Implementing a High Level Pub/Sub Layer
for Enterprise Information Systems

Mario Antollini
Faculty of Sciences, UNICEN, Tandil, Argentina
manto @ exa.unicen.edu.ar

Mariano Cilia*
Databases and Distributed Systems Group, Technische Universitit Darmstadt, Darmstadt, Germany
cilia@dvsl.informatik.tu-darmstadt.de

Alejandro Buchmann
Databases and Distributed Systems Group, Technische Universitit Darmstadt, Darmstadt, Germany
buchmann@dvs1.informatik.tu-darmstadt.de

Keywords:
services

Abstract:

data heterogeneity; data integration; semantic metadata; data dissemination; publish/subscribe; notification

Enterprise application interactions based on events has been receiving increasing attention. It is based on the

exchange of small pieces of data (called events) typically using the publish/subscribe interaction paradigm.
Most pub/sub notification services assume a homogeneous namespace and do not support the interaction
among heterogeneous event producers and consumers.

In this paper we briefly describe the concept-based approach as a high-level dissemination mechanism for
distributed and heterogeneous event-based applications. We focus on the design and implementation issues of
such a mechanism and show how it can be integrated on research prototypes or products and platforms.

1 Introduction

The global economy is causing drastic changes in
the way business is conducted. On the organizational
level, company mergers and acquisitions are leading
to a consolidation of manufacturers and producers. At
the same time goods are being offered across tradi-
tional borders regardless of economic, cultural or lin-
guistic differences. To function properly, global elec-
tronic commerce requires the correct interpretation of
exchanged data regardless of its origin and place of
consumption.

Notice that the exchanged data encapsulate infor-
mation about a given happening of interest, which
can only be properly interpreted and used when suf-
ficient context information is known. In traditional
centralized systems, this context information is typi-
cally known by the users/developers and left implicit.
When data and events are exchanged across compo-
nent or institutional boundaries contextual informa-
tion is usually lost. To process this data in a semanti-
cally meaningful way, explicit information about the
semantics of events and data is required.

Event-based systems need an event dissemina-
tion mechanism to deliver relevant events to inter-
ested consumers. The publish/subscribe interaction
paradigm has been gaining relevance for this pur-

*Also Faculty of Sciences, UNICEN, Tandil, Argentina.

pose. It basically consists of a set of clients that asyn-
chronously exchange events” decoupled by a notifica-
tion service® (NS for short) that is interposed between
them. Clients can be characterized as producers or
consumers. Producers publish notifications, and con-
sumers subscribe to notifications of interest by issuing
subscriptions, which are essentially stateless message
filters. After a client has issued a subscription, the no-
tification service is responsible for delivering all fu-
ture matching notifications that are published by any
producer until the client cancels the respective sub-
scription.

To the best of our knowledge (see Section 2 for
details), almost all publish/subscribe mechanisms are
restricted to expose the data structure of events to
participants. This reflects a low level support for
event consumers that based on this scarce informa-
tion must express their interest without having neither
a concrete definition of meaning nor explicit assump-
tions made by event/data producers. Without this
kind of information event producers and consumers
are expected to fully comply with implicit assump-
tions made by participating software components or

’In the context of this work the terms notification, mes-
sage and event are used interchangeable to mean basically
the same thing.

3Throughout this work the terms notification service and
messaging service will be interchangeably used.

applications. Even in the cases of a very small set
of applications within an enterprise this approach is
questionable.

Since publish/subscribe mechanisms decouple pro-
ducers and consumers, they should share a common
understanding in order to express their mutual in-
terests. In other words, events must be understand-
able beyond the closed confines of a single compo-
nent or application. That includes applications that
interact across traditional borders regardless of eco-
nomic, cultural or linguistic differences (in its sim-
plest form, i.e., system of units, currency or date/time
format). Since the source of an event (in other words
a publisher) cannot anticipate who is interested in a
given event and when and where it must be deliv-
ered, a higher-level publish/subscribe infrastructure is
needed. This basically adds to the current pub/sub
mechanisms the following two requirements: a) the
usage of a common vocabulary for defining interests,
and b) the correct interpretation of information inde-
pendently of its origin and place of consumption.

The Concept-based addressing was initially pro-
posed as a part of a data dissemination mechanism
in the context of Internet auctions (Bornhévd et al.,
2000) and later in the context of reactive systems in
distributed environments (Cilia et al., 2001). Based
on this experience a higher level of abstraction to de-
scribe the interests of heterogeneous event producers
and consumers was proposed. This is achieved by
supporting from the ground up ontologies which pro-
vide the base for correct data and event interpretation.

Rather than requiring every producer or consumer
to use the same homogeneous namespace (as is com-
mon in other publish/subscribe systems) we provide
metadata and (extensible) conversion functions to
map from one context to another. This last feature
allows event consumers to simply specify the context
to which events need to be converted before they are
delivered for client processing.

In this paper we focus on the design and implemen-
tation issues of such an abstract layer and show how it
can be integrated on research prototypes (such as Re-
beca) and (commercial) products and platforms (like,
JMS and J2EE). We do not aim to analyze its perfor-
mance since its goal is to show the implementation of
a novel approach that provides heterogeneous appli-
cations with a seamless way to interact and correctly
interpret their exchanged data.

The rest of this paper is organized as follows. In
section 2, background and related work is presented.
Then, we describe our proposed approach in section
3. The main design decisions are described in sec-
tion 4 while details about the implementation are pre-
sented in section 5. Finally, conclusions and future
work are presented.

2 Background and Related Work

Since this work deals with various issues, like event
dissemination, the publish/subscribe paradigm, dis-
tributed systems, this section serves as a review of
these topics including related research.

2.1 Data Dissemination

Notification services are widely used to deliver
events/data of interest to the corresponding con-
sumers. A notification service is an application-
independent infrastructure that supports the construc-
tion of collaborating systems (event-based systems),
whereby producers of events publish event notifica-
tions to the infrastructure and consumers of events
subscribe with the infrastructure to receive notifica-
tions of interest.

There are several research projects (e.g. SIENA
(Carzaniga, 1998), REBECA (Miihl, 2001), CEA
(Bacon et al., 1998), JEDI (Cugola et al., 1998),
READY (Gruber et al., 1999), standard specifica-
tions (i.e., CORBA event service (Object Manage-
ment Group, 1997), Java Message Service (Hapner
et al., 1999)) and products (TIBCO Inc., 1996; IBM,
; Fiorano, ; Talarian, ; SonicSoftware, ; SpiritSoft,)
that focus on different aspects of data dissemination.

The pub/sub model is a very general communi-
cation model to exchange data among participating
applications commonly used in distributed environ-
ments. Its main features can be characterized by:

o Natural Multicast Functionality. Within the pub-
lish/subscribe model one application can send a
message once and multiple participating applica-
tions receive it. This model contains basically two
main players: data producers and consumers.

e FEvent Filtering. Some notification services also of-
fer filtering facilities, which are based on clients’
subscriptions (i.e., server-side filtering), avoiding
irrelevant events to be forwarded to uninterested
consumers.

e Decoupling Producers and Consumers. Producers
and consumers of messages are anonymous to each
other, so the number of publishers and subscribers
may dynamically change. Individual publishers
and subscribers may evolve without disrupting the
existing system, facilitating extensibility and flexi-
bility.

e Mediator. A NS responsible for finding and deli-
vering matching notifications among publishers
and subscribers.

A fundamental aspect of publish/subscribe systems
is the expressiveness of the notification selection,

i.e, how consumers specify subscriptions. The pub-
lish/subscribe interaction offers four generic alterna-
tives (or models) in order to address messages.

Channel-based addressing: The first generation of
publish/subscribe systems (Harrison et al., 1997;
Object Management Group, 2000; Sun Microsys-
tems, Inc., 1998) used channels. Here, the producer
publishes notifications into specific channels. Con-
sumers subscribe to channels and get all notifica-
tions published on them.

Subject-based addressing: In subject-based
pub/sub systems (Oki et al., 1993; TIBCO Inc.,
1996) producers publish notifications attaching
to them certain additional information, called
subject, that usually synthesizes notifications’
content. Subjects are arranged in a subject tree
by using a dot notation, and clients can either
subscribe to a single subject (e.g., finance.-
quotes .NASDAQ.FooInc) or use wildcards
(e.g., finance.quotes .NASDAQ. *).

Topic-based addressing: This is similar to the idea
of channels (here called ropics) (Haase, 2002; Hap-
ner et al., 1999). Messages can carry additional
properties that could represent the content of the
message in question. Consumers express their in-
terest by subscribing to a topic but they can addi-
tionally include a predicate (called message selec-
tors) that refer to message properties.

Content-based addressing: It allows subscriptions
to express interest based on the content of noti-
fications, providing a more powerful and flexible
notification selection (Aguilera et al., 1999; Miihl,
2001) than the others.

2.2 Dealing with Heterogeneity

The need for additional semantic metadata for the ex-
change of data or messages among independent enti-
ties or services has been clearly identified, not only in
the context of B2B frameworks like ebXML (Eisen-
berg and Nickull, 2001), BizTalk (Microsoft Corp.,
2000), or RosettaNet (RosettaNet, 2002) but also by
the W3C in efforts like Semantic Web (Berners-Lee
etal., 2001), or DAMLA+OIL (D. Conolly et al., 2001).

XML (Bray et al., 1998) and XML Schema (Fall-
side, 2001) are used to define common vocabularies
to describe data and business processes. Other data
models similar to XML include OEM (Papakonstanti-
nou et al., 1995) and the models described in (Abite-
boul et al., 1997; Deutsch et al., 1999).

For the representation of content of messages we
use MIX (Metadata based Integration model for
data X-change) (Bornhovd and Buchmann, 1999;
Bornhévd and Buchmann, 2000; Bornhovd, 2000),

a data model that combines the use of tags or at-
tribute names from a common vocabulary with addi-
tional meta information that describes the correspond-
ing data. MIX can be understood as a self-describing
data model for data exchange since information about
the structure and semantics of the data is given as part
of the exchanged data itself.

The MIX model is based on the concept of a
SemanticObject, together with its underlying
SemanticContext which consists of a flexible set
of meta-attributes that explicitly describe the assump-
tions about the meaning of the data item. Each se-
mantic object has a concept label associated with it
that specifies the relationship between the object and
the real world aspects it describes. These labels have
to be taken from a commonly known vocabulary, or
ontology (Bornhovd, 1999).

In the MIX representation, simple attributes are
represented as triplets of the form <C; v; >, with C
referring to a concept from the underlying ontology, v
standing for the actual data value, and S representing
the semantic context of v. The association of context
information with a given data value serves as an ex-
plicit specification of the meaning of the data.

3 Proposed Approach

Originally introduced in (Bornhovd et al., 2000) for
a specific application and with an initial implementa-
tion on top of a commercial pub/sub product (Cilia
et al., 2001), the concept-based approach was pro-
posed to tackle the problem of event-based interac-
tion among heterogeneous cooperating applications.
On one hand, it concentrates on resolving data inter-
pretation problems. On the other hand, it provides a
pub/sub abstraction that can run on top of (various)
notification services independently of the addressing
model used underneath.

The concept-based approach provides an abstrac-
tion where participating applications do not need to
care about details of the underlying delivery mech-
anism. In this sense, applications involved in such
interaction can replace this mechanism by relying on
the concept-based layer causing minimal changes on
collaborating applications if any.

3.1 High-Level Architecture

The concept-based approach is not intended to be a
whole new notification service by itself, but a layer
of software capable of running on top of different ex-
isting notification services, even supporting different
addressing models. From an abstract point of view,
it mediates in every subscription or publication that

clients issue and it delivers messages to the underly-
ing notification service. As a matter of fact, clients
do not directly communicate with the underlying no-
tification service anymore, moreover they don’t even
know which or what kind of NS is running below the
concept-based layer.

Publisher, m

) =\
S

T (T
iSubscriber, un

Figure 1: Concept-based high-level architecture

Figure 1 sketches this approach. The underlying
NS is used as a data delivery mechanism where the
concept-based layer is responsible for providing a
higher-level interaction among heterogeneous appli-
cations (Cilia et al., 2004). A vocabulary/ontology
manager is associated with this layer with the pur-
pose of handling domain-specific vocabularies used
by the participant applications. Adapters are the in-
termediaries between pub/sub clients and the concept-
based layer. At the publisher side, they are responsi-
ble for resolving vocabulary issues and for enriching
message content, i.e. with contextual information. At
the subscriber, side they are in charge of transform-
ing/converting message content according to the sub-
scriber context. Additionally, this layer is responsible
for mapping concept-based data into the data struc-
tures and addressing models of the delivery mecha-
nism underneath.

3.2 Handling Heterogeneity of
Exchanged Data

In order to propose a solution to the problem of
data heterogeneity (or data integration) in the context
of cooperating applications (particularly relying on
pub/sub systems), several crucial issues are needed:

e the management of a shared vocabulary used by
participating applications,

e a matching vocabulary which is a subset of the
shared one used internally by the pub/sub system
for matching purposes,

e a vocabulary agreement module that maps from the
shared to the matching vocabulary,

e explicit definition of contextual information of all
participants within the pub/sub system, and

e conversion functions to map from and to different
contexts.

Making the vocabulary and the contextual assump-
tions explicit, events produced at source applications
can be correctly interpreted and converted to the re-
quired target context by diverse consumers.

3.3 Context Transformation

Adapters are the contact of applications with the noti-
fication service. They are responsible for the mapping
operations from local context to the matching one and
vice versa.

Adapters are responsible for converting messages’
context to the context used inside NSs boundaries
(known as default context). This is done based on
the explicit specification of clients about their con-
textual information. As soon as a message arrives to
the concept-based layer, it is automatically converted
to the matching context and then delivered to the un-
derlying NS. In this way, NSs’ internal matching op-
erations are always carried out over expressions and
messages expressed in the same context.

Before events arrive at the subscriber side, adapters
automatically convert message’s context to the one
specified by subscribers at subscription time. In this
way, consumers receive data converted according to
their contextual preferences and no further conversion
is needed at the client application.

4 Design of the Concept-based
Pub/Sub Layer

This section explains how the concept-based layer
was designed, exposing in detail the way subscrip-
tions and publications are represented through the
concept-based layer.

4.1 Integrating MIX with
Participating Applications

The MIX model plays the role of a common vocabu-
lary into the concept-based architecture, as the basis
for the correct interpretation of events coming from
different sources. This important component is the
shared mean between publishers and subscribers in
our concept-based implementation. Relying on it,
heterogeneous applications can interact seamlessly.

Gonversion &

Adatching op

Publisher 258 Subscriber
Application || ;uﬁl

43y Application

M
|

Figure 2: The role of MIX among concept-based clients

As can be seen in Figure 2, MIX is basically com-
posed of four sub-components (i.e., conversion and
matching operations, events, expressions and seman-
tic context). Participating applications take advantage
of the functionality provided by MIX using the appro-
priate sub-components. Publishers create events and
enhance them with the available semantic informa-
tion. On the other hand, subscribers use MIX to create
expressions indicating the kind of events they are in-
terested in and add contextual information to them as
well. In this way, participating applications can inter-
communicate with each other by sharing a common
component (i.e., MIX) which provides all the func-
tionality required to handle data heterogeneity.

In the context of concept-based, the conversion and
matching operations are used in order to achieve in-
teroperation between the contextually different ap-
plications. This sub-component is only used by the
adapters and no participating application is supposed
to deal with it.

4.1.1 Event and Subscription Representation

Events, or to be more precise event content, are rep-
resented using the MIX model. When a producer ap-
plication publishes an event/notification through the
concept-based layer, it sends a SemanticObject
representing the desired event. This so-called seman-
tic event is created using the MIX data model, which
defines the set of concepts that are available to de-
scribe data and metadata from a given domain. This
event is composed by a tree-shape object structure.

Regarding the representation of subscriptions, sub-
scribers express their interests (or subscription pat-
terns) using boolean expressions that include predi-
cates on the context of the events in question (Cilia
et al., 2005). These expressions include contextual in-
formation for the correct interpretation and matching
of incoming events.

4.2 Notification Service
Independence

An important issue of this work was to find a way
to achieve loosely coupling interaction between the

concept-based layer and different underlying notifica-
tion services.

The idea was to encapsulate common functionality
(needed by every NS) to be used by the core of the
concept-based layer, but letting specific functional-
ity to be implemented by NS-dependent components.
Thus, the main concept-based layer functionality (i.e.,
its core) obtains enough independence to allow easy
integrability with existing NSs.

Clizni

Py ol i ianmy |
8

Cync!pf-basad Iayerg

‘ Cligri

Publisher.
Y

Concap!—A:_werJ Layzr

CBPublisher.

'CBFactory | i CBMsg

w,l,,,,_,l._

‘NSSubscrlptIon
i 3 NSFactory. NSListener
L ry
$

) @ b) \é

Figure 3: Publisher and subscriber components

CBSubscriber. |

/ ‘CBSubscripﬁon \
[CBFactory.
=

NS-independent
components

| CBListener

NS-dependent
components

a

Figure 3 (a) illustrates the collaboration among
components needed to achieve the publication of mes-
sages. As can be seen, the concept-based layer is
(logically) split into two “parts”: the NS-independent
functionality remains unaware of specific notification
service details, while the NS-dependent part explic-
itly interacts with the notification service in question.
As a consequence cooperating applications (or client
code) is freed of specific notification service details. It
only needs to communicate with the NS-independent
part. This allows the migration from one NS to an-
other without modifying clients’ code.

In the same way, Figure 3 (b) shows the compo-
nents involved with consumers. It can be noticed here
again, that the concept-based layer is also split into
two parts: NS-independent components (upper layer)
and NS-dependent components (lower layer). As a
consequence clients only interact with the upper layer.

Both figures include the MIX repository in order
to allow publishers and subscribers to interact. The
shared vocabulary is used by all participating clients.
Using MIX, possible differences among participants
at the vocabulary level and at the information context
level are solved by a vocabulary agreement module.

Achieving NS independence concentrated on iden-
tifying those components that were commonly needed
in every NS. We arrived to the following three entities:
a) Message, b) Listener, and c) Subscription.

In addition to these, a factory component was
needed. It is in charge of creating these entities.
That’s the reason why a component that plays the role
of a factory (named CBFactory) appears in both
figures. Let’s briefly explain the entities involved.

4.2.1 Message (CBMsq)

This component is a message representative within
concept-based boundaries. It is automatically created
by the concept-based layer to store and manipulate
the original event sent by the publisher application.
It provides a common interface to access most needed
message properties, hiding the real NS message to the
concept-based layer. It presents an abstract interface,
helping the core functionality to ignore the concrete
message representation it is currently being used.

4.2.2 Listener (CBListener)

This component is used by consumer applications to
be notified when an event of interest arrives. It acts as
an intermediary between the underlying NS-listener
and client’s listener. Right before a notification is de-
livered to the subscriber it is first automatically con-
verted to the context specified at subscription time.
This conversion function is needed to deliver ready-
to-process data to consumers so that no further data
conversions are needed.

4.2.3 Subscription (CBSubscription)

When a subscriber issues a new subscription, it re-
ceives a subscription ID as a response. This subscrip-
tion ID will be later needed to issue the correspond-
ing unsubscription. This component hides the way an
unsubscription must be notified to the underlying NS
mechanism. Subscriber applications just need to in-
voke its unsubscribe method.

4.2.4 Factory (CBFactory)

This component is in charge of creating previously
mentioned entities. It is aware of the underlying de-
livery mechanism (i.e., NS). For each underlying NS
there is a corresponding factory. It presents an ab-
stract interface to the concept-based layer, which re-
mains unaware of the concrete factory it is interacting
with. It provides an interface to:

e create a CBMsg wrapping a NS-dependent mes-
sage,

e publish a CBMsg into the NS this factory is able to
communicate with, and

e subscribe to events/notifications of interest, return-
ing a CBSubscription to consumer applica-
tions.

5 Implementation

This section describes implementation issues, de-
tailing the integration with different implementations
of the JMS specification, as well as the J2EE platform
and Rebeca.

5.1 Notification Service
Independence

As previously stated, we proposed NS-independence,
which led us to use the Abstract Factory design pat-
tern (Gamma et al., 1995). This pattern allows to cre-
ate families of related or dependent objects without
specifying their concrete classes.

ConceptBasedractory ConceptBasedClient

-thFactory.ConceptBal
-thMessage:Conceptl
[] -chListener. Concents:

reateC o
reateC: istener.C: istener

ConceptBasediiessage

IMSFactory

CanceptBasedClient

+treateConteptBasediiessagg
+treateConceptBasedListener]

..ConceptBasedPublisher

+ConceptBasedPublisher
+gendvoid

JMSMessage | |RebecaMessage

Objectvoi

a)

interface
Istener

ConceptBasedClient

RebecaFactory

+nobifvoich +ConceptBased3ubscriber

+ereateConceptBasediessage
+createCancentBasedListener.C

7 :

-getatringPattemExpres sion
-getatringPattemsemanticCo
IMSListener Rebecalistener

-parseExpressionEpression
Serm

r 1

| |

| |

! |

! T

! I

! |

! I

: +netivor | | *substribe:ConceptBasedsf
|

! I

! I

! I

! |

! I

L] !
|

Figure 4: Concept-based’s abstract factory

As can be seen in Figure 4, the Con-
ceptBasedFactory provides an inter-
face to create concept-based entities (e.g.,
ConceptBasedMessage or ConceptBased-—
Listener). This factory is created at startup and is
NS-dependent, so it “knows” what kind (subclasses)
of entities will be needed to interact with the under-
lying notification service. It must be noticed that
factory creation is made at system startup and cannot
be changed at runtime. Thus, once the concept-based
layer is up and running it remains fully attached to
the underlying NS until it is restarted.

Participant applications interact with either the
ConceptBasedSubscriber or Concept-
BasedPublisher (consumer applications
communicate with the former, while publisher
applications interact with the latter). These two com-
ponents (together with the abstract entities) contain
the core functionality of the concept-based layer
and remain unaware of the NS-dependant entities
required to achieve interaction with the underlying
NS.

5.2 Integrating JMS

Before a semantic event can be delivered to a JMS
notification service, first it must be mapped to a JMS
message as defined in the JMS specification.

When a semantic event arrives to the concept-based
layer, it is converted to the default semantic con-
text and then traversed* to gather every relevant in-
formation. This acquired data is inserted one by
one into a CBMsg which in turn is mapped to an
ObjectMessage’. The properties extracted from
the traversed message need to be mapped to the NS-
dependent message format. This data is inserted as
properties of the JMS-dependent message. This map-
ping operations are NS-dependent and they greatly
vary from the kind of JMS message type.

Now, this ObjectMessage is ready to be de-
livered to the underlying NS since it is an accurate
copy (in another representation/format) of the seman-
tic event in question. This JMS message not only
contains the data/properties required by the underly-
ing NS to perform matching and delivery operations,
but also the (serialized) semantic event it stands for.

Later on, when the JMS message (ie.,
ObjectMessage) is delivered to the concept-
based layer at the subscriber-side (as a result of a
matching subscription), the originally dispatched
semantic event can be extracted from the JMS
message, converted to the subscriber’s context and
finally delivered.

5.3 Integrating J2EE

This integration was accomplished using message-
driven beans (MDBs) that according to the EJB spec-
ification (Sun Microsystems, 2001) are responsible
for dealing with asynchronous communications. An
schematic view of our approach is sketched in Fig. 5.

(@ Y
|

EUORCIIENts J2EE

—— | MDB
l c::'!Publiai:arJ
Jung, sl

=

Figure 5: High-level architecture of concept-based on J2EE

“Remember that a semantic event is a tree-shape object
structure.

SAn ObjectMessage is one of the five kinds of mes-
sages supported by JMS. This particular message provides
the capability to store and transport serialized objects.

J2EE subscribers are notified about events of inter-
est through a CBSubscriber that acts as a MDB
within the J2EE platform, whereas publishers issue
events through a CBPublisher as usual. Interac-
tion among participating applications is achieved by
relying on a JMS delivery mechanism ©.

MDB’s native functionality comprises the sub-
scription to JMS messages and their later announce-
ment. In this way, when concept-based publishers
send notifications to a JMS NS, every MDB with a
matching subscription will be notified.

Achieving this interaction between different par-
ticipating applications is not a complex task. Ev-
ery subscriber client at the J2EE-side has to extend
the ConceptBasedMDB class. As usual in MDB,
this class provides a hook that has to be implemented
since it is invoked when corresponding notifications
arrive.

It is worth mentioning that during deploy-time the
MDB gets data regarding contextual information uti-
lized by the consumer application. This information
is available in its XML deployment descriptor file and
every time a new message arrives to the MDB, it is
used to convert the message to the desired context.
Subsequently, this event can be effectively given to
its consumer application.

5.4 Integrating Rebeca

Rebeca’ is an open source event notification service
framework. Its data model is an essential part of it
and it is composed by two closely interrelated com-
ponents: Notifications and Subscriptions. The former
are messages that reify and describe Event occur-
rences emitted by publishers, while the latter are mes-
sage F'11ters thatexpress subscribers interests. The
Event class is the base class of all notifications and
encapsulates message data. The Filter class is the
base class of all filters. Its most important functional-
ity is to determine if a given event matches a filter.

Originally, Rebeca only supported content-based
addressing model but, it was extended to support
the concept-based addressing model (Antollini et al.,
2004). That’s why, before coding Rebeca’s dependent
components into the concept-based layer we firstly
enhanced its own data model to support the mentioned
addressing model seamlessly. We only coded two new
classes:

®MDBs were restricted to JMS until the latest EJB spec-
ification

"Rebeca is a pub/sub research framework that relies on
its own content-based addressing model. Nevertheless, it
also provides a JMS-compliant interface that allows it to
provide services resembling a JMS NS. In this section we do
not take into account its JMS functionality; we just consider
its pure and basic operational mode.

e SemanticEvent. This Event subclass rep-
resents a concept-based message into the Rebeca
NS. It not only contains the SemanticObject
it represents, but also the ConceptBasedEvent
that holds additional information required by the
concept-based layer.

e SemanticFilter. It represents an expression
which is used to check if a subscription matches a
given event. Itis a Filter specialization.

With such additions the Rebeca NS is ready to
support the concept-based addressing model directly.
Thus, concept-based layer’s modifications to support
Rebeca were quite straightforward (i.e., just coding
required Rebeca-dependent classes).

6 Conclusions and Future Work

This work was motivated by cooperating
information-driven applications, particularly on
open distributed heterogeneous environments.
These applications require the dissemination of vast
amounts of data, and the reaction to notifications con-
cerning events of interest. Usually, these applications
rely on pub/sub mechanisms. Interaction among such
applications faces up the problem that these notifi-
cations must be understandable beyond the closed
confines of a single application/module/component or
enterprise. Within the context of pub/sub the source
of a notification cannot anticipate who is interested in
a given notification.

We proposed the extension of notification services
by adding a higher-level layer that provides an ab-
straction to data producers and consumers that sup-
port the interaction among heterogeneous partici-
pants. This layer is responsible for mapping sub-
scriptions and publications to the underlying notifica-
tion delivery mechanism. These enhancements were
designed to be incorporated on top of existing noti-
fication services. Basically, we abstract participat-
ing clients about different messaging service inter-
faces while providing notification service indepen-
dence. We showed how to free participating appli-
cations from any data conversion responsibility and
provided such a functionality as a de facto context,
allowing heterogeneous applications to seamlessly in-
teract among each other.

A variety of tests were successfully performed over
different NS implementations. In the case of JMS, we
discovered that the JMS specification lacks some im-
portant issues to enable full compatibility among dis-
tinct JMS vendors. On the other hand, no major dif-
ficulties arose while performing these practical eval-
uations on the open-source notification service called
Rebeca.

In this work we do concentrate on the problem of
interpretation of exchanged data among autonomous,
distributed and heterogeneous information systems.
We proposed a layer that resolves the problem of data
conversion with the aim of reducing/avoiding mis-
interpretations when exchanging data. Performance
measurements are needed to see the overhead induced
by this layer on the different setups. Preliminary per-
formance experiments show a “penalty” ranging from
20-40%. It must be bore in mind that bare compar-
isons here are not fair since producing and consuming
applications do need to compute (ad-hoc) data conver-
sions scattered among many applications. Therefore,
the impact of development and maintenance needs to
be taken into consideration.

As a final remark, we can add that the integral use
of ontologies to support the correct interpretation of
data coming from heterogeneous sources was of par-
ticular interest. The data representation of the MIX
implementation used in this prototype is based on se-
rializable java objects. An OWL-based implementa-
tion was built (Kabus, 2003) and is being integrated
in the next generation of our prototype.

Additionally, a centralized administration user in-
terface for the concept-based layer is under develop-
ment. Through this interface a common vocabulary
can be defined, the ontology can be edited, new con-
version functions can be described, the matching con-
text can be specified, and the mapping strategies into
the underlying addressing model can be configured.
Our current efforts also include different performance
experiments.

REFERENCES

Abiteboul, S., Cluet, S., and Milo, T. (1997). Correspon-
dence and Translation for Heterogeneous Data. In Intl.
Conf. on Database Theory. Delphi, Greece.

Aguilera, M., Strom, R., Struman, D., Astley, M., and
Chandra, T. (1999). Matching Events in a Content-
based Subscription System. In Procs of ACM
SIGACT-SIGOPS Symposium on Principles of Dis-
tributed Computing, pages 53-61.

Antollini, J., Antollini, M., Guerrero, P., and Cilia, M.
(2004). Extending Rebeca to Support Concept-based
Addressing. In Proceedings of the Argentinean Sym-
posium on Information Systems (ASIS’04), Cordoba,
Argentina.

Bacon, J., Moody, K., and Bates, J. (1998). Opera: Active
systems. Technical Report GR/K77068, University of
Cambridge - Computer Laboratory.

Berners-Lee, T., Hendler, J., and Lassila, O. (2001). The
Semantic Web. Scientific American, 284(5):35-43.

Bornhovd, C. (1999). Semantic Metadata for the Integra-

tion of Web-based Data for Electronic Commerce. In
Procs of WECWIS’99, pages 137-145. IEEE Press.

Bornhovd, C. (2000). Semantic Metadata for the Integra-
tion of Heterogeneous Internet Data. PhD thesis, De-
partment of Computer Science, Darmstadt University
of Technology, Darmstadt, Germany.

Bornhovd, C. and Buchmann, A. (1999). A Prototype for
Metadata-based Integration of Internet Sources. In
Procs of CAiISE, volume 1626 of LNCS, pages 439—
445.

Bornhovd, C., Cilia, M., Liebig, C., and Buchmann, A.
(2000). An infrastructure for meta-auctions. In Proc.
of (WECWIS’00).

Bornhovd, C. and Buchmann, A. P. (2000). Semantically
meaningful data exchange in loosely coupled environ-
ments. In Procs of Intl Conf on Information Systems
Analysis and Synthesis (ISAS’00), Orlando, FL, USA.

Bray, T., Paoli, J., and Sperberg-McQueen, C. (1998). Ex-
tensible Markup Language (XML) 1.0. W3C Rec-
ommendation, W3C, http://www.w3.0rg/TR/
REC-xml.

Carzaniga, A. (1998). Architectures for an Event Notifi-
cation Service Scalable to Wide-area Networks. PhD
thesis, Politecnico di Milano, Milano, Italy.

Cilia, M., Antollini, M., Bornhovd, C., and Buchmann, A.
(2004). Dealing with heterogeneous data in pub/sub
systems: The Concept-Based approach. In Procs of
DEBS’04, Edinburgh, Scotland.

Cilia, M., Bornhovd, C., and Buchmann, A. (2001). Moving
Active Functionality from Centralized to Open Dis-
tributed Heterogeneous Environments. In Proceed-
ings of CooplS, pages 195-210, Trento, Italy.

Cilia, M., Bornhovd, C., and Buchmann, A. (2005). Event
handling for the universal enterprise. Information
Technology and Management — Special Issue on Uni-
versal Enterprise Integration, 5(1):123,148.

Cugola, G., Nitto, E. D., and Fuggetta, A. (1998). Exploit-
ing an Event-based Infrastructure to Develop Com-
plex Distributed Systems. In Proc. of ICSE’98.

D. Conolly et al. (2001). DAML+OIL (March 2001) Refer-
ence Description. W3C Note, W3C, http://www.
w3.0rg/TR/daml+oil-reference.

Deutsch, A., Fernandez, M., and Suciu, D. (1999). Stor-
ing semistructured data in relations. In Workshop on
Query Processing for Semistructured Data and Non-
standard Data Formats. Jerusalem, Israel.

Eisenberg, B. and Nickull, D. (2001). ebXML Technical
Architecture Specification v1.04. Technical report,
http://www.ebxml.org.

Fallside, D. (2001). XML Schema Part 0: Primer. W3C
Recommendation, W3C, http://www.w3.0rg/
TR/xmlschema-0/.

Fiorano. FioranoMQ. www. fiorano.com.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J.
(1995). Design Patterns, Elements of Reusable
Object-Oriented Software. Addison-Wesley.

Gruber, R., Krishnamurthy, B., and Panagos, E. (1999).
The Architecture of the READY Event Notification

Service. In Proceedings of th 19th IEEE Intl. Conf.
on Distributed Computing Systems Middleware Work-
shop.

Haase, K. (2002). Java Message Service API Tutorial. Sun
Microsystems.

Hapner, M., Burridge, R., and Sharma, R. (1999). Java Mes-
sage Service. Specification Version 1.0.2, Sun Mi-
crosystems, Inc., Java Software.

Harrison, T. H., Levine, D. L., and Schmidt, D. C. (1997).
The Design and Performance of Real-time CORBA
Event Service. In Proc. of OOPSLA’97, pages 184—
200.

IBM. MQ-Series. www—4.ibm.com/sotware/ts/
mgseries.

Kabus, P. (2003). Implementing Semantic Data Integration
for the Internet (in german). Master’s thesis, Depart-
ment of Computer Science, Darmstadt University of
Technology, Germany.

Microsoft Corp. (2000). Biztalk Framework 2.0: Docu-
ment and Message Specification. Microsoft Technical
Specification.

Miihl, G. (2001). Generic Constraints for Content-based
Publish/Subscribe Systems. In Proc. of CooplS’01,
volume 2172 of LNCS, pages 211-225. Springer.

Object Management Group (1997). Event Service Spec-
ification. Technical Report formal/97-12-11, Object
Management Group (OMG), Famingham, MA.

Object Management Group (2000). CORBA Event Ser-
vice Specification, version 1.0. OMG Document
formal/2000-06-15.

OKki, B., Pfluegl, M., Siegel, A., and Skeen, D. (1993). The
Information Bus - An Architecture for Extensible Dis-
tributed Systems. In Proceedings of the 14th Sympo-
sium on Operating Systems Principles.

Papakonstantinou, Y., Garcia-Molina, H., and Widom, J.
(1995). Object Exchange Across Heterogeneous In-
formation Sources. In Prof. of ICDE 95.

RosettaNet (2002). RosettaNet Implementation Frame-
work: Core specification v2.00.01. RosettaNet Tech-
nical Specification, http://www.rosettanet.

org/rnif.

SonicSoftware. SonicMQ. www.sonicsoftware.
com/products.

SpiritSoft. Spirit Lite. www.spirit-soft.com/

products/lite/overview.html.

Sun Microsystems, 1. (2001). Java 2 Enterprise Edition Plat-
form Specification. Technical Report Version 1.3, Sun
Microsystems, Inc.

Sun Microsystems, Inc. (1998). Distributed Event
Specification. Mountain View, CA, USA.
http://www. javasoft.com/products/
javaspaces/specs.

Talarian. SmartSockets for IMS. www.talarian.com/
products/Jjms/index.shtml.

TIBCO Inc. (1996). TIB/Rendezvous. White
Paper, http://www.rv.tibco.com/
rvwhitepaper.html.

