during
transport of goods and handling exceeded temperature thresh-
olds [1].

A common paradigm for the representation of information
from sources like the Internet of Things or Cyber-physical Sys-
tems is streams of events. The notion of a stream illustrates
that new events occur over time, e.g., continuous temperature
sensor readings. In such event-based systems, event producers
do not necessarily know the event consumers, or whether the
events will be consumed at all. This independence is intrin-
sic to the event-based approach [2]. The decoupling of event
producers and consumers as well as the arrival of an indefi-
nite number of events over time requires an appropriate event

Email addresses: appel@dvs.tu-darmstadt .de (Stefan Appel),
kleber@dvs.tu-darmstadt.de (Pascal Kleber),
frischbier@dvs.tu-darmstadt .de (Sebastian Frischbier),
freudenreich@dvs.tu-darmstadt .de (Tobias Freudenreich),
buchmann@dvs.tu-darmstadt .de (Alejandro Buchmann)

! www.softwareag.com

Preprint submitted to Information Systems April 28, 2014



model SPUs. SPUs, however, are a generic concept not limited
to a specific modeling notation. Thus, we present an additional
implementation of SPUs in this paper: we introduce extensions
to model SPUs in Event-driven Process Chains (EPCs) as an al-
ternative BP modeling notation with focus on abstract process
models from a business perspective. We also present a mapping
between SPUs in EPCs and SPUs in BPMN to illustrate the
generic applicability of our SPU concept; it can be applied to
different modeling notations to support, for example, a holistic
BP modeling approach. As further extensions to [5] we provide
more examples on modeling SPUs with BPMN and additional
details on workflow execution semantics. We also present an
implementation for modeling and execution of SPU-containing
process models.

The paper is structured as follows: we introduce a logistics
scenario as running example; we then derive requirements for
the integration of event stream processing with BPs at the mod-
eling, execution, and IT infrastructure layer. In Section 3, we
introduce Event Stream Processing Services (ESPSs) as an ex-
tension to EPCs to model SPUs. We introduce Event Stream
Processing Tasks (ESPTs) as BPMN 2.0 extension to model
SPUs. We present a mapping of SPU-containing process mod-
els from EPCs to BPMN and from BPMN to BPEL as well as
a runtime environment for SPUs. In Section 4 we present the
implementation of our EPC and BPMN extensions in Software
AG ARIS; we sketch the model-to-execute workflow that brings
SPU-containing business process models to execution. In Sec-
tion 5 we discuss related work; we summarize our findings in
Section 6.

Scenario

We illustrate our concept of SPUs by means of an order-to-
delivery process. The processing of an order consists of multi-
ple process steps: an order is received, the invoice for the order
is prepared and the payment is processed. With SPUs, data gen-
erated during the physical transport can now be integrated with
this process. An event stream that provides monitoring data re-
lated to the shipment can be used to detect, e.g., temperature
threshold violations. An SPU can represent such a monitoring
task and integrate it at the BP modeling, BP execution, and IT
infrastructure layer. A shipment monitoring SPU is instantiated
with the shipment of an order. The SPU completes after deliv-
ery. Throughout the paper, we illustrate our approach on the
basis of such a monitoring SPU.

2. Event Stream Integration Requirements

Business process models describe workflows in companies
in a standardized way. They document established business
procedures with the goal of making complex company struc-
tures manageable. This encompasses the business perspective
as well as the IT perspective. For the modeling and execution of
processes, an appropriate level of abstraction is crucial to hide
irrelevant details to the process modeler. Building blocks for
BP modeling, BP execution, and IT infrastructure should en-
capsulate business functions in a self-contained way, e.g., like

services in a SOA [6]. The BP model describes interactions
between these building blocks.

The implementation of BPs in enterprises involves three
layers: the modeling layer, the execution layer, and the IT in-
frastructure layer (see Figure 1). During design time, business
experts create models from a business perspective, e.g., using
Event-driven Process Chains (EPCs) [7, 3] or the Business Pro-
cess Model and Notation 2.0 (BPMN) [4]. The models are then
transformed into executable workflows represented in, e.g., the
Business Process Execution Language (BPEL) [8]. Typically,
the workflow execution requires IT support, which is provided
by a SOA and workflow management systems.

BPM Transition Process Examples of Abstraction

low coherence high coherence

Model Accounting
(e.g., BPMN 1/2, EPC)

Billing by Credit
(Invoice & Billing) Card

Design Time

Invoke Invoice Invoke Billing
Service and Billing by Credit Card
Service Service

Executable Workflow
(e.g., BPMN 2.0, BPEL)

Run Time

Billing Service Billing by
(different methods); | Credit Card
Invoice Service Service

IT Infrastructure
(e.g., SOA, EDA)

Figure 1: Transition steps between process modeling, process execution, and
IT infrastructure layer.

The transition process from a BP model to, e.g., SOA ser-
vice interactions is not trivial and requires expertise from the
business perspective as well as from the IT perspective. To
enable the seamless implementation of modeled processes, the
abstraction of business functions should have the same gran-
ularity at each layer; a coherent abstraction across the layers
minimizes the transition effort [9]. The example in Figure 1
illustrates this: the low coherence case requires a refinement
with each transition step (a single BPMN task maps to multi-
ple services) while the high coherence case allows a one-to-one
transition between the business function representations avail-
able at each layer (e.g., BPMN tasks, BPEL invocations, and
SOA services). In the following, we derive requirements for
SPUs as business function abstractions. With the encapsulation
of event stream processing in SPUs, a high coherence between
the different layers is achieved; this supports a seamless tran-
sition between process model, executable workflow, and IT in-
frastructure. Table 1 shows the requirements we derive in the
following sections in a summarized form to simplify later ref-
erence.

2.1. Business Process Modeling Layer

Process models are typically created by business experts
that have a good knowledge about the company structure and
established workflows. These process models describe interac-
tions between business functions [6]. For a clear separation of
concerns between the business perspective and the IT perspec-
tive, it is necessary to encapsulate event stream processing logic
in SPUs that hide technical details at the modeling layer. SPUs
are the abstract representation of business functions that process
event streams. SPUs require at least one event stream as input
and may output event streams or single events. An important



characteristic of SPUs is the demand for continuous process-
ing of event streams; rather than in single request/reply interac-
tions, SPUs process new events as they arrive, e.g., a shipment
monitoring SPU receives new monitoring data continuously.

Requirements

For the integration of event streams, the modeling notation
has to provide elements or patterns to express SPUs (R1) [10].
While the actual event-processing functionality is encapsulated
inside SPUs, event streams — as they represent a core data asset
— should be accessible by the modeler [11]. Further, integrating
event streams during modeling simplifies the transition to an
executable workflow [12]. Thus, the modeling notation has to
provide means to express event streams as input/output to/from
SPUs (R5). Finally, the modeling notation must allow SPUs fo
run continuously and in parallel to other tasks (Rs). This in-
cludes appropriate execution semantics adapted to event-based
characteristics (R4) [13].

2.2. Workflow Execution Layer

The execution of BP models requires a transition from the,
often graphical, model notation to a formal process representa-
tion. The interactions between the different process tasks are
formalized in a workflow description, e.g., using BPEL. This
workflow description contains, e.g., service invocations and de-
fines the input data for services. Like traditional BP tasks can
be mapped to human tasks or service invocations, SPUs need to
be mapped from the model to the IT infrastructure.

Requirements

To support SPUs at the workflow execution layer, the exe-
cution notation has to support the instantiation of the SPU con-
tainers provided by the IT infrastructure (Rs) [14]. It further
needs means to define streams of events as input and output of
SPUs (Rg). The instantiation and completion of SPUs needs
to be configurable with respect to event-based characteristics
(R7) [13].

2.3. IT Infrastructure Layer

The IT infrastructure holds the technical representations of
SPUs. It is responsible for the execution of the encapsulated
event stream processing logic. In contrast to SOA services,
SPUs follow the event-based paradigm. While services are in-
voked explicitly, SPUs react on streams of events. Services
encapsulate business functions in a pull manner (reply is re-
quested); SPUs encapsulate reactive business functions that are
defined on event streams pushed into the system.

Requirements

The IT infrastructure has to provide a runtime environment
for SPUs that respects event-based characteristics, e.g., implicit
instantiation (Rg) [13]. It must provide containers for SPUs
that represent business functions (Rg) [10]. Just like services,
these SPU containers must be manageable and capable of re-
ceiving the required data in form of event streams (R1¢) [15].

Ry Model notation support for SPUs

Ry Model notation support for event streams

R3 | Continuous and parallel execution of SPUs

R4 | Event-based-compliant SPU completion semantics

Rs SPU instantiation support

Rg Support input/output to/from SPUs in form of event
streams

R7 | Control over SPU instantiation and completion behav-
ior

Rs Runtime environment for SPUs
Ry SPU container model
Rio | Support for SPU management

Table 1: Combined requirements at business process modeling, business pro-
cess execution, and IT infrastructure layer

3. Event Stream Processing Units

To support SPUs at the BP modeling, BP execution, and
IT infrastructure layer, we suggest mechanisms at each layer.
At the modeling layer, we introduce Event Stream Processing
Services (ESPSs) to represent SPUs in EPCs and Event Stream
Processing Tasks (ESPTs) to represent SPUs in BPMN process
models. Our SPU concept is applicable in the context of dif-
ferent modeling notations as we show by means of a mapping
between ESPSs and ESPTs. At the IT infrastructure layer, we
adapt Eventlets [14] for the implementation of SPUs. The exe-
cution layer is responsible for the mapping between ESPTs and
Eventlets. This is shown in Figure 2: like services are the basic
building blocks of a SOA, SPUs are the basic building blocks of
an event-driven architecture (EDA). At the execution layer, ser-
vice tasks in a model are mapped to, e.g., web services. Equally,
ESPTs are mapped to Eventlets.

l Reactive Business Processes (e.g., BPMN) ]

[ Reactive Workflow (e.g., BPEL, BPMN 2.0) |

Event Stream Service Task
Processing Task
l EDA | SOA l

| spu,..spu, | | service, ... Service,

Push-based
(subscribe)

Event Streams

Eventlet Web Service

Pull-based
(request/reply)

— N~
Database:
Persistent Data

Figure 2: Stream Processing Units (SPUs) as building blocks of an event-driven
architecture (EDA)

3.1. Modeling Layer

Different business perspectives need to be incorporated dur-
ing BP modeling. Business analysts provide knowledge about
processes from an abstract business perspective. The resulting
process models are then refined iteratively, e.g., by process en-
gineers, and evolved to more technical process representations.
EPCs, for example, follow a strict scheme with business events
followed by functions. They are widely adopted in industry and



well suited for the abstract modeling from the business perspec-
tive [16]. BPMN is a newer and more powerful process mod-
eling notation. It supports abstract as well as technical process
models and is typically more compact than EPCs. Both nota-
tions can be combined to support a holistic BP modeling pro-
cess. This is, for example, the case in Software AG’s model-to-
execute process: EPCs are used for abstract, business-oriented
models; BPMN is used for technical process models. A model
transformation process is specified for the transition between
EPCs and BPMN.

The integration of SPUs with EPCs and BPMN requires ex-
tensions to the modeling notations that address the characteris-
tics derived from the streaming nature of event data. SPUs ex-
hibit the following specific properties that cannot be expressed
completely with existing EPC and BPMN elements:

e Execution semantics: After the instantiation, SPUs can
run indefinitely; events arrive and are processed contin-
uously, e.g., temperature measurements during the ship-
ment transport. The completion semantics differ from
service-like request/reply interactions where the reply trig-
gers the process control flow to proceed. In contrast,
completion of SPUs has to be triggered - either implic-
itly or explicitly. In either case, the completion indicates
a clean shutdown. Implicit completion requires the spec-
ification of a condition that determines when the SPU
should complete. Examples are a timeout in case no new
events arrive, the detection of a certain event pattern, or
dedicated events, e.g., shipment arrival. Explicit comple-
tion triggers the completion of an SPU externally. For
example, when a process reaches a point where the pro-
cessing of an event stream is not required anymore, e.g.,
shipment arrival has been confirmed.

e Signaling: The continuous processing inside of SPUs re-
quires support to trigger concurrent actions, e.g., trigger-
ing exception handling in case of a temperature threshold
violation without stopping the shipment monitoring SPU.

o FEvent stream input and output: The inputs for SPUs are
event streams. An event stream is specified by a subscrip-
tion to future events, e.g., temperature measurements for
a certain shipment. The output is specified by an adver-
tisement that describes the events producible by an SPU.

3.1.1. SPU Integration with EPCs

EPCs are a notation for computation independent models
(CIM), a concept in model driven architectures [17]. CIMs,
also referred to as business or domain models, are created from
a business viewpoint and contain only few technical details.
EPCs became popular as process modeling notation for SAP R/3
as well as notation in the context of ARIS (Architecture of In-
tegrated Information Systems) [18]. ARIS is an approach for
holistic business process modeling and management of enter-
prise information systems. EPCs consist of functions (e.g., con-
firm order) preceded and followed by business events (e.g., or-
der arrived and order confirmed). Event stream processing can
be modeled as such EPC functions; an EPC function refers to

an SPU. In ARIS, EPC functions are supported by services with
attached capabilities, e.g., an order confirmation service has the
capability to send out confirmations [19]. To model SPUs in
EPCs we specify an appropriate supporting service type for
EPC functions that represents event stream processing. This
involves extensions to EPCs on the basis of service type objects
with capabilities.

Details of a service type object are modeled in a service al-
location diagram; it describes a service from an abstract point
of view. In the service allocation diagram arbitrary objects are
connected to the service type object via associations. Con-
nected objects are, for example, descriptions of the organization
(organizational unit, responsible person) or data objects used as
input or as output of the service.

We introduce Event Stream Processing Services (ESPSs) to
support EPC functions that represent event stream processing.
ESPSs are a distinct service category based upon service type
objects [19]; they are represented with a custom symbol type
(see Figure 3, center). Since event objects in EPCs are not suf-
ficient to model event streams — they rather represent a state
of a process than the continuous nature of event streams — we
introduce Event Stream Specifications (ESSs) that reflect input
data and output data in form of event streams. We adapt a clus-
ter model object to represent these event streams (see Figure 3,
left). The Event Stream Processing Unit type (see Figure 3,
right) is used to refer to the technical realization of SPUs.

@ An Event Stream An Eve.nt Stream E; An Ev(.ent Strfeam
A3 74| Processing Service w8 Processing Unit type
LaZamd Lama ey
4

Figure 3: Extensions to EPCs: Event Stream Specification (ESS), Event Stream
Processing Service (ESPS), and Event Stream Processing Unit Type

Definition 1. In EPCs an Event Stream Specification (ESS)
(— Ry) references a stream of events. An ESS is a subtype of an
abstract business object. The object type can be used as input or
as output of functions, ESPSs, or Event Stream Processing Unit
types. The attached connection type specifies whether the ESS
is input to or output from other objects. An ESS used as input
determines the subscription an ESPS has to issue. An ESS used
as output determines the advertisement that describes the event
output stream of an ESPS.

Definition 2. A function in an EPC that refers to an SPU is
supported by an Event Stream Processing Service (ESPS) (—
R1, R3, Ry). An ESPS requires at least one ESS as input. It may
have output ESSs. When the control flow reaches a function
supported by an ESPS, this ESPS is activated with the specified
ESS as input. The completion of the ESPS is triggered implicitly
or explicitly (— Rs).

Implicit and explicit completion of ESPSs is expressed with
different instantiation capabilities: Start Processing with Com-
pletion Condition and Start Processing. Explicit completion is
also expressed as a distinct capability of the ESPS. Upon com-
pletion, either implicitly or explicitly, the ESPS stops process-
ing, performs a clean shutdown, and passes on the control flow.



To trigger concurrent actions, ESPSs can send events; this is
modeled as a loop. An ESPS can be modeled with combined
explicit and implicit completion. An ESPS has an associated
Event Stream Processing Unit type: it provides the link to tech-
nical process model representations. The Service Allocation
Diagram for an ESPS is shown in Figure 4.

Start Processing with

Start Processing ) .
completion condition

End Processing

V'S V'S V'S

encompasses

encompasses encompasses

is input for |

. An Event Stream | =)

has as output

An Event Stream
—[E)

#¥.4 Processing Service

Another
Event Stream

F'N

is responsible for
supports

[ An Event Stream
m‘ Processing Unit type

Figure 4: A Service Allocation diagram provides the abstract configuration of
an Event Stream Processing Service. Objects, like the organizational unit, the
responsible person, or input/output data, are connected to the service type object
via associations.

provides

An Organiza-

ARol . .
ole tional unit

3.1.2. Example: Modeling Shipment Monitoring with EPCs

To illustrate the application of our EPC extensions, we model
the monitoring of environmental conditions in the order process
introduced in Section 1 with EPCs. An SPU is used to process
an event stream that contains environmental data events, e.g.,
temperature measurements. Figure 5 shows the service alloca-
tion diagram for the ESPS that represents this shipment moni-
toring SPU. The shipment monitoring ESPS requires shipment-
monitoring events as input; it has capabilities to initialize the
SPU with implicit and explicit completion.

Start Processing
with completion condition

. Shipment ) Monitor ¢
g Monitoring Events Shipment g

£

Start Processing End Processing

Monitor
Shipment

Figure 5: The Shipment Monitoring example Service Allocation Diagram

Figure 6 shows the EPC process model with implicit com-
pletion of the SPU. The monitor shipment function receives
shipment-monitoring events as input event stream. The func-
tion is supported by the monitor shipment ESPS (see Figure 5);
it uses a capability of the ESPS to initialize an SPU with an
implicit completion condition. The implicit completion condi-
tion is assigned to the connection between the EPC function and
the ESPS start processing with completion condition capability.
Implicit completion is triggered when the shipment arrives at its
destination address.

To report an environmental condition violation, the SPU is
followed by an XOR operator: the process control flow triggers
the environmental condition violation event and directly returns
to the monitoring function. This control flow loop is instanta-
neous so that the SPU continues processing; the event stream
processing is not interrupted at the technical layer. This SPU-
specific loop pattern is used to model asynchronous messaging
in EPCs as required in event stream processing scenarios. The
completion of the SPU is triggered as soon as the completion
condition is fulfilled, i.e., when the shipment reaches its desti-
nation. With completion of the SPU, the control flow moves on
to the XOR operator and results in the shipment arrived event,
which completes the process.

Figure 7 shows the order process with explicit completion
of the SPU. The monitor shipment function is supported by the
ESPS capability for initialization with explicit completion. An
additional process step is added after the arrival confirmation to
trigger the explicit completion. The complete shipment moni-
toring function uses the end processing capability of the ship-
ment monitoring ESPS to trigger the completion of the ship-
ment monitoring.

It is also possible to model SPUs with implicit and explicit
completion in parallel. The monitor shipment function shown
in Figure 6 is then combined with the complete shipment func-
tion shown in Figure 7.

3.1.3. SPU Integration with BPMN

BPMN 2.0 is widely adopted in industry and has a broad
tool support. From a technological perspective, processes can
be modeled in different granularities with BPMN. From a se-
mantical perspective, the single building blocks (BPMN tasks)
of a process model should reflect business functions and hide
technical details. Our extensions to BPMN are shown in Fig-
ure 8. As for EPCs, we define Event Stream Specifications
(ESSs) that reflect input data and output data in form of event
streams. Further, we introduce Event Stream Processing Tasks
(ESPTs) to model SPUs.

Input Event Output Event Implicit Completion Explicit Completion
Stream Stream

Completion
Condition %:gi Stop Signal
E »h i~ Event Stream k> i~ EventStream  ox @
Processing Task Processing Task %
AR A

Figure 8: Extensions to BPMN: Event Stream Specifications (ESSs) and Event
Stream Processing Tasks (ESPTs)

Definition 3. In BPMN an Event Stream Specification (ESS)
(— Rq) references a stream of events and their parameters.
ESSs can be used as input and output of ESPTs. An ESS used
as input determines the subscription an ESPT has to issue. An
ESS used as output determines the advertisement that describes
the event output stream of an ESPT.

Definition 4. In BPMN an SPU is modeled as Event Stream
Processing Task (ESPT) (— Ri, R3, R4). An ESPT requires
at least one ESS as input. It may have output ESSs. When the
control flow reaches an ESPT, it is activated with the specified
ESS as input. The transition from the active state to the com-
pleting state (see BPMN task lifecycle [4, p. 428]) is triggered
implicitly or explicitly (— Rs).



—~
EPC elements:

‘i Event
\—

Order arrived

L,

| 23 Confirm order —}q

Order
confirmed

Invoice created
& Payment
processed

Create Invoice &
Process Payment

Confirm Arrival ==

Function
Shipment Monitor i i
XOR ® S p ,° ! - Start Pr?cessmg \.N‘Ith
b-==8 Monitoring Events P4 Shipment . completion condition
F
g
Completion condition:
Shipment Arrival:
Location matches destination address Environmental
Condition
v Violation
Monitor N
0 Shipment Y

Shipment

arrived

Shipment
Monitoring
completed

Figure 6: The Shipment Monitoring example BP as EPC utilizing an SPU with implicit completion. The previously defined EPC extension elements are used.

Order arrived

|

Confirm order

|

Order
confirmed

u

Shipment Monitor .
Monitoring Events "’m“ Shipment Start Processing
&
Environmental

,—P Condition

v Violation
Monitor

— gy — ) —_—

° Shipment

Shipment
Monitoring
completed

V'S

v

Monitor

Shipment End

Processing

Figure 7: The Shipment Monitoring example BP as EPC utilizing an SPU with explicit completion

Create Invoice & Invoice created Arrival Complete
Process Payment — & Payment — Confirm Arrival |==p confirmed — Shl;,ulmer\t
processed Monitoring



The implicit completion of an ESPT is realized with a mod-
ified conditional sequence flow; the condition determines when
the ESPT completes. The explicit completion is realized with
a dedicated signal. It is attached as non-interrupting signal to
the boundary of the ESPT. Upon completion, either implicitly
or explicitly, the ESPT stops processing, performs a clean shut-
down, and passes on the control flow, i.e., no additional token is
created at catching the shutdown signal. To trigger concurrent
actions, ESPTs can activate outgoing sequence flow elements
while remaining in the active state. Non-interrupting condi-
tional events can be attached to the boundary of an ESPT to
indicate a conditional activation of sequence flow elements. An
ESPT can be modeled with combined explicit and implicit com-
pletion.

3.1.4. Related BPMN Concepts

Events are part of the BPMN specification. However, events
in BPMN are meant to affect the control flow in a process [4,
p- 233]. Events modeled as ESS do not exhibit this property;
they are rather a source of business-relevant information that is
exploited within the process. Due to these different semantics,
events in the sense of the BPMN standard are not appropriate
to model event stream input/output to/from SPUs.

From the task types contained in the BPMN standard, ser-
vice tasks, business rule tasks, loop service tasks, and multiple
instance service tasks share properties with SPUs. However,
the modeling of SPUs with those existing BPMN task types is
not feasible.

Service Tasks are containers for business functions that are
implemented as SOA services. The execution semantics for ser-
vice tasks state, that data input is assigned to the service task
upon invocation; upon completion output data is available. For
SPUs, this separation is not feasible; input data arrives con-
tinuously and output data can be available during task execu-
tion in form of output streams. Therefore, service tasks are no
appropriate representation for SPUs. In Business Rule Tasks,
event stream processing can be used to check conformance with
business rules. However, event stream processing supports a
wider application spectrum than conformance checking, e.g.,
real-time shipment tracking. Further, output in form of event
streams is not part of business rule tasks; their purpose is to
signal business rule evaluation results. Loop Service Tasks per-
form operations until a certain stop condition is met. However,
the whole loop task is executed repeatedly, i.e., a repeated ser-
vice call. This repeated execution of a business function de-
picts a different level of abstraction compared to continuous
processing inside an SPU; SPUs perform continuous process-
ing to complete a single business function. To use loop tasks
for event stream processing, the process model would have to
define the handling of single events rather than the handling of
event streams. This conflicts with the abstraction paradigm of
business functions and degrades coherence across the layers.
Multiple Instance Service Tasks allow the execution of a task
in parallel, i.e., parallel service calls. However, like loop tasks,
this would require one task per event which conflicts with the
intention to encapsulate business functions in tasks. In addi-
tion, the number of task instances executed in parallel is static

and determined at the beginning of the task. This is not suitable
for event processing since the number of events is not known a
priori.

In general, BPMN tasks have no support for triggered com-
pletion required in event processing. In addition, event streams
cannot be represented as input to and output from tasks. Thus,
we extend BPMN with ESPTs. ESPTs support implicit and ex-
plicit completion, an essential part of SPU execution semantics.
Further, we introduce ESSs as input to and output from ESPTs
in the form of event streams.

3.1.5. Example: Modeling Shipment Monitoring with BPMN

To illustrate the application of our BPMN extensions, we
model the monitoring of environmental conditions in the or-
der process introduced in Section 1 with BPMN. Figures 9 and
10 show two variants with different completion strategies. The
shipment monitoring is an SPU that receives monitoring events
as input stream. This shipment monitoring SPU is modeled
as an ESPT in BPMN; the monitoring events are assigned as
an input ESS. The monitoring task can send a message event
(as concurrent action) to indicate a violation of environmental
conditions, e.g., temperature threshold exceeded. The message
event can activate a task or trigger a different process for han-
dling the exception; this exception handling is omitted here for
brevity.

In Figure 9, the shipment monitoring is modeled with ex-
plicit completion semantics. As soon as the shipment has ar-
rived, the monitoring is not required anymore. Thus, the moni-
toring task completion is triggered by sending the stop signal.

In Figure 10, the shipment monitoring is modeled with im-
plicit completion semantics. This requires the definition of a
completion condition. In our example, we specify the shipment
arrival: when the location of the shipment matches the desti-
nation address, the monitoring is completed. Other implicit
completion conditions could be dedicated arrival events, e.g.,
arrival scans of shipment barcodes, or timeouts, €.g., no new
monitoring events for the shipment arrive. The condition needs
to be evaluated inside the SPU, thus support for different condi-
tion types depends on the technical infrastructure that executes
SPUs.

The modeling of data flow between ESPTs is shown in Fig-
ure 11. The shipment monitoring SPU outputs a stream of
events that indicate exceeded temperature thresholds. The re-
port threshold violation SPU receives these events and imple-
ments the reporting, e.g., by sending an email in case temper-
ature thresholds were exceeded multiple times. Completion of
the reporting SPU is triggered explicitly after the confirmation
of arrival of the shipment. The monitoring SPU completes im-
plicitly.

ESPTs can also be modeled with implicit and explicit com-
pletion in parallel as shown in Figure 12. The implicit com-
pletion is the default case: the monitoring stops as soon as the
shipment has reached its destination. In addition, an explicit
completion is modeled: when a customer cancels the order,
shipment monitoring becomes obsolete.

The output of ESPTs can affect process execution as shown
in Figure 13. When an environmental condition violation is de-



Shipment
Monitoring
Events .
Environmental
1

ondition Violation

Shutdown
SP Monitoring
A2  Monitor
Shipment
%}Create ~{g’?/’v“gProcess é Confirm
Invoice Payment Arrival

Shutdown
Monitoring

Figure 9: Shipment monitoring SPU that is stopped explicitly. The data input/output of the service tasks is omitted.

ondition Violation

Shipment >
Monitoring .
Events Environmental
1
Y

i Arrival:
i SPi Location matches destination address
AR Monitor
Shipment

%}Create %}Process é Confirm
Invoice Payment Arrival

Figure 10: Shipment monitoring SPU that is stopped implicitly. The data input/output of the service tasks is omitted.

Shipment Arrival:
Location matches destination address

Shipment [\
Monitoring g
Events
SPU:

A2 Monitor
Shipment

Threshold
Exceeded
Events

Shutdown
Reporting

% SPU:
a2 Report

Threshold
Violation

%}Create Stg‘%Process é Confirm
Invoice Payment Arrival

Figure 11: Interacting SPUs: Output from monitoring SPU is used as input for reporting SPU. The SPUs have different completion strategies.

Y

Shutdown
Reporting

Shipment [\
Monitoring g
Events

U

Shutdown Monitoring

§a

SPU:
Monitor l
Shipment

Shipment Arrival:
Location matches destination address

e

%}Create %Process

Invoice Payment

Confirm
Arrival

Order
Canceled

e

Cancel

‘Q Shutdown
Order

Y Monitoring

Figure 12: ESPT with implicit and explicit completion: Upon cancelation of an order the shipment monitoring is completed explicitly; upon shipment arrival,
monitoring completes implicitly.



0 Cancelation

Replacement
requested by
customer

Shutd
Shipment
Monitoring
Events

Lo}

Envirol
Violati
SPU:

Monitor
Shipment

7a Monitoring

Condition

own

nmental

on

».

Shipment Arrival: g

Location matches destination address

Invoice

%} Process

Payment

Confirm
Arrival

Cancelal

Figure 13: ESPT that affects process execution: Upon detection of an environmental con
decides upon cancelation of the order.

tected the shipment monitoring is stopped. After completion of
the shipment monitoring ESPT, discarding of goods is triggered
and the customer decides upon cancelation of the order. In this
case a reimbursement is triggered via a compensation event.

3.1.6. Transformation from EPC to BPMN

EPCs can be used for abstract process models from a busi-
ness perspective; processes are modeled at the CIM layer. For
the execution of processes a technical process representation
is required that correlates with an executable process represen-
tation. Since BPMN is a suitable notation for such technical
models, EPC models can be transformed to BPMN in order
to support automated process execution. This also requires a
transformation of SPUs. Since SPUs are independent of a con-
crete modeling notation a mapping of SPUs in EPCs to SPUs
in BPMN is possible. The transformation from EPCs to BPMN
can also be partly automated. This is, for example, supported
by the Software AG ARIS business process platform.

Theoretical approaches for a mapping from EPCs to BPMN
are given in [20]. The basic concept is the transformation of
EPC functions into a BPMN tasks. EPC events are disregarded
as long as they are not decision conditions for connectors. Op-
erators, organizational elements, and data objects are directly
transformed into their BPMN representations. In ARIS, for ex-
ample, functions supported by a screen object are mapped to
BPMN user tasks; functions assigned with an organizational
object only are mapped to manual tasks. Analogously, we de-
fine the mapping from EPC functions that are supported by ES-
PSs to ESPTs in BPMN as shown in Figure 14.

An EPC function that is supported by an ESPS with im-
plicit completion is mapped to an ESPT with implicit comple-
tion, i.e., the completion condition assigned to the connection
between the EPC function and the capability is mapped to the
outgoing sequence flow of the ESPT (&<, in Figure 14). An
EPC function that is supported by an ESPS with explicit com-
pletion is represented by an ESPT with explicit completion; the
completion is triggered by an SPU intermediate boundary non-
interrupting signal event (<, in Figure 14). This event is trig-

tion }

Reimburse
<«

dition violation the shipment monitoring is stopped and the customer

Completion condition: A condition

Start Processing with

&
Condition
occurred

Figure 14: Mapping of SPUs between EPC and BPMN

A Function ¢ I completion condition % Completion
& % Event Stream
supported by an a Processing Task
sPu 4_I_ An Event Stream
Processing Service
&
Start Processing
A Function {—I
supported by an = % Event Stream g
SPU b Processing Task "5
An Event Stream
Processing Service
&
End Processing
A Function {—I_
supported by an & @
c
SPU 4_I_ An Event Stream
Processing Service
&
° ¢
€
<_|— Start Processing
A Function Condition I
supported by a &= B
d 3 )
UL an vent stream P processing Tagk B>
l Processing Service
c



gered by the SPU signal intermediate throwing event, which is
the BPMN representation for the explicit completion capability
used by an EPC function (< in Figure 14). ESPTs in BPMN
allow non-interrupting conditional events to be attached to the
boundary of an ESPT for a conditional triggering of subsequent
actions. In EPCs this is modeled with an event loop enclosing
solely the event stream processing function (<4 in Figure 14).
The function supported by an ESPS is not completed in this
case; the control flow directly returns. The outgoing EPC event
is consumed elsewhere and triggers concurrent functions.

Event streams in EPC are mapped to their corresponding el-
ements in BPMN: an EPC input ESS (is input for association)
is mapped to the BPMN input ESS; an EPC output ESS (has
as output association) is mapped to the BPMN output ESS. In
EPCs the distinction between input and output event stream is
based on the type of the association connection, in BPMN indi-
vidual elements for both cases exist.

3.2. Workflow Execution Layer

The execution of BPs by an IT infrastructure requires a tran-
sition from the technical process model to an executable process
format. The BPMN 2.0 standard itself specifies such execution
semantics; the standard also provides examples for the mapping
between BPMN and BPEL. Independent of the concrete techni-
cal representation format, the goal is to bridge the semantic gap
between the technical model notation and interfaces of IT com-
ponents so that the process can be executed automatically. The
transition from a technical process model towards an executable
process representation requires adding additional technical de-
tails.

For different task types and control flow components, exe-
cution languages provide executable representations. When the
mapping of graphical process task and process control flow el-
ements is complete and all necessary data is specified, the pro-
cess execution engine is able to execute instances of the process.
Each instance reflects a concrete business transaction, e.g., pro-
cessing of Order No. 42. For each process instance, the execu-
tion engine orchestrates the different tasks, passes on task input
and output data, and evaluates conditions specified in the con-
trol flow. Examples are the execution of BPMN service tasks
and human tasks: a service task can be executed by calling a
web service. For this, the execution engine needs the service
address as well as the input data to send to a service and the
format of the expected output data from this service. For the
execution of human tasks, process execution engines typically
provide a front end to perform the work necessary to complete
the task.

At the execution layer we define the technical details that
allow ESPTs to be mapped to IT components. The mapping
mechanism has to take into consideration that events arrive in-
definitely and are not known when the control flow reaches an
ESPT. Thus, the data input must be specified as a subscription
for desired events that arrive during the execution period of an
ESPT. During process execution, this subscription has to parti-
tion the event stream in process instance specific sub streams:
when a process instance is created for a certain business task,
e.g., processing of Order No. 42, the event stream has to be

10

partitioned in sub streams of events relevant for the different or-
der process instances. This requires events to hold an attribute
that allows an association with a process instance. Monitoring
events contain, for example, a shipment ID. This is shown in
Figure 15: a monitoring task must be active for each process
instance. This task instance has to receive all monitoring events
for the shipment that is handled in this process instance. Given
that each event carries a shipment ID, each monitoring task in-
stance can issue a subscription for the appropriate events using
the shipment ID as filter. When the process instance ID corre-
lates with the shipment ID, the subscription can also be derived
by the process execution engine on the basis of the process in-
stance ID.

i Shipment Monitoring, ]

e Process Instance 1

%% Shipment Monitoring,
Y

Process Instance 2

ShipmentID = 1
ShipmentID = 2
—_—
———— ShipmentlD =3 >~ (% Shipment Monitoring; ]

Process Instance 3

Shipment Monitoring
Event Stream

Figure 15: Process execution: Event Stream Processing Tasks (ESPTs) receive
sub streams of events

The subscription parameters are essential for the instantia-
tion of an ESPT. Like the input data passed on to a service dur-
ing a service call, the subscription is part of the input data dur-
ing an ESPT instantiation. Further, when the ESPT is modeled
with an implicit completion, the completion condition is part
of the input data required for the instantiation. As for ESPT
completion, different ESPT instantiation strategies are possi-
ble. The push-based nature of stream processing allows an im-
plicit creation of ESPT instances upon the arrival of appropriate
events. In addition, ESPT instances can also be created explic-
itly by the process execution engine. When switching from ex-
plicit to implicit instantiation, the responsibility of instantiation
moves from the process execution engine to the IT infrastruc-
ture. Implicit instantiation is useful when the moment of in-
stantiation cannot be determined by the execution engine. It is
also the more natural approach with respect to the characteris-
tics of event streams; application logic is executed as soon as
appropriate events are available. We support both instantiation
schemes to allow for a high flexibility (— Rg). Independent of
the instantiation scheme, a subscription does not guarantee the
availability of events, e.g., that events for Shipment No. 42 are
published. Explicitly instantiated ESPTs can use a timeout to
detect such an absence of events. With implicit instantiation,
ESPT instances are not created in this case; the execution envi-
ronment can detect and report this.

3.2.1. ESPT Instantiation

The execution of a BP leads to process instances that may
run in parallel. Each ESPT in the model has corresponding
ESPT instances that are created during process execution. Each
ESPT instance processes the event streams relevant for a par-
ticular process instance (see Figure 15). The process execution
engine can create an ESPT instance explicitly during the exe-
cution of a process instance. The subscription parameters re-
quired for the explicit instantiation must be derived per process



instance; they define the sub stream of events that has to be pro-
cessed by a particular ESPT instance, e.g., monitoring events
for Shipment No. 42. The explicit instantiation is specified as
follows (— Rg, R7, Rg):

EsptInstantiate (EsptName,
SubStreamAttribute,
SubStreamId [, CompletionCondition])

EventStreamFilter,

For the monitoring example, the explicit instantiation of a mon-
itoring task for Shipment No. 42 without and with completion
condition is:

EsptInstantiate (MonitorShipment,
MonitoringEvent,
ShipmentId, 42)

EsptInstantiate (MonitorShipment,
MonitoringEvent,
ShipmentId, 42,
"destination.equals (location)")

An ESPT is referenced by name: EsptName, e.g., Monitor
Shipment. The subscription parameter has three parts: First,
a general filter for events of interest that applies to all instances
of an ESPT is specified as Event StreamFilter, e.g., mon-
itoring events. Second, the SubStreamAttribute defines
the part of the event data that partitions the event stream with
respect to ESPT instances, e.g., the shipment ID; both are static
expressions and derived based upon the ESS used in the model.
Third, the SubSt reamId defines the concrete event sub stream
for which an ESPT instance should be created, e.g., Shipment
No. 42. The SubStreamId is dynamic and derived per pro-
cess instance by the execution engine at run time, e.g., based on

the process instance ID. The optional CompletionCondition

can be specified for implicit completion, e.g., defining a time
out.

With implicit instantiation, the process execution engine only
registers a static subscription pattern for an ESPT once, e.g.,
with the registration of the process. Since events arise in a
push-style manner, the IT infrastructure is able to create ESPT
instances implicitly at run time. The implicit instantiation is
specified as follows (— Rg, R7, Rg):

EsptRegister (EsptName,
SubStreamAttribute
[, CompletionCondition])

EventStreamFilter,

For the shipment monitoring example, the ESPT registration is:

EsptRegister (MonitorShipment,
ShipmentId)

MonitoringEvent,

In contrast to explicit instantiation, the execution engine is not
responsible for the dynamic subscription part anymore. Rather,
the IT infrastructure ensures, that an ESPT instance is created
for each distinct value of the SubStreamAttribute, e.g.,
for each shipment ID.

Upon implicit instantiation, the creation of ESPT instances
is not synchronized with the control flow of the process exe-
cution. ESPT instances are created based upon the availability
of events, i.e., as soon as events for a certain entity instance

11

are available the corresponding ESPT instance is created. The
availability of events for Shipment No. 42, for example, results
directly in the creation of an ESPT instance that processes these
events. This happens independently of the control flow of the
process execution. In cases where this behavior is not desired,
a synchronization step has to be performed between the begin-
ning of the actual event processing and the control flow of the
process execution. Two cases have to be taken into consider-
ation: First, the process control flow reaches an ESPT and no
ESPT instance has been created yet. Second, an ESPT instance
is created although the control flow has not reached the ESPT.

In the first case, the process execution blocks and proceeds
after the completion of an ESPT instance; this behavior is equiv-
alent to the execution semantics of, e.g., service tasks. How-
ever, the process execution engine has no control over the in-
stantiation and thus relies on the IT infrastructure. In the second
case, the already created ESPT instance has to wait for the con-
trol flow of the process execution engine. This can be achieved
by implementing a lock after the creation of an ESPT instance;
this lock is released upon a dedicated signal from the process
execution engine. Since a dedicated signal from the process
execution engine is required, the explicit creation of ESPT in-
stances is an alternative in such cases.

ESPTs with Output Event Streams. ESSs used as output of ES-
PTs can be mapped to advertisements. Advertisements inform
the IT infrastructure about the event types published by event
producers; they allow the validation of subscriptions, i.e., whether
events are potentially available for an issued subscription. The
validation of subscriptions allows the identification of inconsis-
tencies between demand and availability of event streams upon
registration of ESPTs. The event types for the advertisements
are derived from output ESSs are included as additional param-
eter at the instantiation or registration of ESPTs:

EsptInstantiate (EsptName, EventStreamFilter,
SubStreamAttribute,
SubStreamId [, CompletionCondition]

[, PublishedEventTypel)

EsptRegister (EsptName,
SubStreamAttribute
[,

EventStreamFilter,
[, CompletionCondition]
PublishedEventType])

A shipment monitoring SPU with implicit completion that out-
puts threshold exceeded events (see Figure 11) is then registered
as follows:

EsptRegister (MonitorShipment,
ShipmentId,
"destination.equals (location)",
ThresholdExceededEvent)

MonitoringEvent,

When the report threshold violation SPU is registered, the
IT infrastructure knows that the demanded threshold exceeded
event type is available:

EsptRegister (ReportExceededThreshold,
ThresholdExceededEvent,
ShipmentId)



3.2.2. ESPT Completion

For the explicit completion of an ESPT instance, the process
execution engine has to advise the IT infrastructure to perform a
shutdown of particular ESPT instances, e.g., the shipment mon-
itoring of Shipment No. 42. The completion command is spec-
ified as follows (— Rg):

EsptComplete (EsptName, SubStreamId)

The SubStreamId identifies the ESPT instance that should
be completed. In the monitoring example for Shipment No. 42,
the following completion command is issued after the arrival
confirmation task:

EsptComplete (MonitorShipment, 42)

We distinguish between the control commands to manage
ESPTs and the ESPT execution semantics. The control com-
mands to register, instantiate, and complete ESPTs follow a
request/reply pattern. Thus, our integration approach of event
streams with BPs can be mapped to web service invocations.
Web service invocation capabilities are part of most process ex-
ecution engines so that ESPTs can be registered, instantiated,
or completed; the ESPT name as well as further subscription
and completion parameters are specified as variables in the ser-
vice invocation. In addition to service invocation mechanisms,
it might be necessary to implement a back channel for control
flow purposes. Implicitly completing ESPT instances might
have to notify the process execution engine about completion.
This is the case when the control flow waits for a completion
of an ESPT, e.g., when an ESPT is used before a BPMN AND-
Join.

3.2.3. ESPT Mapping in BPEL

Business process models that contain ESPTs can be mapped
to BPEL. However, the BPEL standard [8] does not support
all concepts required for a complete mapping of the different
instantiation and completion strategies. ESPTs with explicit
instantiation and explicit completion can be mapped to stan-
dard BPEL: the explicit instantiation is realized as web ser-
vice call. The return from this call is blocked by the IT in-
frastructure until the ESPT instance is explicitly stopped by an
EsptComplete service invocation. Explicit instantiation and
completion in BPEL are as follows:

<invoke partnerLink="EsptWebService"
operation="EsptInstantiate"
inputVariable="explicitInstantiateParams"
outputVariable="completed"/>

<invoke partnerLink="EsptWebService"
operation="EsptComplete"
inputVariable="explicitCompletionParams" />

With implicit instantiation, single ESPT instances are trans-
parent to the process execution engine. The registration of ES-
PTs has to be performed once with the registration of a process;
the ESPT instances are then created automatically. The BPEL
standard does not support hooks for service invocation upon the
registration of new processes. Thus, a BPEL execution engine

12

has to be extended with these capabilities to support implicit in-
stantiation of ESPTs. The hook for execution at process regis-
tration can be part of the BPEL code itself; when a new process
is registered and checked, this part of the process is executed
only once:

<atRegistration><invoke
partnerLink="EsptWebService"
operation="EsptRegister"
inputVariable=
"implicitInstantiateParams"/>
</atRegistration>

When an ESPT is invoked implicitly, there is no BPEL web
service invocation in each process instance. Thus, a blocking
service invocation cannot be used to interrupt the control flow
until completion of an ESPT instance. Rather, the process exe-
cution engine has to be notified externally about the completion
of an ESPT instance so that the control flow can proceed. Ex-
tensions to BPEL engines to react on such external triggers have
been proposed, e.g., in [21] and [22]. The ESPT can be mapped
to a barrier that is released when the ESPT instance signals its
completion.

3.3. IT Infrastructure Layer

SPUs require a technical representation at the IT infrastruc-
ture layer. In [14] we present a suitable component model and
runtime infrastructure to encapsulate event stream processing.
We introduce event applets, in short Eventlets, as service-like
abstraction for event stream processing. Our model benefits
from concepts known from services; it hides application logic
so that Eventlets represent business functions. We extend the
runtime environment presented in [14] to allow for the integra-
tion with BP execution engines. We now introduce the main
concepts of Eventlets to make this paper self-contained; we then
present the extensions to the Eventlet middleware. We adapt the
more general Eventlet nomenclature of [14] to fit the terminol-
ogy of this paper.

<EventletName>

Eventlet Metadata

CompletionCondition:
EventStreamFilter:
SubStreamAttribute:

<InstancelD>

<Validity of Eventlet>
<Precondition for event handling>
<Distinction criteria for Eventlet instances>

Eventlet Runtime Code

onInstantiation(subStreamId id) { ... }
onRemove () { ... }

onCompletion() { ... }

onEvent (Event e) { ... }

Figure 16: Eventlet structure: Eventlet metadata and Eventlet runtime methods

Eventlets encapsulate event stream processing logic with re-
spect to a certain entity, e.g., shipments (— [219). An Eventlet
instance subscribes to events of a certain entity instance, e.g.,
Shipment No. 42 (— Rj;). The basic structure of an Event-
let is shown in Figure 16. The grouping attribute to define the
sub stream of events associated with a certain entity instance



is specified as Sub Stream Attribute? in the Eventlet metadata,
e.g., the shipment ID. Further, the metadata holds the Comple-
tion Condition?, e.g., a timeout, as well as the Event Stream
Filter* as a general subscription filter applied by all Eventlet in-
stances, e.g., monitoring event. Eventlet instances are created
implicitly or explicitly (— Rg). With implicit instantiation the
middleware ensures that an Eventlet instance is active for each
distinct value of the sub stream attribute, e.g., for each shipment
in transport. With explicit instantiation, Eventlet instances are
created manually by specifying a concrete sub stream attribute
value, e.g., Shipment No. 42. The completion of Eventlet in-
stances is triggered implicitly by the completion condition or
explicitly by a command (— Ry). Eventlet instances run in
a distributed setting and have a managed lifecycle; application
logic can be executed upon instantiation, removal, completion,
and upon event arrival (— Riq).

In our monitoring example, an Eventlet holds application
logic to detect temperature violations. This can involve a lookup
in a database at instantiation to retrieve the temperature thresh-
old for a certain shipment. It can also involve issuing complex
event processing (CEP) queries to rely on the functionality of
a CEP engine for temperature violation detection. An evalua-
tion of CEP queries encapsulated in Eventlets is presented in
[14]; we show that Eventlets can process a couple of thousands
events per second while being scalable across machines. The
semantics of ESPT execution (cf. Section 3.2) are implemented
by the Eventlet middleware. The EsptInstantiate and
EsptRegister invocations provide the Eventlet middleware
with the metadata to explicitly or implicitly create Eventlet in-
stances. For implicit instantiation, the middleware creates a so-
called Eventlet Monitor; it analyzes the event stream and de-
tects the need to create Eventlet instances as soon as events of
a new entity instance, e.g., a new shipment, occur. Like ser-
vices, Eventlets are managed in a repository and identified via
the EsptName.

3.3.1. Eventlet Middleware Extension

The Eventlet middleware infrastructure uses the Java Mes-
sage Service (JMS) for event dissemination. JMS supports pub-
lish/subscribe communication with event content sensitive sub-
scriptions. Our implementation supports events in attribute-
value and XML representation. For attribute-value events, the
Event Stream Filter is specified as JMS message selector in a
SQL-like syntax. The Sub Stream Attribute is the name of an
attribute, e.g., shipmentID. For XML events, Event Stream Fil-
ter and Sub Stream Attribute are specified as XPath expressions
on the event content. For implicit completion of Eventlet in-
stances, timeouts are supported.

We extended the Eventlet middleware in [14] to support
ESPT execution. As shown in Figure 17, the Eventlet middle-
ware is configured and controlled using a command bus. This
command bus is realized as a set of JMS queues and topics to
which all middleware components connect. We added a web

2Referred to as Instantiation Expression in [14].
3Referred to as Validity Expression in [14].
4Referred to as Static Expression in [14].

Business Process Execution (e.g., BPEL) ]

g

N
WSDL/SOAP Native JMS
interface Client Interface
Eventlet Manager g Y, J

) Command Bus
( 4 2\
Eventlet Middleware Eventlet Eventlet Eventlet
Monitors Instances Repository
A \§ J

Figure 17: Eventlet middleware access via web service

service interface to the Eventlet Manager. The new interface
accepts service invocations as described in Section 3.2 and uses
the internal command bus to start or stop Eventlet Monitors and
Eventlet instances. The web service interface is implemented
as Java Enterprise application. The Eventlet middleware can
be deployed on multiple application servers and use a JMS in-
frastructure in place. It is designed for scalability: Eventlet
instances can run on arbitrary machines.

4. Implementation: Process Modeling and Execution

We implemented SPU modeling capabilities for EPCs and
BPMN in Software AG’s ARIS platform. ARIS is a business
process platform for business process analysis, enterprise ar-
chitecture, and governance, risk & compliance. ARIS supports
modeling of processes with EPCs as well as with BPMN. For
our implementation we used ARIS Design Server 9.0 and the
ARIS Architect 9.0. To support SPU modeling in EPCs and
BPMN within ARIS, we added new notation element symbol
types and connection attributes for EPCs (see Figure 3) and
BPMN (see Figure 8) to the configuration of the ARIS server;
the ARIS server acts as central repository for process models
and process model components.

For EPCs we added symbol types for:

o a cluster/data model object (derived from cluster symbol
type) to model ESSs;

e aservice type object (derived from business service sym-
bol type) to model ESPSs; and

e an application system type object (derived from software
service symbol type) to model the technical representa-
tion of ESPSs.

For BPMN we added symbol types for:

e two cluster/data model types (derived from data input/out-
put symbol types) to model ESSs;

e a function type object (derived from service task symbol
type) to model ESPTs; and

e two event object types (derived from signal intermedi-
ate event symbol type) to model SPU signal intermediate
events (throwing and non-interrupting) required for ex-
plicit completion.



Further, we added an attribute type and an attribute type symbol
for BPMN to model the condition for implicit completion.

With the added symbol types, attribute symbol types, and
attribute types it is possible to model SPUs and event streams in
EPC and BPMN diagrams. All new modeling elements are us-
able in different diagram types as the symbols they are derived
from. They can be used, for example, in application system
type diagrams, all types of EPCs, function allocation diagrams,
and service allocation diagrams.

Process Model Execution

One goal of BPM is to enable the automated execution of
business process models. In Section 2 we introduce the differ-
ent layers in such a model-to-execute (M2E) process and show
that a high coherence across the process modeling layer, the
process execution layer, and IT infrastructure layer is neces-
sary. Our approach of SPUs is a mechanism to encapsulate
event stream processing to achieve such a high coherence and
to provide the foundation for M2E.

Our extensions to EPCs allow business experts to create ab-
stract BP models that contain SPUs; our extensions to BPMN
along with the proposed EPC-to-BPMN mapping allow the trans-
formation of abstract EPC models to technical BPMN models.
These BPMN models are further refined during the M2E pro-
cess and brought to execution. The execution as such is detailed
in Section 3.2 where the mapping between ESPTs and service
invocations is presented.

We are working with Software AG on the implementation
of M2E mechanisms that support SPUs. In the following we
illustrate the M2E workflow and show how SPU integration is
achieved. Our M2E approach is based upon the Software AG
ARIS, CentraSite, and webMethods product suites. Business
process analysis and process modeling is supported by the ARIS
Architect; it provides an integrated platform where process mod-
els are created and governed collaboratively. At the beginning
of the M2E workflow EPC process models are created with the
ARIS Architect; these models reflect an abstract business per-
spective. In the next step a transformation process is applied;
abstract EPC process models are mapped into a logical pro-
cess model represented with BPMN. In ongoing work we are
working on the customization of the ARIS model transforma-
tion framework, which performs the EPC-to-BPMN mapping.
We are integrating the mapping of ESPSs in EPCs to ESPTs
in BPMN. This allows a partly automated transformation from
EPC models with ESPSs to BPMN models.

After the transformation the resulting BPMN model needs
to be refined by a process engineer. This involves the adapta-
tion to technical concepts and restrictions, e.g., adapting events
for inter and intra process communication and error handling
scenarios. Finally, changed process elements are linked to the
related elements in the original EPC model using the process
alignment capability of ARIS. This allows a synchronization of
the process between abstract and technical layer; refinements in
the EPC model are applied - if possible automatically - to the
BPMN model and vice versa.

The next step in the M2E workflow is the transition from a
technical model in ARIS to an executable process representa-

14

tion that is deployed to a process execution system. For SPUs
this involves linking the Eventlet middleware via its web ser-
vice interface to ESPTs of the BPMN model (see Section 3.2).
In Software AG’s M2E the executable process is created with
the Software AG Designer. Process developers import the tech-
nical process model from ARIS in the Software AG Designer.
In the Designer the process is represented as a technical BPMN
diagram and technical implementations are mapped to process
steps. This is supported by the Software AG CentraSite service
repository: the web service interface of our Eventlet middle-
ware is registered with CentraSite. This allows an easy assign-
ment of the Eventlet service (including invocation parameters)
to ESPTs in the model. Currently, only explicit instantiation
and completion of SPUs is supported. Implicit instantiation
would require a service invocation at process registration, im-
plicit completion would require a feedback mechanism from the
Eventlet middleware to the process execution environment.

Processes are synchronized between the webMethods plat-
form and the ARIS platform. Changes to technical processes
are propagated to the abstract process models and vice versa.
During this round tripping, approval steps ensure that processes
at the IT level and at the business level remain synchronized.
The executable process model is deployed to the webMethods
Integration Server where the individual process steps are exe-
cuted by the different components of the webMethods BPMS;
SPUs are executed by the Eventlet middleware controlled by
web service invocations from webMethods BPMS.

5. Related Work

Events are part of various BP modeling notations like BPMN
and EPCs [7, 3, 4]; they trigger functions/tasks and influence
the process control flow. Event processing is often applied to
monitor process execution. Events can be detected by a pro-
cess execution engine and depict, for example, activation/com-
pletion of activities or sending/receiving of messages; events
can also be defined implicitly based upon object state changes,
e.g., changes in data records [23, 24]. Based upon such events,
control flow deviations in single process instances can be de-
tected [25]; it is also possible to check conformance in cross-
organizational processes based upon message exchanges [26].
In contrast, our approach focuses on event processing as part
of single process instances. Such incorporation of (complex)
events leads to more reactive and dynamic processes. This is
a core concept in event-driven architectures (EDA) [27, 28] or
event-driven SOA [29]. However, event streams do not have
explicit representations in BPMN or EPCs. Currently, event
streams have to be modeled explicitly as multiple events, e.g.,
using loops that process events. Such explicit modeling of com-
plex events and event processing is for example presented in
[30, 31, 32, 33, 34]. The problem is, that process models are
often created by business experts without detailed knowledge
about technical details of event processing. Further, to make
models intuitively understandable, modelers should use as few
elements as possible with self-explaining activity labels [16].
Thus, activities should represent business functions. Services
are a successful abstraction mechanism to support this. Services



represent business functions and exhibit a data input/output in-
terface [6]. Process models do not (and should not) contain the
application logic of a service; this is left to service developers
who can use more appropriate modeling notations to describe
the technical details. Thus, the approach in this work confers
basic service concepts [35] to event stream processing and in-
troduces SPUs as an appropriate abstraction. We concentrate on
control flow oriented business process models represented with
BPMN and EPCs. However, the SPU concept is also applicable
to alternative approaches for managing business operations and
processes, e.g., the Guard-Stage-Milestone (GSM) approach,
which allows for a more declarative modeling of business ac-
tivities [36]. In GSM, SPUs can be represented by stages. In-
stantiation is modeled as guards: a stage is activated when an
event stream becomes available (implicit instantiation guard)
or when an event triggers the start of event stream processing
(explicit instantiation guard). Completion is modeled as mile-
stones: an implicit completion milestone holds the SPU com-
pletion condition; and explicit completion milestone waits for
an event published by other stages.

At the execution layer, Juric [22] presents extensions to
BPEL that allow service invocations by events. In [37], Spiess
et al. encapsulate event sources as services. Both approaches do
not address event streams as input/output to/from components;
rather than a stream of events, single events are understood as
business relevant.

At the technical layer, event streams are well-known. CEP
is supported by a variety of tools, e.g., the Esper CEP engine
[38]. CEP is also part of BP execution environments like JBoss
jBPM/Drools [39]. In [40], BP modeling techniques are used
to express CEP queries. Event stream processing is integrated
bottom-up; CEP queries and rules are specified at the technical
layer. In contrast, we propose a top-down approach where busi-
ness entity-centric event streams are visible as input/output of
ESPTs at the modeling layer. Event streams can be as business
relevant as, e.g., input/output data of services. Thus, like ser-
vice task input/output is explicit in models, event streams are
explicit at the modeling layer in our approach.

The event stream processing application logic inside Eventlets

can be simple rules, CEP queries, or complex event process-
ing networks as described in [41]. Our middleware instantiates
Eventlets for each entity instance, e.g., one CEP query is issued
per shipment. This encapsulation of event stream processing
logic is related to design by units described in [42]. It improves
scalability and fosters elasticity; in [14] we show the scalabil-
ity benefits of CEP query encapsulation in Eventlets. The more
process instances require entity-centric stream processing, the
more Eventlets are instantiated and vice versa.

6. Conclusion

In collaboration with Software AG, we developed SPUs to
provide an abstraction for event stream processing. The contri-
butions of this paper are:

e SPUs as abstraction to encapsulate event stream process-
ing as business functions;

15

e extensions of EPCs and BPMN 2.0 to model SPUs;

e a mapping of SPU-containing process models between
EPCs and BPMN;

e a conversion of technical BPMN process models to an
executable process representation;

e an extension of our Eventlet middleware to interface with
BP execution engines; and

e an integration of our EPC and BPMN extensions in Soft-
ware AG ARIS and in the Software AG model-to-execute
workflow.

We take semantics of event processing into account and support
implicit as well as explicit instantiation and completion strate-
gies. Event stream processing techniques, like CEP, are widely
adopted. Our approach encapsulates them and makes event
stream processing available coherently across the BP modeling,
BP execution, and the IT infrastructure layer.

SPUs in general and ESPSs and ESPTs in particular depict
tools that enable modeling event stream processing in BPs. De-
veloping a comprehensive understanding and description of the
resulting execution semantics, however, is challenging. SPUs
issue subscriptions; but successfully issued subscriptions do
not guarantee that demanded events are published. Further,
BP models can describe complex situations, which require, for
example, transactional behavior. In such cases SPUs require
compensation functionality to support rollbacks although event
producers and consumers are logically decoupled.

SPUs enable the combination of push- and pull-based inter-
actions within BPs. Thus, the interplay of push- and pull-based
components in the context of large and complex processes is
a topic of further investigation. Design and interaction patterns
need to be derived to better understand the resulting interdepen-
dencies at the BP modeling, the BP execution, and the IT in-
frastructure layer. Especially in cross-organizational processes
aspects like data integration and quality of service at the IT in-
frastructure layer require novel solutions. At the BP modeling
layer, meta-model extensions that describe SPUs are necessary
to provide a basis for interoperability.

In ongoing work we are enhancing the integration between
the process execution layer and the IT infrastructure layer; a
backchannel needs to be incorporated to fully support implicit
instantiation and completion semantics. We are also enhancing
our Eventlet middleware. We implement support for more types
of completion conditions and investigate complex expressions
as triggers for the instantiation of Eventlets. We are also work-
ing on automated transformations between EPC process models
and an executable process representation to support a seamless
M2E workflow. The implementation of our approach with Soft-
ware AG’s ARIS and webMethods platforms is also the basis
for an evaluation of our approach in a real-world environment
to investigate how the modeling of event stream processing by
means of SPUs is adopted.



Acknowledgements

We thank Dr. Walter Waterfeld, Software AG, Germany, for the

valuable feedback and insights into process modeling practice. This
work is partly funded by: German Federal Ministry of Education and
Research (BMBF) under research grants 011S12054 (Software Cam-
pus), 01IC12S01V (SINNODIUM), and 01IC10S01 (EMERGENT);
LOEWE Priority Program Dynamo PLV supported by the LOEWE re-
search initiative of the state of Hesse/Germany. The authors assume
responsibility for the content.

References

(1]

(2]

[3]
[4]
[3]

[6]

(7]

[8]

[9]

[10]

(1]

[12]

(13]

[14]

[15]

[16]

(17]
[18]

S. Frischbier, M. Gesmann, D. Mayer, A. Roth, C. Webel, Emergence
as competitive advantage - engineering tomorrow’s enterprise software
systems, in: 14th International Conference on Enterprise Information
Systems (ICEIS), Poland, 2012.

A. Buchmann, S. Appel, T. Freudenreich, S. Frischbier, P. E. Guerrero,
From calls to events: Architecting future BPM systems, in: 10th In-
ternational Conference on Business Process Managment (BPM), Estonia,
2012.

W. van der Aalst, Formalization and verification of event-driven process
chains, Information and Software Technology 41 (1999) 639 — 650.
Object Management Group (OMG), Business process model and notation
(BPMN), version 2.0, 2011.

S. Appel, S. Frischbier, T. Freudenreich, A. Buchmann, Event stream
processing units in business processes, in: 11th International Conference
on Business Process Management (BPM), China, 2013.

M. Papazoglou, Service-oriented computing: concepts, characteristics
and directions, in: 4th International Conference on Web Information Sys-
tems Engineering (WISE), Italy, 2003.

G. Keller, A.-W. Scheer, M. Niittgens, Semantische Prozemodellierung
auf der Grundlage “Ereignisgesteuerter ProzefSketten (EPK)”, Inst. fiir
Wirtschaftsinformatik, 1992.

OASIS Web Services Business Process Execution Language (WSBPEL)
TC, Web services business process execution language (BPEL), version
2.0, 2007.

C. Ouyang, M. Dumas, W. van der Aalst, A. ter Hofstede, J. Mendling,
From business process models to process-oriented software systems,
ACM Transactions on Software Engineering and Methodology 19 (2009)
2:1-2:37.

M. K. Chandy, O. Etzion, R. von Ammon, 10201 executive summary and
manifesto — event processing, in: Event Processing, number 10201 in
Dagstuhl Seminar Proceedings, Schloss Dagstuhl - Leibniz-Zentrum fiir
Informatik, Germany, 2011.

A. Meyer, S. Smirnov, M. Weske, Data in business processes, EMISA
Forum 31 (2011) 5-31.

J. Becker, M. Rosemann, C. Uthmann, Guidelines of business process
modeling, in: W. Aalst, J. Desel, A. Oberweis (Eds.), Business Pro-
cess Management, volume 1806 of Lecture Notes in Computer Science,
Springer, 2000, pp. 30-49.

P. Eugster, P. Felber, R. Guerraoui, A.-M. Kermarrec, The many faces
of publish/subscribe, ACM Computing Surveys (CSUR) 35 (2003) 114—
131.

S. Appel, S. Frischbier, T. Freudenreich, A. Buchmann, Eventlets: Com-
ponents for the integration of event streams with SOA, in: 5th IEEE In-
ternational Conference on Service-Oriented Computing and Applications
(SOCA), Taiwan, 2012.

M. P. Papazoglou, P. Traverso, S. Dustdar, F. Leymann, Service-oriented
computing: State of the art and research challenges, IEEE Computer
Journal 40 (2007) 38—45.

J. Mendling, H. Reijers, W. van der Aalst, Seven process modeling guide-
lines (7pmg), Information and Software Technology 52 (2010) 127 — 136.
J. Miller, J. Mukerji, MDA Guide, Version 1.0.1, 2003.

A.-W. Scheer, M. Niittgens, ARIS Architecture and Reference Models
for Business Process Management, in: W. Aalst, J. Desel, A. Oberweis
(Eds.), Business Process Management, volume 1806 of Lecture Notes in
Computer Science, Springer, 2000, pp. 376-389.

16

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]
[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]
[39]
[40]

[41]

[42]

S. Stein, Modelling Method Extension for Service-Oriented Business Pro-
cess Management, Ph.D. thesis, Christian-Albrechts-Universitit zu Kiel,
Kiel, Germany, 2009.

V. Hoyer, E. Bucherer, F. Schnabel, Collaborative e-business process
modelling: Transforming private EPC to public BPMN business process
models, in: 5th International Conference on Business Process Manage-
ment (BPM) Workshops, Australia, 2007.

R. Khalaf, D. Karastoyanova, F. Leymann, Pluggable framework for en-
abling the execution of extended BPEL behavior, in: International Con-
ference on Service Oriented Computing (ICSOC) Workshops, Austria,
2007.

M. B. Juric, WSDL and BPEL extensions for event driven architecture,
Information and Software Technology 52 (2010) 1023-1043.

N. Herzberg, A. Meyer, O. Khovalko, M. Weske, Improving business pro-
cess intelligence with object state transition events, in: 32nd International
Conference on Conceptual Modeling (ER), China, 2013.

N. Herzberg, A. Meyer, M. Weske, An event processing platform for busi-
ness process management, in: 17th International Enterprise Distributed
Object Computing Conference (EDOC), Canada, 2013.

M. Weidlich, H. Ziekow, J. Mendling, O. Giinther, M. Weske, N. Desali,
Event-based monitoring of process execution violations, in: 9th Inter-
national Conference on Business Process Management (BPM), France,
2011.

A. Baouab, O. Perrin, C. Godart, An optimized derivation of event queries
to monitor choreography violations, in: 10th International Conference
Service-Oriented Computing (ICSOC), China, 2012.

P. Chakravarty, M. Singh, Incorporating events into cross-organizational
business processes, IEEE Internet Computing 12 (2008) 46 —53.

B. M. Michelson, Event-driven architecture overview, Patricia Seybold
Group (2006).

O. Levina, V. Stantchev, Realizing event-driven SOA, in: 4th Interna-
tional Conference on Internet and Web Applications and Services (ICIW),
Italy, 2009.

A. Barros, G. Decker, A. Grosskopf, Complex events in business pro-
cesses, in: 10th International Conference on Business Information Sys-
tems (BIS), Poland, 2007.

B. Biornstad, C. Pautasso, G. Alonso, Control the flow: How to safely
compose streaming services into business processes, in: IEEE Interna-
tional Conference on Services Computing (SCC), USA, 2006.

A. Caracag, T. Kramp, On the expressiveness of BPMN for modeling
wireless sensor networks applications, in: 3rd International Workshop on
Business Process Model and Notation (BPMN), Switzerland, 2011.

A. Estruch, J. Heredia Alvaro, Event-driven manufacturing process man-
agement approach, in: 10th International Conference on Business Process
Managment (BPM), Estonia, 2012.

M. Wieland, D. Martin, O. Kopp, F. Leymann, SOEDA: A method for
specification and implementation of applications on a service-oriented
event-driven architecture, in: 12th International Conference on Business
Information Systems (BIS), Poland, 2009.

A. Elfatatry, Dealing with change: components versus services, Commu-
nications of the ACM 50 (2007) 35-39.

R. Hull, E. Damaggio, F. Fournier, M. Gupta, F. T. Heath III, S. Hobson,
M. Linehan, S. Maradugu, A. Nigam, P. Sukaviriya, R. Vaculin, Intro-
ducing the guard-stage-milestone approach for specifying business entity
lifecycles, in: 7th International Workshop on Web Services and Formal
Methods (WS-FM), USA, 2010.

P. Spiess, S. Karnouskos, D. Guinard, D. Savio, O. Baecker, L. Souza,
V. Trifa, SOA-based integration of the internet of things in enterprise
services, in: IEEE International Conference on Web Services (ICWS,
USA, 2009.

EsperTech Inc., Esper Complex Event Processing Engine, 2013.
JBoss.com, Drools - The Business Logic integration Platform, 2013.

S. Kunz, T. Fickinger, J. Prescher, K. Spengler, Managing complex event
processes with business process modeling notation, in: 2nd International
Workshop on Business Process Model and Notation (BPMN), Germany,
2010.

O. Etzion, P. Niblett, Event processing in action, Manning Publications
Co., 2010.

S. Tai, P. Leitner, S. Dustdar, Design by units: Abstractions for human
and compute resources for elastic systems, IEEE Internet Computing 16
(2012) 84 -88.



