
A Logistics Workload for
Event Notification Middleware

Stefan Appel and Kai Sachs

TU Darmstadt, Germany
lastname @dvs.tu-darmstadt.de

Abstract. The event-based paradigm plays an important role to reflect
logistics processes in modern IT infrastructures. Events occur at many
stages, e.g., when goods tagged with RFID chips are scanned, when trans-
portation vehicles move or when sensors report environmental observa-
tions. These events have to be delivered to interested consumers by a
reliable notification middleware, which is crucial for a successful imple-
mentation of event-based applications. Specified service levels have to be
fulfilled and to guarantee them, an exhaustive evaluation and analysis
of the underlying event notification middleware is required. This can be
achieved by applying well-defined test scenarios that allow us to analyze
different aspects of the middleware in an independent and representative
way.

In this paper we present a realistic workload originating from a real world
scenario in the logistics domain. Our workload is suited to test event
notification middleware under realistic conditions; it stresses different
aspects of the middleware while being scalable.

1 Introduction

Designing systems that follow the event-based paradigm are necessary to develop
new types of applications [6, 3]. These application have to handle large amounts
of data originating from, e.g., sensor networks or the Internet of Things. The
devices collect a variety of data that is potentially interesting for different appli-
cations. For example, nowadays mobile phones are equipped with GPS sensors
and accelerometers allowing applications for monitoring the environment [9, 15].
All these events, or more precisely, their representations, the event notifications,
need to be transported from the event producers to event consumers [6]. To
reach a high amount of flexibility throughout this communication process, event
producers and consumers need to be decoupled physically and logically. There-
fore, event notifications are routed from event producers to event consumers by
a notification middleware (also called notification service, see Figure 1). This un-
derlying notification middleware allows us to decouple producers and consumers
and is responsible for a reliable message transportation [10].

2

No#fica#on	 Service	 No#fica#on	 Service	

Communica#on	 Layer	

Producer	 Consumer1	 Event-‐Based	 Interac#on	

Event	 Observa#on	

Event	 No#fica#on	 	 Event	 observed	 ….:…….	 Time	 	 	 …….Loca#on…	

Envelope	

Consumern	 …	

Fig. 1. Event-based System - Schematic Overview

Driven by the research in ADiWa1 we identified the need for testing and an-
alyzing event notification middleware. Within ADiWa business processes adapt
and react dynamically to events.

In this paper, we present a novel workload based on a logistics scenario. Our
goal is to support exhaustive testing and analysis of a notification middleware by
stressing the system in different ways. The remainder of this paper is structured
as follows: we first present related work in the area of quality of service (QoS) and
workload characterization of event-based systems (EBS). In the next section we
discuss requirements a workload has to fullfil with a focus on the logistics domain.
We then introduce a logistics workload which models three interactions among
different entities and derive variable message rates to describe the workload. The
paper concludes with a short summary of our results and an outlook on future
research.

2 Related Work

Several test harnesses and benchmarks for different EBS were published, e.g.,
[8, 5, 7]. However, previous work in the area of benchmarking mostly focuses
on the design and development of test frameworks, but not on the definition
of workloads. An example for a well-defined workload scenario used for the in-
dustry standard benchmark SPECjms2007 can be found in [13]. The applica-
tion scenario models seven business interactions of a supermarket’s supply chain
where RFID technology is used to track the flow of goods. SPECjms2007 in-
cludes some limited publish/subscribe communication as part of the workload,
but mainly focusing on point-to-point communication. The setup of consumer,
producer and subscriptions is static and does not change at runtime. A bench-
mark for publish/subscribe systems built on top of the SPECjms2007 workload is

1 Alliance Digital Product Flow (ADiWa). Funded by the German Federal Ministry
of Education and Research under grant 01IA08006.

3

jms2009-PS [12]. However, the implemented topology is static and subscriptions
do not change at runtime. For a comprehensive overview of existing benchmarks
and test harnesses we refer to [11]. An overview of relevant QoS metrics in the
context of distributed and decentralized publish-subscribe systems is provided
in [2]. Further, QoS of EBS is discussed in [1].

3 Workload Requirements

The major goal of this paper is to provide a standard workload and metrics for
measuring and evaluating the performance and scalability of event notification
middleware in dynamic environments. To achieve this goal, a workload must be
designed to meet a number of important requirements. These requirements can
be grouped in the following five categories [11]:

1. Representativeness: It has to reflect the way middleware services are exer-
cised in real-life systems.

2. Comprehensiveness: All middleware features and services typically used in
applications have to be exercised. Features and services stressed should be
weighted according to their usage in real-life systems.

3. Focus: The emphasis has to be on the event notification middleware and the
impact of other components and services has to be minimized.

4. Configurability: The workload should be configurable to provide a base for
exhaustive system analysis.

5. Scalability: The workload must not have any inherent scalability limitations
and provide ways to scale the workload in a flexible manner.

Based on these categories, we specified a set of requirements, which differ in
major points from previous work. For example:

1. Independent Participants: Event producers and consumers should be logi-
cally decoupled.

2. Communication Plattform: An event service bus [4] should be used for com-
munication.

3. Dynamic Environment: Subscriptions, subscribers and message producers
should not be static and change frequently.

Keeping these requirements in mind we specified a novel workload for perfor-
mance analysis of event notification middleware based on a real-world scenario.

4 Logistics Workload

In this section we present a logistics workload to evaluate event notification mid-
dleware. The workload models three different interactions in a company. Figure
2 gives a schematic overview and shows the information flow as well as the flow
of goods. A logistics workload stresses different aspects of the middleware; espe-
cially high fluctuation rates of event producers and consumers are characteristic.

4

Headquarter

Logistics Hubs

Transportation Fleet

Customer

Recipient

Information Flow:
Flow of Goods:

Fig. 2. Flow of Information and Goods

In the following sections we first introduce event notification producers and
and interacting entities involved in our scenario. Three different interactions
between the entities are simulated to evaluate the event notification middleware.
For this we derive interaction rates and publish/subscribe parameters.

4.1 Event Notification Producers

In our scenario the event notifications are generated by different entities. Ei-
ther humans or three different types of devices, RFID Readers, On-board Units
or Environment Sensors, are involved in the event detection and notification
generation process:

Humans (H) To initiate a shipment process an order has to be triggered by
humans. The addresses of sender and recipient are submitted to and verified
by the company. Afterwards, the order is acknowledged and the transportation
process starts.

RFID Reader (RFID) We assume a scenario where RFID tags are attached to
all transported goods. These tags are read when goods enter and leave hubs as
well as when they are delivered.

On-board Units (OBU) Modern trucks are equipped with on-board units in-
cluding GPS receivers so that the vehicle position can be tracked. The update
interval is a tradeoff between accuracy and system utilization in terms of band-
width, CPU utilization and network traffic. For our scenario we assume an up-
date interval of three minutes.

5

Environment Sensors (ENV) To ensure that goods are transported appropri-
ately, environment sensor can be installed to monitor, e.g., the temperature.
Customers are interested in whether the conditions were met throughout the
transportation process.

4.2 Interacting Entities

The above listed notification producers act in the context of entities. The fol-
lowing parties participate in interactions modeling the message flow:

1. Company Headquarters (HQ):
Messages generated by humans.

2. Logistics Hubs (LH):
Messages generated by RFID readers and environment sensors.

3. Customers (C):
Messages generated by humans.

4. Transportation Vehicles (V):
Messages generated by on-board units and environment sensors.

We consider that customers are performing monitoring and tracking of goods.
For better usability, we specified a fixed ratio between different entities based
upon data from a real-world company [14]. The base value for scaling the entities
is the number of hubs BASEL.

|Logistics Hubs| := BASEL

|Headquarters| := 1

|V ehicles| := 53 · BASEL∣∣∣∣Customers

day

∣∣∣∣ := 1000 · BASEL∣∣∣∣Shipments

day

∣∣∣∣ := 8384 · BASEL

4.3 Interaction Patterns

Throughout the delivery process different interactions between the entities take
place. Each interaction involves messages, subscriptions and quality of service
requirements. We identify three interaction patterns for which we derive the
message rates depending on the number of hubs:

Interaction 1 (I1): Shipment Order and Proof of Delivery
Interaction 2 (I2): Real-time Shipment Tracking
Interaction 3 (I3): Freight Monitoring

While I1 is a common interaction in logistics companies, I2 and I3 are cur-
rently popular trends, but are still in the early adopter phase. We expect the
wide-spread deployment of real-time tracking and freight monitoring in the fu-
ture.

6

Table 1. Interactions

(a) Interaction 1 - Shipment Order and Proof of Delivery

Message Publisher Message Subscriber Type QoS

Customer Headquarters ShipmentOrder Reliable

Headquarters Customer OrderConfirmation Reliable

Headquarters Logistics Hub PickupOrder Reliable

Logistics Hub Headquarters ShipmentScan Reliable
...

...
...

...

Recipient Headquarters ProofOfDelivery Reliable

(b) Interaction 2 - Real-time Shipment Tracking

Message Publisher Message Subscriber Type QoS

Logistics Hub Customer ShipmentScan Reliable

Vehicle Customer PositionData Unreliable

(c) Interaction 3 - Freight Monitoring

Message Publisher Message Subscriber Type QoS

Vehicle Customer EnvironmentData Reliable

Logistics Hub Customer EnvironmentData Reliable

I1 - Shipment Order and Proof of Delivery The most important inter-
action is receiving shipment orders from customers and providing a proof of
delivery (PoD) once the shipment is successfully delivered. The first event in
this interactions is a message originating from a customer requesting pick up of
goods (ShipmentOrder). Afterwards, shipment IDs are generated and the goods
are tagged with RFID labels. The order confirmation message containing ship-
ment IDs is then sent to the customer (OrderConfirmation). A hub close to
the customer is selected and a pickup order is sent (PickupOrder). As soon
as the goods leave the customer, the headquarters is responsible for tracking
the goods and thus it receives messages whenever a shipment enters or leaves a
hub (ShipmentScan). Finally, a proof of delivery message is generated once the
shipment receives its final destination (ProofOfDelivery). With this message
the interaction ends. Table 1(a) shows the message exchanges within I1; during
the shipment process, the goods enter and leave several hubs. Thus multiple
ShipmentScan messages occur within this interaction.

In terms of QoS, I1 has to be reliable. This means that the delivery of all mes-
sages has to be ensured in case of failures. This requires persistence mechanisms
and recovery strategies integrated in the middleware.

I2 - Real-time Shipment Tracking Real-time shipment tracking is an in-
teraction pattern involving multiple entities and advanced application logic.
It requires the knowledge of shipment IDs; based upon those IDs, it is pos-
sible to track the flow of goods. For tracking, the first step is subscribing to
ShipmentScan messages matching the IDs of the shipments to track to receive

7

messages originating from RFID readers. These events indicate whenever a ship-
ment leaves or enters a hub. As soon as the shipment enters a transportation
vehicle an additional subscription has to be issued to receive position events
from the respective transportation vehicle.

Table 1(b) shows the messages within I2. Besides ShipmentScan messages,
which need to be delivered reliably, PositionData messages are generated. The
latter do not require reliable delivery since positions updates are generated reg-
ularly and only the last position is of major interest.

I3 - Freight Monitoring Some goods require special treatment throughout
the transportation process. For example, fresh products have to be kept below a
certain temperature, other goods can only be transported in an upright position.
Thus, it is essential to monitor goods and to identify improper treatment. An
early detection is desirable to inform customers as fast as possible. This gives
the opportunity to react quickly while the goods are still on their way. Real-time
monitoring stresses the middleware and thus it is included in this workload. We
choose temperature monitoring since it is one characteristic application of freight
monitoring.

Table 1(c) shows the message exchange within I3. Opposed to PositionData

messages in I2, EnvironmentData messages require reliable transportation since
a violation of environmental conditions has to be reported.

4.4 Workload Generation

To simulate the message flow within a company, we derive rates at which mes-
sages enter the system. These rates are determined by the scenario design and
scale with the number of hubs, BASEL. Based upon the number of shipments per
day (cp. Section 4.2) the rates can be calculated. We further make the following
assumptions:

1. Time from pickup of goods to delivery is 3 days.
2. The goods are in transit 1.5 days (real transportation time), the goods are

processed at hubs the other 1.5 days.
3. Vehicles and environment sensors submit messages every 3 minutes.
4. The goods pass 2 hubs until the recipient is reached.
5. Shipment scans and transportation are uniformly distributed over time.
6. All shipments are tracked in real-time.
7. The environmental conditions of 30% of the shipments are monitored.

This results in multiple messages for each shipment as shown in Table 2.
Position and environment data messages are relevant for multiple shipments,
thus the use of publish/subscribe mechanisms is the delivery paradigm of choice.

To generate the workload, five components are necessary, one for each mes-
sage type. Each message driver component produces messages with certain rates,
consumes them and simulates join and leave of producers and consumers at

8

Table 2. Messages per Shipment

Message Type Messages per Shipment

ShipmentOrder 1
OrderConfirmation 1

PickupOrder 1
ShipmentScan 4

ProofOfDelivery 1
PositionData 720

EnvironmentData 1440

certain rates. Therefore, the message driver components have to ensure that
published messages are consumed according to the scenario specification.

For describing the behavior of workload generating components (drivers) we
use the following terms:

– Active Entity: Producer/consumer which publishes/subscribes to messages.

– Messages min−1: Total number of published messages per minute.

– Parallel Subscriptions: Number of subscriptions in parallel.

– Parallel Publishers: Number of parallel message publishers.

– Subscription join/leave min−1: Rate at which subscribers leave, respectively
join the system.

– Publisher join/leave min−1: Rate at which publishers leave, respectively join
the system.

– Pub/Sub Factor: The number of recipients for each published message.

Table 3 lists all the message driver components along with the derived service
rates.

ShipmentOrder Driver Shipment orders are generated by customers, the
destination is always the headquarters. Multiple customers issue shipment orders
in parallel and customers enter, respectively leave, the system constantly. Each
costumer only sends one shipment order. The pub/sub factor of one indicates
that each messages is delivered to one destination, the headquarters.

OrderConfirmation Driver As for the shipment orders, order confirmations
are a one-to-one communication between headquarters and customers. Each cus-
tomer receives one order confirmation.

PickupOrder Driver Pickup orders are messages from the headquarters to
hubs; each hub is supposed to receive the same number of messages. Since hubs
and the headquarters are static parts of the infrastructure, a change rate of zero
is assumed.

9

Table 3. Event Driver and their Characteristics

Type Characteristic Rate Active Entity

Messages min−1 5.82 ·BASEL C

Parallel Subscriptions 1 HQ

ShipmentOrder Parallel Publishers 8.43 ·BASEL C

Subscription join/leave min−1 0 HQ

Publisher join/leave min−1 0.69 ·BASEL C

Pub/Sub Factor 1 HQ

Messages min−1 5.82 ·BASEL HQ

Parallel Subscriptions 8.43 ·BASEL C

OrderConfirmation Parallel Publishers 1 HQ

Subscription join/leave min−1 0.69 ·BASEL C

Publisher join/leave min−1 0 HQ

Pub/Sub Factor 1 C

Messages min−1 5.82 ·BASEL HQ

Parallel Subscriptions BASEL LH

PickupOrder Parallel Publishers 1 HQ

Subscription join/leave min−1 0 C

Publisher join/leave min−1 0 HQ

Pub/Sub Factor 1 LH

Messages min−1 7.76 ·BASEL LH

Parallel Subscriptions 25152 ·BASEL C

Parallel Subscriptions 1 HQ

ShipmentScan Parallel Publishers BASEL LH

Subscription join/leave min−1 5.82 ·BASEL C

Subscription join/leave min−1 0 HQ

Publisher join/leave min−1 0 LH

Pub/Sub Factor 1 / 1 HQ / C

Messages min−1 5.82 ·BASEL V

Parallel Subscriptions 1 HQ

Parallel Subscriptions 25152 ·BASEL C

ProofOfDelivery Parallel Publishers 53 ·BASEL V

Subscription join/leave min−1 5.82 ·BASEL C

Subscription join/leave min−1 0 HQ

Publisher join/leave min−1 0 LH

Pub/Sub Factor 1 / 1 HQ / C

Messages min−1 8.83 ·BASEL V

Parallel Subscriptions 25152 ·BASEL C

PositionData Parallel Publishers 53 ·BASEL V

Subscription join/leave min−1 5.82 ·BASEL C

Publisher join/leave min−1 0 V

Pub/Sub Factor 474.74 C

Messages min−1 2.91 ·BASEL LH

Messages min−1 2.91 ·BASEL V

Parallel Subscriptions 7546 ·BASEL C

EnvironmentData Parallel Publisher BASEL LH

Parallel Publisher 53 ·BASEL V

Subscription join/leave min−1 1.75 ·BASEL C

Publisher join/leave min−1 1.75 ·BASEL V

Pub/Sub Factor 142.36 C

10

ShipmentScan Driver Goods are scanned whenever they enter or leave hubs.
The resulting messages are part of I1 and I2 and thus consumed by the head-
quarters as well as by customers. Many customers are subscribed simultaneously
since transportation of goods lasts three days. Each message is consumed by the
headquarters and by one customer.

ProofOfDelivery Driver The proof of delivery (PoD) denotes the arrival of
the shipment at the designated recipient. The final delivery is performed by
vehicles, whereas the driver triggers the generation of the PoD message. PoD
messages are consumed by customers as well as by the headquarters.

PositionData Driver Position data is sent by all vehicles. Multiple shipments
are transported within one vehicle, this motivates the high pub/sub factor; each
position data message has to be received by around 474 customers. We assume
that all shipments within a vehicle belong to different customers. The total
number of subscriptions is determined by the goods being in move in parallel.

EnvironmentData Driver We assume that 30 percent of all shipments require
monitoring, e.g., of temperature. The monitoring is either performed within the
trucks or the hubs which then generate the environment data messages; the
messages are consumed by multiple customers.

4.5 Message Contents

All messages include timestamps and identification information of the message
producer. Shipment orders contain further address information necessary to de-
liver the goods. The order confirmation, as reply to the order message, con-
tains the shipment identification data necessary for tracking- and monitoring-
subscriptions. The pickup order contains the address data and, in addition, the
ID of the hub being responsible for picking up goods. Shipment scans contain the
ID of shipments as well as identification information of the hub the RFID reader
is installed at. The proof of delivery contains recipient related data, e.g., the
name of the person acknowledging the reception of the shipment. Position data
messages contain GPS coordinates in addition to the mandatory vehicle identi-
fication data. Environment data messages contain the environment monitoring
values, e.g., temperature data, as well as all shipment IDs of goods monitored
at a specific hub or vehicle.

4.6 Workload Characeristics

To illustrate the scaling behavior of our workload, Figure 3 shows different char-
acteristics in terms of number of subscriptions and messages per entity. At this,
entities are seen as a whole, e.g., LH refers to all hubs, C refers to all customers
together.

11

1

10

100

1e+3

1e+4

1e+5

1e+6

1e+7

 0 5 10 15 20 25 30 35 40 45 50

No
. S

ub
sc

rip
tio

ns

BASE

C
HQ
LH

(a) Subscriptions per Entity

1

10

100

1e+3

 0 5 10 15 20 25 30 35 40 45 50

M
sg

. p
er

 m
in

.

BASE

C
HQ
LH

V

(b) Published Messages per Entity

1

10

100

1e+3

1e+4

1e+5

1e+6

 0 5 10 15 20 25 30 35 40 45 50

M
sg

. p
er

 m
in

.

BASE

C
HQ
LH

(c) Received Messages per Entity

Fig. 3. Workload Characteristics

12

Figure 3(a) shows the number of subscriptions per entity. While a constant
number of subscriptions is issued by HQ, the number of subscriptions issued from
C and LH grows linearly with an increasing base. Although the overall number of
subscriptions increases, the number of subscriptions per single entity, e.g., per
customer, remains constant. Characteristic of our workload is the large number
of subscriptions; many customers subscribe in order to receive information about
their shipments. With BASEL = 10 already more than 500.000 subscriptions of
customers exist.

In Figure 3(b) the number of published messages per minute is shown. Since
our workload scales with BASEL, the number of hubs, the amount of goods and
customers increases accordingly leading to a linear increase in the number of
messages. The same holds for the number of received messages as shown in
Figure 3(c). The combination of both figures illustrates the publish/subscribe
characteristics of our workload; while the number of published messages for
BASEL = 10 ranges from around 60 to 180 per entity, the number of received
messages for customers goes up to 50.000. This difference originates from the
nature of publish/subscribe communication. In our workload PositionData and
EnvironmentData messages are of interest for many different customers, e.g.,
position data is relevant for all parcels within one vehicle.

As for the number of subscriptions, the number of messages per single entity
remains constant except for the HQ entity. Since the number of HQ is constant,
an increasing number of LH and C leads to an increased message load of HQ and
thus stresses the system yet in another dimension.

5 Conclusion and Outlook

In the ADiWa project we identified the middleware as a key component for
a successful adoption of event-based architecture in business environments. In
particular, a reliable event transportation mechanism is needed that is highly
scalable and performs according to the business needs. To ensure that a noti-
fication middleware provides the QoS specified in the service level agreements,
a detailed analysis and evaluation has to be performed. This can be achieved
by applying comprehensive workloads to compare various setups with respect to
different system dimensions in a realistic and independent way.

In this paper we introduced a novel workload for event notification services in
highly dynamic environments. We specified three realistic business interactions
(including event types and communication patterns) covering several processes
of the logistics domain. Characteristic of the logistics domain is a large number
of subscribers (e.g., customers) whereas each subscriber receives only a small
amount of messages (e.g., tracking information of specific shipments). Further,
subscribers and publishers join and leave the system constantly, i.e., the event
notification middleware has to orchestrate a highly dynamical environment. In
contrast to synthetic workloads often used to demonstrate the capabilities of
systems, our workload is specified independently from a particular event noti-
fication middleware or standards and allows us to evaluate different features of

13

a middleware in a realistic way. Furthermore, previous realistic workload defini-
tions targeting event-based systems assumed that publishers and consumers stay
connected to the middleware. While this assumption is true for many scenarios,
in this paper we considered scenarios with a dynamic changing environment with
event producers and consumers joining and leaving the system. With each join
or leave the event notification routing has to be adapted and potentially calcu-
lated subscription aggregates have to be revised. Handling this task efficiently is
a key point in providing a high level of service quality. Our workload is the first
considering these dynamic environments and allows evaluating system quality in
highly dynamic environments.

As part of the ADiWa project, we are working on a prototype implementation
of our workload and plan to analyze the service quality of the event notification
middleware.

References

1. S. Appel, K. Sachs, and A. Buchmann. Quality of service in event-based systems.
In Proceedings of the 22. GI-Workshop on Foundations of Databases (GvD), 2010.

2. S. Behnel, L. Fiege, and G. Mühl. On Quality-of-Service and Publish/Subscribe.
In Proceedings of the 26th IEEE International Conference on Distributed Comput-
ing Systems Workshops: Fifth International Workshop on Distributed Event-based
Systems (DEBS’06). IEEE Computer Society, 2006.

3. K. M. Chandy and W. Schulte. Event Processing: Designing IT Systems for Agile
Companies. Mcgraw-Hill Professional, 2009.

4. D. Chappell. Enterprise Service Bus. O’Reilly, 2004.
5. A. Geppert, S. Gatziu, and K. R. Dittrich. A Designer’s Benchmark for Active

Database Management Systems: oo7 Meets the BEAST. In Proceedings of the
Second International Workshop on Rules in Database Systems (RIDS’95), volume
985 of Lecture Notes in Computer Science. Springer, 1995.

6. A. Hinze, K. Sachs, and A. Buchmann. Event-Based Applications and Enabling
Technologies. In Proceedings of the International Conference on Distributed Event-
Based Systems (DEBS’09). ACM, 2009.

7. B. McCormick and L. Madden. Open architecture publish subscribe benchmarking.
In Proceedings of the OMG Real-Time and Embedded Systems Workshop, 2005.

8. M. R. N. Mendes, P. Bizarro, and P. Marques. A framework for performance eval-
uation of complex event processing systems. In Proceedings of the Second Interna-
tional Conference on Distributed Event-based Systems (DEBS ’08): Demonstration
Session. ACM, 2008.

9. J. Moore, T. Collins, and S. Shrestha. An open architecture for detecting earth-
quakes using mobile devices. volume 1, pages 437 –441, apr. 2010.

10. G. Mühl, L. Fiege, and P. Pietzuch. Distributed Event-Based Systems. Springer-
Verlag New York, Inc., Secaucus, NJ, USA, 2006.

11. K. Sachs. Performance Modeling and Benchmarking of Event-Based Systems. PhD
thesis, TU Darmstadt, 2010.

12. K. Sachs, S. Appel, S. Kounev, and A. Buchmann. Benchmarking
Publish/Subscribe-based Messaging Systems. In Database Systems for Advanced
Applications: DASFAA 2010 International Workshops: BenchmarX’10, Lecture
Notes in Computer Science. Springer, 2010.

14

13. K. Sachs, S. Kounev, J. Bacon, and A. Buchmann. Performance evaluation of
message-oriented middleware using the SPECjms2007 benchmark. Performance
Evaluation, 66(8):410–434, Aug 2009.

14. United Parcel Service of America, Inc. UPS facts website, Aug 2010.
http://www.ups.com/content/us/en/about/facts/worldwide.html.

15. U. Varshney. Pervasive healthcare and wireless health monitoring. Mob. Netw.
Appl., 12(2-3):113–127, 2007.

