
A3ME – Generic Middleware for Information
Exchange in Heterogeneous Environments

Arthur Herzog
Dept. of Computer Science

Technische Universität Darmstadt
D-64283 Darmstadt, Germany

Email: aherzog[at]dvs.tu-darmstadt.de

Alejandro Buchmann
Dept. of Computer Science

Technische Universität Darmstadt
D-64283 Darmstadt, Germany

Email: buchmann[at]dvs.tu-darmstadt.de

Abstract—This paper presents a proof of concept for a generic
middleware for heterogeneous sensor/actuator networks, which
enables ad-hoc discovery, self-description exchange and basic
interactions between heterogeneous devices. The main approach
is to represent each device by a device-agent which knows its
capabilities, constraints and policies, and is able to describe those
to other devices on request.

Index Terms—Middleware, ad hoc networks, semantics.

I. INTRODUCTION

We present a proof of concept for a new middleware to
enable information exchange and interactions among devices
in heterogeneous environments. Heterogeneous environments
does not mean just different device types, but also devices with
vastly different capabilities. The dimensions of heterogene-
ity include computing capabilities, communication, software,
degree of mobility and availability. Such environments are
for example areas where conventional computing, Wireless
Sensor Networks (WSNs), Wireless Sensor and Actuator Net-
works (WSANs), Ubiquitous Computing, Mobile Computing
and Robotics or a subset of those come together. All these
devices have their specific capabilities, properties, policies and
constraints. They communicate with each other in different
ways: by wire, radio, infrared, light, sound or through other
media. For each of these communication media, many dif-
ferent communication technologies exist, which use different
protocols, frequencies, encoding schemes, etc. Regarding the
mobility different devices can be static or mobile, but also
many mobility levels in between are possible, like a notebook
which is static usually, but alternates its position between the
working place and home of a person. A sensor attached to
a tram is another example, here the sensor is mobile all the
time but, its motion follows a defined path namely the route of
the tram. Considering the software of the devices, they differ
vastly: the devices use different operating systems, software,
programming languages, content representation languages, ap-
plication programming interfaces, etc.

Today, application developers must deal with this hetero-
geneity when developing a new application for heterogeneous

Supported by the DFG Research Group 1362, Cooperative, Adaptive and
Responsive Monitoring in Mixed Mode Environments and by the LOEWE
Priority Program Cocoon.

networks. Ad-hoc discovery and interaction with new nodes
is only possible for specialized solutions, but not in general.
Usually each time a new kind of node appears in the network,
the applications have to be adjusted to deal with the new
hardware. Middleware is a way to avoid this direct interaction
of applications with the hardware and software of the devices,
and to enable and simplify the interoperability among devices.
Middleware abstracts over all the devices and communication
technologies, and offers the applications well-defined inter-
faces to interact with other nodes.

Our aim is to enable interoperability among different nodes
in a heterogeneous environment without the need of adjust-
ments each time new hardware is introduced. The agent-based
approach offers an abstraction for the different devices: it
sees all the different nodes in the network as independent
entities – device-agents (DAs). Each device-agent knows its
capabilities, properties, policies and constraints. Depending
on its capabilities, a device-agent can offer services to other
agents and can perform tasks, sometimes using the services
of other agents. Basic ideas for this middleware were also
described in [9].

II. RELATED WORK

For each of the before mentioned areas there exist domain
specific middleware solutions, but to simplify the interaction
between those we need a more generic solution with small
footprint. In conventional computing there are established
solutions like Common Object Request Broker Architecture
(CORBA) [4], Enterprise JavaBeans (EJB) [6], Web Services
and their software stack. For many kinds of devices these so-
lutions are too heavy weight w.r.t. communication, computing
and storage requirements. These solutions also are basically
centralized solutions, relying on one or multiple central servers
needed to enable middleware functionalities.This also limits or
even prevents ad-hoc interactions when the central instances
are not reachable.

In the WSN area most research has been done in homoge-
neous WSNs using the same kind of device for all nodes in the
network or in combination with a second more powerful kind
of device that is used as a gateway and data sink. One kind
of middleware used here is TinyDB [13], which represents a

978-1-4673-1786-3/12/$31.00 c©2012 IEEE

homogeneous network of sensors as a relation on which you
can execute SQL like queries. Another type of middleware in
WSN is Agilla [8]. Here executable code can move between
devices and continue its execution on different sensors for
example to compute average temperature. The WSN operating
systems like TinyOS [12] and Contiki [7] also can be seen
as a kind of middleware for WSN since they simplify the
programming and interactions within the WSN. In contrast to
it our solution is designed to enable interactions also beyond
the own WSN.

In WSANs an additional type of nodes – actuators – is
used. They are capable of interacting with the physical world
(e.g. automatic watering of plants controlled by soil humidity
sensors). This type of networks have usually low number of
different device types.

In ubiquitous computing multiple devices in an individual’s
surroundings are performing tasks. Hereby the user doesn’t
necessarily have to interact consciously with the devices.
Additionally to simple sensors and actuators a broad variety
of devices is involved here like media devices, mobile phones,
light and temperature control devices, etc [11].

III. GOALS

In the development of the A3ME Middleware we focused
on following goals:

a) Ad-hoc Interactions: The primary goal is to provide
on-the-fly interactions with different devices. This means
devices must be able to discover each other, without individual
manual adjustment, exchange their descriptions and offer/use
services to/from each other.

b) Decentralized Solution: A centrally controlled hete-
rogeneous network with thousands of devices doesn’t scale
well. Therefore our goal is to enable these ad-hoc interactions
in a decentralized manner without a central instance needed
to enable the interaction.

c) Technology Independence: Information technology
evolves very fast and many specific technologies that are
standard today will be obsolete in a few years. Therefore, it is
important to design a solution that abstracts from the specifics
of individual technologies and makes it possible to replace
them or use different technologies in parallel.

IV. DEVICE-AGENT BASED MIDDLEWARE

We will present our middleware approach in a top-down
manner.

A. Nodes Represented by Device-agents

The idea is to see each node in the network as an agent,
which knows its capabilities and might have tasks it tries
to perform by communicating and cooperating with other
agents in the network. To distinguish our agents from the
different kind of agents used in computer science, we call the
agents in our approach device-agents. A device-agent is special
software, which resides on a specific device and knows the
device’s specific capabilities, constraints, policies and services
(Figure 1). Each of the nodes represented as device-agent is an

independent entity, which is also able to function on its own.
These entities interact with each other to build a network and
to enable higher level services and capabilities. An agent-based
approach facilitates the self organization and adaptability of
the system.

Figure 1. A3ME device-agents

Each device-agent is seen as a black box. This means we
want to hide the hardware and software the node is built of, and
just show its capabilities and services to the outside. To interact
with each other, device-agents have to support a basic set of
messages and interaction protocols. This will be described in
more detail in the following sections.

B. Device-Agent Interface

Interaction Interface defines how device agents interact
with each other. All interactions happen through exchange
of messages. The structure of these messages is described
in IV-D. Different interactions are composed of interaction
primitives described in IV-C. In section IV-J we describe how
the content of the A3ME messages is built.

C. Interaction Protocols

Here a minimal set of interactions is defined, which are
enabled through A3ME between different devices through
device-agents. These protocolls specify the flow of message
types to be exchanged for each type of interaction.

1) Inform Interaction Protocol: The Inform Interaction
Protocol is used to introduce a device-agent to others. This
is usually done when a device is switched on, enters a new
area while moving or periodically. In this interaction just one
Inform message is sent through all available communication
channels of the device and does not require other device-agents
to react to it.

2) Request Interaction Protocol: The Request Interaction
Protocol is the protocol used for all kinds of requests. Request
Interaction is initiated by a Request message. Every receiver
answers the request with an Inform message containing
the requested information. An information request might be
rejected when answering it violates the policy of the DA.

3) Call Interaction Protocol: The Call Interaction Protocol
is used to call a service offered by the device. The command
needs either the service ID or the capability to which it is
related. In the second case the default service for the given
capability will be called, e.g. for an LED the toggle LED will
be called.

D. Common Message Structure

This section describes the structure of the message, which
will be transported by the different communication tech-
nologies as payload. This means the A3ME message will
be put inside a communication technology specific message
body. The communication technology specific message might
contain other information required by the protocol used, like
sender address, receiver address etc. For example, if the
communication protocol used is TCP/IP, the addresses would
be IP-addresses.

The A3ME Message contains parameters defined in FIPA
ACL Message Structure Specification [2]. The only mandatory
parameter is the performative. Usually it also contains sender
and destination addresses for the message, it also contains their
IDs and eventually other kind of addresses valid for the sender
and/or receiver on another communication interface.

E. Message Types

For interactions between nodes messages of predefined
types are used. FIPA ACL performatives [3] are used as types.
These define 22 performatives, whereof we currently use four:
inform, request, cancel and not understood.

F. Addressing of Individual Devices

In heterogeneous environments a device might have differ-
ent communication capabilities and for each of those it has a
different address, often even of different kind. For example a
device can have an IP-address for the Ethernet connection,
a second IP for the WIFI connection and a com-port to
communicate with a sensor node base station, which on its
side has an address inside the WSN.

In A3ME we decided to identify each device by a device-
agent identifier (DAID). A DAID is composed of textual
device-agent name and of a set of addresses, where each
address also has an address type assigned. This solution was
inspired by agent identifiers (AIDs) used in JADE [5] Java

Agent DEvelopment Framework. The IDs of the agents in
JADE are composed of a name and the platform on which
they reside.

G. Group Addressing

In requests it is also possible to address whole groups of
devices. In A3ME we don’t focus on a specific solution, but
allow the use of any existing group-addressing technology.
A simple type of group-addressing would be to address only
devices of a specific device type or all nodes using a specific
communication technology (e.g. Bluetooth). But it is also
possible to use more sophisticated groupings. This could be for
example Logical Neighborhoods [14] or Scopes [10], where
the groups are defined dynamically depending on device’s
static or dynamic properties.

H. Message/Data Encoding

All messages and data structures in A3ME are defined in
ASN.1. For transferring this data on top of any communication
technology it is encoded and afterwards decoded using the
aligned ASN.1 Packed Encoding Rules (PER) [1].

I. Predefined Extensible Classification

For classification of devices, capabilities, properties, ser-
vices, etc. we developed a predefined simple ontology. This
ontology does not pretend to be complete. Instead it is exten-
sible with base-classes.

The advantage of using an ontology with base-classes is
that it enables interactions with before unknown devices and
eliminates the need to agree on a complete ontology to classify
each other.

J. Query Language

Devices exchange and interpret messages defined in ASN.1
syntax, but for humans it is not very comfortable to define
queries using ASN.1 directly. Therefore we define also a
SQL like query language (A3ME-QL) to simplify the entering
of queries by humans. These queries are then translated
into ASN.1 and forwarded to the A3ME middleware. When
presented to the user ASN.1 queries are translated back into
the A3ME-QL.

V. DEVICE-AGENT REALIZATION LEVELS

The realization of device-agents representing, for example,
a small sensor node and a smart phone are quite different.
The DA for sensors might only offer a static description of
the sensing capabilities and basic services to get the sensor
readings. The smartphone-DA can have in addition to its
sensing capabilities the ability to communicate via different
communication channels and offers an interaction interface to
a human user. Therefore we classify the DA realizations into
two levels: core and basic A3ME DA realizations.

The core A3ME DA is the smallest version of a device-agent
realization. It provides only the self-description information
about the device it represents. In the simplest case it is only
the static information which is programmed into the device
on deployment. An enhanced version additionally can contain

dynamic info which is either collected, measured or calculated
during runtime.

The Basic A3ME DA extends the Core functionality with
the basic functionalities of the represented device as services.
These are in the case of a sensor device the services which
offer the sensor readings of the connected sensors.

VI. EXAMPLE WALK TROUGH

In this section we will describe the activities in the A3ME
framework using a simple example. A mobile device has
the task to discover temperature sensors in its proximity and
collect temperature readings.

a) Query in A3ME QL: We can think of a local ap-
plication which is built on top of A3ME middleware and
implements the described task. To get the needed Information
we can formulate a query as follows:

1 REQUEST d e v i c e . name , t e m p e r a t u r e . d a t a
2 FROM ALL
3 WHERE IS−A mote
4 PERIOD 1 minu te DURATION 5 minu te
5 RANGE 3 hop

In line 1 of the query we list the data-descriptors we are
interested in: device.name, temperature.data. The left part of
the data-descriptors is always an entry of the A3ME ontology
(here: device and temperature). The right part of the data-
descriptor describes the information-type we are interested in.
The possible values here are: type-code, type-name, name,
description, id, data and m2m-description. FROMALL spec-
ifies from whom we are querying the information: ALL means
it is addressed to all who get the message. Line 3 adds a
capability existence condition: here only devices which have
the capability mote, meaning they are of type mote, shall
answer the query. Line 4 specifies that we are interested to
get the answer every minute for the duration of five minutes.
Line 5 limits the forwarding range of the query to 3 hops.

b) Encode Message: The query is encoded using ASN.1
unaligned ASN.1 Packed Encoding Rules (PER). The length
of the example query described above is encoded to a byte
array of 19 bytes.

c) Message Transport: The encoded query is put into
a bluetooth message and sent to the connected workstation.
The workstation forwards the bluetooth message to other
bluetooth devices and additionally extracts the payload from
the bluetooth message, puts it into a message for sensor
nodes and broadcasts it through the connected sensor-node-
basestation to the sensor nodes. Now the workstation decodes
the payload and evaluates the contained query. Since the
workstation does not satisfy the condition in the WHERE part,
it does not have to send any answer.

The sensor nodes in range get the message forwarded by
the workstation. Since the forwarding range is not exceeded
yet (3 hops), they first forward the message, than decode
the payload. Now they evaluate the contained query and set
up a repeated answering of the query every minute for the
duration of 5 minutes. An answer message is then sent to the
requester periodically and contains a result set with one row
with the name of the device followed by the current value of

the temperature. The workstation gets the individual answers
from the sensor nodes and forwards them to the requesting
mobile device via bluetooth.

VII. CONCLUSIONS AND FUTURE WORK

The realization of A3ME enables basic interaction bet-
ween heterogeneous devices in heterogeneous environments.
It extends existing solutions with more interoperability yet is
simple enough to be usable on resource restricted nodes di-
rectly. The use of a predefined but extensible ontology enables
interaction with a priori unknown nodes. Basic interactions
offered by A3ME device-agents enables ad-hoc device, capa-
bilities and service discovery. ASN.1 based messages and data
definition allows to generate program code for these structures,
thereby simplifying and accelerating the development of DAs
and applications for new devices.

As our future work we would like to build new applications
on top of this basic middleware, which now can use and benefit
from the specialized solutions from the different research
areas. One such application would be a generic graphical user
interface (SMARTUI). Such a user interface would enable a
user to discover and query sensor-measurements from nearby
sensors, discover devices in a smart home and interact with
them, discover a robot and control it, discover and allow
interactions with other users via their devices. The informa-
tion about discovered devices, capabilities, users etc. can be
completed and looked up via semantic web mechanisms and
visualized on a map.

REFERENCES

[1] ASN.1 Encoding Rules-Specification of Packed Encoding Rules (PER).
Recommendation x.691, ITU-T, 2002.

[2] FIPA ACL Message Structure Specification. Standard, FIPA, 2002.
[3] FIPA Communicative Act Library Specification. Standard, FIPA, 2002.
[4] Common Object Request Broker Architecture (CORBA) Part 1: CORBA

Interfaces, 2008.
[5] F. Bellifemine, G. Caire, A. Poggi, and G. Rimassa. JADE A White

Paper. Technical Report September, Telecomitalialab, 2003.
[6] L. DeMichiel and M. Keith. Enterprise JavaBeans TM Version 3.0

Simplified API. Technical report, Sun Microsystems, 2006.
[7] A. Dunkels, B. Grönvall, and T. Voigt. Contiki - a lightweight and

flexible operating system for tiny networked sensors. In First IEEE
Workshop on Embedded Networked Sensors (Emnets-I). IEEE CS, 2004.

[8] C.-L. Fok, G.-C. Roman, and C. Lu. Agilla: A Mobile Agent Middleware
for Sensor Networks. Technical Report WUCSE-2006-16, Washington
University, St. Louis, 2006.

[9] A. Herzog, D. Jacobi, and A. Buchmann. A3ME - An Agent-Based
Middleware Approach for Mixed Mode Environments. In 2008 The
Second International Conference on Mobile Ubiquitous Computing,
Systems, Services and Technologies, pages 191–196. IEEE, Sept. 2008.

[10] D. Jacobi, P. E. Guerrero, I. Petrov, and A. Buchmann. Structuring
Sensor Networks with Scopes. In 3rd IEEE European Conference on
Smart Sensing and Context (EuroSSC). IEEE CS, 2008.

[11] K. Kreuzer. Openhab – Open Home Automation Bus. http://openhab.org.
[12] P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse, A. Woo,

D. Gay, J. Hill, M. Welsh, E. Brewer, and D. Culler. TinyOS: An
operating system for sensor networks. In Ambient intelligence. Springer
Verlag, 2004.

[13] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. TinyDB:
an acquisitional query processing system for sensor networks. ACM
Transactions on Database Systems, 30(1):122–173, 2005.

[14] L. Mottola and G. P. Picco. Programming wireless sensor networks with
logical neighborhoods. In 1st international conference on Integrated
internet ad hoc and sensor networks - InterSense ’06. ACM, May 2006.

