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Abstract Virtualization is already a common technology used in data centers as well as
on desktop computers; it gains additional momentum with the spread of cloud
computing. In this paper we analyze the performance and behavior of virtual
resources in multi virtual machine scenarios running the same workload. We
evaluate the performance in terms of CPU, memory and disk IO throughput.
In doing so we vary the number of simultaneously running virtual machines to
evaluate the fairness of resource sharing and the overhead due to virtualization,
as well as the mutual interference among the virtual machines.

Introduction
As web applications gain popularity the number of users grows steadily.

Thus, to fulfill the increasing resource demands, the number of servers per ap-
plication increases whereas virtualization technologies can be applied to sim-
plify management of servers while utilizing consolidation effects. An addi-
tional layer of abstraction between hardware and application is added allowing
virtual machines to be created or removed easily and thus changing resource
demands can be addressed quickly. Virtualization as such is a well-established
technology designed in the 1970s by IBM for its mainframe facilities [Creasy,
1981]. Today desktop machines, low-end and mid-range servers are equipped
with enough computational power to run several systems in parallel. There are
many compelling use cases ranging from running multiple OS in parallel for
development and testing purposes through server consolidation and green IT to
cloud computing and HPC approaches. Although the majority of the existing
research focuses on single virtual machine (VM) scenarios or targets multi-
ple VMs executing different workloads, we claim that running multiple VMs
with identical or very similar loads is a common case. Consider for example
the following areas: multiple instances of hosted web applications, web server
hosting, Data GRID applications and clustered web databases, big data. We
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argue that such workloads represent an equally compelling case, hence it is
interesting to perform further research in this direction.

Conceptually speaking VMs are provided with virtual resources which are
mapped onto the physical resources of the underlying hardware by the hyper-
visor. The efficiency of the mapping characterizes the quality of the hypervi-
sor. For some resources the sum of the virtual resources can exceed the sum
of the physical resources, hence virtual resources are shared or multiplexed.
The question arises whether simultaneously running VMs with similar loads
behave similarly or whether certain VMs are preferred? One of our goals is
to study the behavior of virtual resources and draw conclusions about the re-
source sharing in virtualized environments; thus we especially emphasize pos-
sible interferences among the VMs. The study provided in the present paper
encompasses the following resources: CPU, memory, disk IO.

The contributions of the paper are: (i) We study the behavior of virtual re-
sources such as CPU, memory and disk IO based on microbenchmarks. It be-
comes clearly evident that CPU and memory are well suited for virtualization
while for IO some interesting effects are reported. (ii) We study the scalabil-
ity of virtual resources. We design experiments to study the scalability in the
three areas where virtual resources are less than, equal to, or greater than the
physical resources. (iii) Last but not least we evaluate the performance penalty
incurred through the interference of multiple concurrent VMs running similar
loads.

1. Related Work
There are different hypervisors for different processor and system architec-

tures as well as for different operating systems (for Intel x86 VMWare and
XEN, for SUN UltraSPARC LDOMS) [Smith and Nair, 2005]. Several exist-
ing studies characterize the IO behavior [Ahmad et al., 2003],[Ahmad, 2007].
Multiple studies exist on the CPU behavior, e.g. [Barham et al., 2003]. In ad-
dition there are two standard virtualization benchmarks VMMark [VMware,
2009], and the upcoming SPECvirt. What all of the above studies have in
common is: they concentrate on multiple but dissimilar workloads. Some even
consider only single VMs. The goal and original contribution of the present
paper is to study the behavior of virtual resources when multiple concurrently
running VMs execute a similar load.

2. Experimental Setup
For the evaluation of CPU, memory and IO behavior in virtualized systems

we use an IBM x3850 Server with 4 Intel Dual-Core Xeon 7150N 3.5GHz
CPUs, 16GB RAM and 6 10k RPM SAS hard disks configured as RAID 10.
As virtualization software we select the product of a major vendor; the host
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operating system is a Debian/GNU Linux with a kernel version 2.6.18. We use
OpenJDK 1.6.00-b11 as Java Runtime Environment (JRE). All VMs have the
vendor-provided tools installed, allowing an optimal communication between
hypervisor and VM. Ubuntu 8.04, kernel 2.6.24-server is used as guest oper-
ating system. The hardware configurations of the VMs are specified for every
experiment respectively.

3. CPU Performance
The SPECjvm2008 benchmark suite [SPEC, 2008] is used to evaluate the

CPU performance.1 Java workloads represent standard CPU footprints for many
business critical applications. SPECjvm2008 implements a CPU intensive
workload utilizing multiple cores. Hence it provides a good basis for CPU
evaluation in virtual environments. SPECjvm2008 contains twelve indepen-
dent benchmarks; for a compliant run each of these benchmarks is executed
for a certain period of time with a defined workload. After a run the number of
completed iterations determines the final score for each benchmark; the score
is reported in operations per minute (ops/m) whereas one operation equals one
iteration of one of the benchmarks. The final score is then calculated based
upon the single benchmark scores.

3.1 Configuration and Experiments
For the experiments each VM is configured with two virtual CPUs (vCPU)

and 1024MB of RAM. SPECjvm2008 is executed simultaneously on a differ-
ent number of VMs. The maximum heap size of the JVMs is set to 512MB so
that still sufficient resources are available for the operating system running in
the VMs. Five experiments are conducted using different test setups; for each
experiment the number of VMs running in parallel is increased to force the
system into heavy resource sharing mode.

Within each VM SPECjvm2008 is executed with identical parameters and
it is started synchronously on all VMs.

3.2 Results
Table 1 shows the SPECjvm2008 scores for all five conducted experiments.

Our starting point is a single VM experiment. Since there are sufficient re-
sources on the host system the score of this experiment can be considered
the maximum achievable and is therefore regarded as a reference point. We
conduct subsequent experiments varying the number of simultaneously run-
ning VMs from two up to seven, whereas with four VMs and two vCPUs per
VM the CPU capacity of the host system is reached (virtual CPU ≈ physical
CPU). Hence adding a fifth VM requires CPU sharing. We observe that the
SPECjvm2008 score remains constant for one to three parallel running VMs.
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Table 1. Average SPECjvm2008 Scores, Parallel Execution in Virtual Machines

Number of Virtual Machines
1 4 5 6 7

Average SPECjvm2008 Score 14.770 14.060 11.786 9.707 8.094
Standard Deviation - 0.121 0.084 0.110 0.100
Accumulated Score 14.770 56.240 58.930 58.240 56.660

0

5

10

15

20

25

30

35

Composite compiler compress crypto derby mpegaudio scimark.large scimark.small serial startup sunflow xml

A
v
e

ra
g

e
 S

c
o

re
 [

o
p

s
/m

]

SPECjvm2008 Results for Different Numbers of Running VMs

1 VM 4 VMs 5 VMs 6 VMs 7 VMs

Figure 1. Average SPECjvm2008 Score, Overall and per Benchmark

With four VMs the capacity of the host system is reached. Thus CPU is be-
coming a bottleneck resulting in lower SPECjvm2008 scores. Increasing the
number of VMs further causes more CPU sharing which leads to significantly
lower SPECjvm2008 scores per VM.

A detailed result overview is shown in Figure 1; the total SPECjvm2008
score (Composite) as well as the scores for the separate benchmarks are shown.
When comparing the 1 VM and 4 VMs scenario an interesting effect can be
observed: while for some benchmarks, like compress or sunflow, no decrease
in score occurred, for other benchmarks, like compiler or xml, the score de-
creases significantly. An explanation for this behavior is the CPU usage of
SPECjvm2008: not all of the benchmarks contained in SPECjvm2008 use both
available vCPUs all the time as it can be seen in Figure 2. Thus no sharing of
resources is necessary for some benchmarks and the score does not decrease
(e.g. for compress and sunflow).

3.3 Conclusion
Table 1 clearly shows that the standard deviations remain below 1.2%. Hence

we can conclude that CPU time is distributed fairly amongst all VMs; other-
wise higher standard deviations would occur. Although overhead due to vir-
tualization and CPU sharing increases with an increasing number of VMs the
accumulated score decreases only slowly and the system handles multiplexing
well. Table 1 shows the accumulated score, which increases for one to five
VMs, due to available CPU capacity, and decreases due to overhead effects for
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Figure 2. CPU Idle Time during SPECjvm2008 Run

five to seven VMs (system overloaded). Amongst others the following effects
contribute to the overall overhead: (i) Cache Misses: Caches have a ma-
jor impact on the performance of modern systems. Since with every context
switch to another VM a different part of the memory is addressed many cache
misses occur when giving CPU time to the next VM. (ii) Context Switch-
ing: The system has to perform scheduling and context switching to ensure
that CPU time is shared fairly and no VM is preferred over another. Ultimately
the overhead for these operations increases with an increasing number of VMs.
(iii) Underlying Operating System: Finally the underlying operating
system requires resources as well. Although these cannot be used by the VMs,
they cannot be ignored.

4. Memory Throughput
Besides CPU, memory is another important resource which has big influ-

ence on the performance of a VM. Two memory aspects are of interest: (a) the
throughput in case of multiple VMs performing memory operations; (b) the
systems behavior if the memory assigned to the VMs exceeds the physically
available memory. The latter scenario becomes critical if VMs start making
heavy use of memory causing swapping which entails significant performance
degradation. The following evaluation concentrates on scenarios where suffi-
cient memory is available whereas the main aspect is the reachable throughput
of each VM when all VMs execute memory intensive operations.

4.1 The RAMSMP Benchmark
We perform experiments using two memory microbenchmarks RAMSPEED

and RAMSMP ([Hollander, 2008]), however we concentrate on the RAMSMP
results. The difference between RAMSPEED and RAMSMP is that the former
only utilizes one CPU core whereas the latter can be set up to start multi-
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Figure 3. RAMSMP - Average Throughput

ple threads in order to allow testing multi-core systems. The two benchmarks
measure the memory throughput by executing four different types of opera-
tions [Hollander, 2008]: (i) Copy: Transfers data from one memory location
to another, i. e. A = B. (ii) Scale: Modifies the data before writing by
multiplying with a certain constant value, i. e. A = m · B. (iii) Add: Reads
data from the first memory location, then reads from the second, adds them up
and writes the result to the third place, i.e. A = B + C. (iv) Triad: Reads
data from the first memory location, scales it, then adds data from the second
one and writes to the third place, i.e. A = m ·B + C.

The measured throughput as well as the used operations are comparable to
results obtained using the STREAM benchmark ([McCalpin, 1995]), however
RAMSPEED and RAMSMP provide better capabilities for automated testing
and aggregation of results.

4.2 Configuration and experiments
We use VMs configured with 2 vCPUs and 2048MB RAM each. RAMSMP

is used in batch mode which allows automated execution of several benchmark
runs and reports averaged results. We vary the number of concurrently running
VMs while performing five consecutive RAMSMP runs. During each run the
benchmarks write a total of 8GB of data; RAMSMP uses one thread on each
vCPU. The benchmarks are started simultaneously in all VMs.

4.3 Results
Figure 3 shows the average throughput as well as the standard deviation per

VM. With four and more VMs all physical CPU cores are fully utilized and
the standard deviations increase. While the standard deviation is below 5% for
all but one test in the two to four VMs scenarios, with five to seven VMs the
standard deviation exceeds the 5% limit six times.
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Figure 4. RAMSMP - Accumulated Throughput

Let us consider the accumulated throughput over all VMs for RAMSMP.
While the maximum throughput for RAMSPEED is reached with six VMs, it
is reached with three VMs for RAMSMP; both scenarios (3 VMs RAMSMP,
6 VMs RAMSPEED) are identical in terms of utilized CPU cores. Thus it
can be concluded that the system scales independent from the actual number
of running VMs - the memory throughput is only influenced by the number of
utilized vCPUs. Further the maximum throughput for RAMSMP and RAM-
SPEED is equal whereas a slight decrease of throughput can be observed for
RAMSMP with 5 and more VMs running. This can be explained with over-
head effects occurring due to resource sharing as mentioned in Section 3.2;
especially caching effects are of interest here since these significantly influ-
ence memory performance.

4.4 Conclusion
The conducted experiments show that memory bandwidth is shared fairly

among all concurrently running VMs. Moreover the maximum throughput of
the whole system can only be reached when many CPUs are utilized to take
advantage of all the caching effects; the highest overall throughput for our sce-
nario can be observed with three running VMs. With more VMs, the through-
put deteriorates slightly; but even with 14 utilized vCPUs the accumulated
throughput is still close to the maximum.

5. Disk IO Throughput
The IO behavior in virtual environments is a critical factor for virtualiz-

ing data-intensive applications and systems such as database systems. In the
present section we characterize the filesystem IO performance based on sev-
eral different benchmarks and evaluate how IO bandwidth is divided among
multiple VMs.
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Table 2. Average Throughput (in KB/s) measured with Bonnie++, 1 VM, 4 Runs

Sequential Output (write) Sequential Input (read)
Write (Character) Write (Block) Rewrite (Block) Character Block

Throughput 32560.75 73055.00 62697.00 43035.25 203317.25
SD 2539.01 1852.36 1712.27 1543.06 4560.33

Table 3. Average Throughput (in KB/s) measured with Iozone, 1 VM, 6 Runs

Write Re-Write Read Random Read
Blocksize 64kB 128kB 64kB 128kB 64kB 128kB 64kB 128kB
Throughput 79966 82168 80068 79501 238010 235990 113467 122939
SD 3102.67 1074.00 2276.11 1635.85 7157.98 8642.38 3025.16 3991.70

5.1 Benchmarks
For IO evaluation we choose Bonnie++ [Coker, 2009] as well as Iozone [Nor-

cott and Capps, 2006]. Bonnie++ is a simple benchmark which performs se-
quential read and write operations using putc(), getc() (character-wise) and
write(), read() (block-wise). Iozone performs many more operations; besides
normal read and write it performs re-read and re-write operations in order to
make use of caches, like those available on RAID controllers. Depending on
the configuration, Iozone does perform various read and write operations for
different file sizes and block sizes so that it is possible to get insight into the
IO system characteristics.

5.2 Configuration
The VMs are configured with 2 vCPUs each as well as 1024MB of RAM.

Bonnie++ as well as Iozone are configured to create, read and write a 2GB file;
this is twice the RAM size in order to avoid buffering the whole file in memory.

5.3 Results
Consistency of Results. We perform an initial reference experiment with
one VM running both benchmarks successively. Table 2 shows the average
throughput as well as the standard deviations of four consecutive Bonnie++
runs. The highest standard deviation is 7.8% which is a good value for an IO
benchmark. Thus Bonnie++ results can be seen as reproducible. Table 3 shows
the average throughput and standard deviation for six consecutive Iozone runs.
Iozone performs 13 different tests using nine different block sizes for each test;
for a better comparability only results for small block sizes and tests similar to
Bonnie++ are shown. The overall standard deviation of the Iozone results is
below 5%. Thus these can also be seen as reproducible and reliable. Through-
puts for larger blocks are to some extent higher than for small blocks however
the standard deviations remain low.
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Figure 5. Bonnie++ - Average Throughput per VM, 3 Runs, 3 VMs

The Bonnie++ read and write throughput when writing character wise is
significantly lower than the values reported for the corresponding block wise
operations (Table 2). Furthermore the throughput values for Iozone (Table 3)
exceed the corresponding values reported by Bonnie++. The Iozone results for
the smallest block size are twice as high for writing (Bonnie++, per-character)
and five times as high for reading (Bonnie++, per-character). A feasible ex-
planation is that Iozone does not perform any Per-Character-Operations at all.
Bonnie++ results for reading and writing block-wise are closer to the Iozone
results but still differ as much as 25% (for Re-Write). Although each bench-
mark generates consistent and reproducible results the comparability between
them is not provided. Especially problematic is the fact that Bonnie++ does
not explicitly inform about the used block size.

Resource Sharing. The first test setup consists of three VMs running in
parallel. The server has sufficient CPU and memory resources for three VMs
so only the IO resources are shared. All in all three Bonnie++ and two Iozone
runs are conducted with this test setup whereas the benchmarks are started
simultaneously in all VMs. In the ideal case the IO bandwidth would be dis-
tributed evenly among all VMs; this would result in a low standard deviation
for the average throughput. The conducted experiments do not exhibit this; for
all experiments high standard deviations occurred.

Figure 5 shows the average throughput per VM measured with Bonnie++; in
addition Figure 6 shows the standard deviations for these experiments. When
only comparing the average throughput per VM it seems the bandwidth is dis-
tributed evenly amongst the VMs, just during "Sequential Output: Write Per
Block" VM 1 reaches significantly higher throughput than other VMs. But
when taking the standard deviations into consideration it can be seen that there
are high fluctuations; this shows that although the bandwidth is distributed
evenly on average, it is not distributed evenly during each run.

Figures 7 and 8 show the measurement results using Iozone. As with Bon-
nie++ the average throughput is relatively equal for all VMs, but also high
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Figure 8. Iozone - Standard Deviations, 2 Runs, 3 VMs

standard deviations are observed, almost all exceeding 10%. Thus the Iozone
results confirm the Bonnie++ results and show that even in case of sufficient
CPU resources the distribution of IO bandwidth is not reliably predictable. The
Iozone results for larger block sizes are similar: high standard deviations occur.
Thus the observed behavior is not specific for small blocks.
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Although the measurement results show high fluctuations of throughput an
interesting behavior can be noticed for both benchmarks: the accumulated
throughput over all three running VMs exceeds the throughput a single VM
is able to reach (cp. Tables 2 and 3). This is true for each of the three Bon-
nie++ runs and for both of the Iozone runs. Figure 9 shows the accumulated
throughput for some of the tests; the leftmost bars in each group denote the
measured throughputs of a single VM scenario. While the effect is small for
write operations, for read operations a major difference is noticeable. A possi-
ble explanation are caching effects within the VMs as well as on the host sys-
tem. While the increased read throughput can be explained by the increased
number of VMs (each VM can buffer data), explaining the increase of through-
put for write operations is more difficult. One possibility is the serialization of
write requests by the hypervisor so that larger amounts of data can be written to
the disks sequentially which results in higher throughput. Further the caching
of write operations can cause this behavior as well.

Besides a test setup with three VMs another setup with five VMs is evalu-
ated. The configuration of the VMs remains unchanged but with the two addi-
tional machines the number of available CPU cores is not sufficient anymore;
overall ten vCPUs are assigned to VMs. The five VM experimental results
show tendencies similar to those of the three VM scenario.

5.4 Conclusion
At first it is shown, that Bonnie++ and Iozone produce reliable and repro-

ducible results; thus both benchmarks are used to evaluate IO performance in
VMs. Two different test setups are used: one with three and one with five VMs
running in parallel. All results show that IO performance in virtualized envi-
ronments is difficult to predict. Although bandwidth is distributed evenly on
average, high standard deviations occur, showing that the throughput of each
VM differs from run to run. However the results show that despite high fluctu-
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ations one interesting effect can be observed: the accumulated throughput over
all running VMs exceeds the throughput of one VM; especially for writing this
is not expected.

6. Conclusions
The main goal of the present paper is to study the behavior of virtual re-

sources in multi VM environments running similar loads. We also aim at
studying whether resources are shared fairly among VMs in such setups. We
analyze CPU, memory and disk IO performance. CPU performance is evalu-
ated using the SPECjvm2008 benchmark showing that CPU time is distributed
evenly among the VMs. Further the overhead due to virtualization is analyzed
and it is shown that it increases with an increasing number of VMs whereas the
system handles an overload well. It can be observed that memory bandwidth is
shared evenly among the running VMs. The highest throughput (accumulated
over VMs) can be reached with a 75% utilized system, which is probably due
to optimal utilization of all caches. The last evaluated resource is the disk IO
system. In contrast to the CPU and memory, disk IO bandwidth is not dis-
tributed evenly all the time. Although the average throughput over several runs
does not differ heavily among VMs, high standard deviations indicate that the
sharing of IO bandwidth is problematic. Finally it can be observed that the
accumulated throughput over all VMs exceeds the throughput of one running
VM.

Notes
1. SPECjvm2008 is a trademark of the Standard Performance Evaluation Corporation (SPEC). The

results or findings in this publication have not been reviewed or accepted by SPEC, therefore neither com-
parison nor performance inference can be made against any published SPEC result. The official web site
for SPECjvm2008 is located at http://www.spec.org/jvm2008
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