
Towards Benchmarking of AMQP

Stefan Appel
TU Darmstadt, Germany

appel@dvs.tu-
darmstadt.de

Kai Sachs
TU Darmstadt, Germany

sachs@dvs.tu-
darmstadt.de

Alejandro Buchmann
TU Darmstadt, Germany
buchmann@dvs.tu-

darmstadt.de

1. INTRODUCTION
With the increasing importance of event-based systems

the performance of underlying event transporting systems,
such as message oriented middleware (MOM), becomes busi-
ness critical. Therefore, we see a strong need for bench-
marks for such environments. Several messaging standards
and protocols for middleware exist; most popular is the Java
Message Service (JMS) which is defining an API rather than
a wire protocol. An emerging standard is the new wire level
protocol Advanced Message Queuing Protocol (AMQP). It
originated in the financial sector and is developed by a con-
sortium of over 20 member organizations.

Within this demo we show a way of evaluating perfor-
mance of AMQP middleware by using an adapted version of
the SPECjms2007 and jms2009-PS benchmarks. It is pos-
sible to compare different middleware solutions using JMS
as well as AMQP in terms of performance, stability, and
scalability.

2. BACKGROUND

2.1 The AMQ Protocol
Advanced Message Queuing Protocol (AMQP) is an in-

creasingly important protocol for MOMs with its origin in
financial services industry. The motivation behind AMQP
is the need for an open standard which enables complete in-
teroperability between MOM providers [7, 2]. AMQP pro-
vides a wire-level protocol specification and not an API as
JMS. Due to the popularity of JMS, it was decided to de-
sign AMQP to encompass JMS semantics [3] which allows
building JMS clients for AMQP products. Therefore, JMS
and AMQP complement each other by defining interoper-
ability on the application level (JMS) as well as on the
wire level (AMQP). To achieve this interoperability, AMQP
specifies an exact semantic of services in its queuing model,
which is appropriate for business critical deployments. The
specification covers messaging models (P2P, pub/sub, re-
quest/response), transaction management, distribution, se-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DEBS’10, July 12-15, Cambridge, UK.
Copyright 2010 ACM X-XXXXX-XX-X/XX/XX ...$10.00.

curity, and clustering. In addition AMQP offers several fea-
tures which are not supported by JMS.

The AMQP specification development process (starting in
2003) is still ongoing and it is expected that AMQP 1.0 will
be approved within this year. While the preliminary ver-
sions, 0-8 up to 0-10, were build around the concept of Ex-
changes bound to Queues [3] the terminology changed in the
current 1.0 PR2 draft [1]. Messages are exchanged between
Nodes via Links whereas Nodes are grouped in Containers
interconnected with Sessions. Nodes are for example mes-
sage producers, consumers or queues. To control message
flow and avoid receiving too many messages the receiver has
to issue credit to a link. By supporting the concepts of dura-
bility, (non-)destructive links, and transactional containers,
AMQP is capable of providing different Quality of Service
(QoS) levels for one-to-one and one-to-many communica-
tion.

2.2 AMQP Middleware
Although the AMQP specification is not finalized yet, sev-

eral products supporting different drafts of AMQP exist to-
day (see Table 1). They are already used in mission critical
deployments, e.g., JPMorgan reported an AMQP environ-
ment supporting 2,000 users on five continents processing
300 million messages per day [3]. All listed products come
with client libraries for different programming language, e.g.
Java, C++, Ruby, and Python; [2] demonstrates the instal-
lation and use of Qpid along with Python clients. In ad-
dition to the listed products JBoss and Apache announced
to integrate AMQP support into their popular JMS mes-
saging solutions HornetQ and ActiveMQ; by this a seamless
coexistence and integration of JMS and AMQP will become
possible.

Vendor Product AMQP Ver.
Red Hat Enterprise MRG n/a
iMatix Corporation OpenAMQ 0-9-1
Apache Software Foundation Qpid 0-10
Rabbit Technologies Ltd. RabbitMQ 0-9-1
OW2 Consortium JORAM 0-9

Table 1: AMQP Implementations

2.3 SPECjms2007 and jms2009-PS
SPECjms2007 is a industry standard benchmark devel-

oped by the Standard Performance Evaluation Corporation
(SPEC) to evaluate JMS middleware using a real-world work-
load. It is implemented as a Java application framework
comprising multiple Java Virtual Machines and threads dis-

tributed across a set of client nodes. The benchmark sim-
ulates different interactions in a supermarket supply chain
with point-to-point and one-to-many communication based
upon queues and topics whereas different QoS levels in terms
of persistence, durability and transactions are used. A de-
tailed workload description is provided in [5]. Additionally,
to evaluate different QoS settings and queue/topic configu-
rations more fine granular, jms2009-PS was developed based
upon SPECjms2007 [4].

3. BENCHMARKING AMQP
To benchmark AMQP, we need a workload scenario and

a benchmark framework. Since AMQP and JMS are used
in similar business cases, the SPECjms2007 standardized
workload is used to build our AMQP benchmark on top of
it. Using a standard workload allows a comparison of differ-
ent products but also helps developers to identify weaknesses
and to give design guidelines. Further, by having insights
into system utilization under certain loads, the scalability
and influence of tuning parameters can be evaluated. A ben-
efit of our approach is, that it allows to compare middleware
products supporting different standards such as AMQP and
JMS directly.

3.1 Implementation
To allow benchmarking of AMQP middleware using the

SPECjms2007 workload an interface was added to the bench-
mark frameworks of SPECjms2007 and jms2009-PS. On the
client side SPECjms2007 and jms2009-PS were adapted to
use the Qpid Java client as an interface. This is accom-
plished by providing a JMS Connection Factory accessible
via a Java Naming and Directory Interface (JNDI) lookup.
The Qpid client translates the JMS requests and uses AMQP
for the communication with the server. Further, we had to
adjust the benchmark frameworks in a performance neutral
way without violating the JMS specification. The result is
a framework which can be configured easily to communicate
with pure JMS as well as AMQP middleware.

3.2 Demonstration: Benchmarking Qpid
The prototypic test setup for benchmarking AMQP is

based upon Qpid and the Qpid Java client which supports
JMS. Figure 1 shows the basic components involved: the
server is running the Qpid C++ broker with a persistence
module loaded (persistence is required by SPECjms2007).

AMQP
Qpid C++ Broker

SERVER

Persistence Store

Qpid JMS Client

SPECjms2007

JMS
Connection
Factory

CLIENT MACHINE

Qpid Client Adapter

NETWORK

Figure 1: Qpid Test Scenario

3.3 Related Work
Since AMQP is an emerging standard it has not been in

focus of research yet. In terms of benchmarking, one work

addresses the performance of AMQP using Infiniband [6].
The researchers chose Qpid as AMQP middleware and did
not enable persistence; by this network I/O becomes the
bottleneck rather than disk I/O. Five simple benchmarks
were used to evaluate different performance aspects while
SPECjms2007 uses a complex workload originating from a
real-world scenario.

4. SUMMARY
AMQP is expected to gain momentum within the next

years enabling the seamless integration of different MOM so-
lutions. For this, evaluating and comparing the performance
of different MOM is essential in order to reliably transport
messages while minimizing the costs.

This demo paper presents a way of evaluating performance
of AMQP supporting middleware; in addition a direct com-
parison with JMS middleware is possible. This is accom-
plished by adapting SPECjms2007 to utilize the Qpid Java
client; the setup was tested successfully with different Qpid
versions.

In addition to pure evaluation of performance, e.g. in
terms of resource needs per message, the proposed approach
is helpful for MOM developers, too. The benchmark utilizes
a variety of different communication parameters and allows
testing for reliability and robustness of implementations. Fi-
nally, scalability can be evaluated as well together with fail
over capabilities in complex cluster setups.

For application developers and MOM administrators the
use of jms2009-PS allows evaluating different configurations,
e.g.: message producers can send messages to dedicated des-
tinations per message type or follow a more generic approach
and send all messages to a single destination pursuing the
idea of an enterprise service bus (ESB). While the use of
multiple destinations inhibits expandability, using just one
destination increases filter complexity on consumer side; the
respective influence on performance can be evaluated using
the presented benchmarking approach.

5. REFERENCES
[1] AMQP Working Group. Advanced message queuing

protocol, 2010. http://www.amqp.org.

[2] J. Kramer. Advanced Message Queuing Protocol
(AMQP). Linux J., 2009(187):3, 2009.

[3] J. O’Hara. Toward a commodity enterprise middleware.
Queue, 5(4):48–55, 2007.

[4] K. Sachs, S. Appel, S. Kounev, and A. Buchmann.
Benchmarking publish/subscribe-based messaging
systems. In Database Systems for Advanced
Applications: DASFAA 2010 International Workshops:
BenchmarX’10, LNCS. Springer-Verlag, 2010.

[5] K. Sachs, S. Kounev, J. Bacon, and A. Buchmann.
Performance evaluation of message-oriented middleware
using the SPECjms2007 benchmark. Performance
Evaluation, 66(8):410–434, Aug. 2009.

[6] H. Subramoni, G. Marsh, S. Narravula, P. Lai, and
D. Panda. Design and evaluation of benchmarks for
financial applications using advanced message queuing
protocol (amqp) over infiniband. High Performance
Computational Finance, 2008. WHPCF 2008.
Workshop on, pages 1–8, nov. 2008.

[7] S. Vinoski. Advanced message queuing protocol. IEEE
Internet Computing, 10(6):87–89, 2006.

